
On estimation of the displacement in an earthquake source
and of source dimensions

Vladimir Keylis-Borok

Annali di Geofisica, Vol. 12, n. 2, 1959.

ANNALS OF GEOPHYSICS, VOL. 53, N. 1, FEBRUARY 2010

ABSTRACT

An ellipsoid of  rotation - a round fault plane surrounded by a crushing
zone - is taken as a source model. The area S of  the fault plane and the
displacement V along it can be estimated using formulas:

where the energy E is known (µ is shear modulus; Rs, Ls coefficients
given in figure 2; p means stress before the earthquake; the value p =
3.107 gives satisfactory results in several cases). These formulas are
compared with the well-known fact that the frequency of  occurrence of
earthquakes is proportional to E0.5– E0.6; it is shown that the weak
numerous earthquakes can take a considerable part in the formation of
large faults and movement along them, though their total role in
releasing seismic energy is negligibly small.

1. Introduction
The study of  an earthquake's mechanism is usually

finished by the determination of  a fault plane and the
direction of  displacement along it. In many aspects of
geodynamics and seismology it would be very important to
estimate also the dimensions of  a source and chiefly - the
magnitude of  the displacement in it.

This problem can be reduced to the comparing of  fields
of  statical stress before an earthquake and after it. The
difference of  energies of  these two fields depends upon
source properties in question; hence it is possible to
determine dimensions of  the source and the displacement in
it if  the form of  the source and the difference of  the energies
be known. The energy difference can be found from
observations on the seismic waves energy.

The idea of  such an approach belongs to L. Knopoff. He
solved the two - dimensional problem which deals with the
study of  very strong earthquakes with long faults. The
analogical three – dimensional problem is considered in this
paper; it is necessary for studying of  more numerous weaker
earthquakes and investigation of  some contiguous problems.

2. Theory
The problem can be formally stated as following. Before

an earthquake a homogeneous field of  tangentional tractions

exist τxy= p, with corresponding displacement u= cy, v= p/µ– cx,
c being arbitrary. We shall call this field an initial field. In the
moment of  the earthquake tangentional tractions vanish
along the fault plane, x² + z² ⩽ b², y = 0.

A zone of  crushing or intence plastic flows can appear
around the fault plane. This zone must be included in the
source model because the tangential tractions in it decrease
or vanish; that is why we shall consider the source as an
ellipsoid.

Now we shall examine a final field of  stress which is
defined by two conditions: a) displacements and stress tend
to initial ones at infinite distances; b) the source boundary is
free from stress except the hydrostatic pressure. We shall
suppose the final field to appear after the earthquake with
the source (1).

I neglect here plastic flows and an inhomogeneity of  the
initial field which can really exist. Besides, the source
boundary in the above meaning can be really not sharp.

Thus idealized problem in its main part can be reduced
to this one which is already solved by Neuber in the theory
of  stress concentration.

I omit here calculations which are not complicated
principally and shall give the final result.

The Neuber's solution is obtained in elliptical
coordinates:

it can be represented by the formulas:

Normal stresses.
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Tangentional stresses.

Displacements.

Energy-difference.

here σu, τuv are the stress components; δUu are the differences
between the displacement in the initial and final fields; δW is
the stress energy difference (the last 2/3 π thu0 in (5)
represents the energy inside (1)).

The maximal tangentional stress, according to Neuber is:

It is interesting to note, that τmax is always more than ~ 2p
(Figure 1).

The displacements change quaintly from point to point.
For the measure of  displacement we shall take V – the
maximal one on the y-axis, that is in the middle of  the source
boundary:

In particular, it is interesting to consider the
displacements at the source boundary (u = u0). If  the source
is thin (a = 0), we have:

here signs « + » and « – » correspond to displacements in
upper and lower sides, so that the fault does exist in our
model.

It can be seen from this that in elastic case the fault plane
undergoes also a rotation (δUy≠ 0) which reestablishes the
statical equilibrium after the forming of  a fault. It is not clear
whether this rotation will take place in fact because the
reestablishment of  the equilibrium can be the result of
imperfect elasticity. This will not change the order of
quantities studied here. However the rotation will essentially
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distort the seismic waves, generated after the formation of  a
fault; therefore in constructing of  the dynamic model of  a
fault it is necessary to allow for the plasticity near the source.
(Of  course, even in elastic case the above formulae can not be
used directly for construction of  dynamic model because
they represent only its zero-frequency component).

3. Interpretation
The following formulae can be of  the main interest for

the interpretation of  seismic data:

where δW is the difference of  energies of  the initial and final
fields, V is our measure of  displacement, S is the fault plane
area and Ls, Rs are plotted on figure 2.

By means of  these formulae one can try to determine
the fault plane area S and the displacement V in the source if
the energy of  seismic waves E is known. Because of  energy
dissipation E is less than δW. However the ratio E/δW is

much more for earthquakes than for explosions and
according to Byerly E and ΔW are of  the same order.

It is better to use these formulae in logarithmic form
which corresponds to the accuracy of  E – determination.

The values of  the coefficient Rs, Ls are given in figure 2
for the case a = 1.5, which corresponds to the Poisson
coefficient v = 0.25; the variation of  v in reasonable limits
(0.23-0.27) may be neglected. The dashed line corresponds
to the case when the energy inside the source model
(ellipsoid (1)) is not included in δW and is considered as
dissipated in the plastic flow hear the source. The stress p in the
initial field is not known and this is the main difficulty in using
formulas (6-8). It may be asserted only that p is less than the strengh
limit as it corresponds to an average stress in a great region.

H. Benioff  estimated p for Kern county earthquake of
1951 from the formula E = p²/2µ HF (H = thickness of  the
crust, F – area of· aftershocks' zone); the formula is based on
the assumption that the energy E of  seismic waves was
accumulated in the zone coinciding with the zone of
aftershocks. He obtained p= 2.67 dyne/cm². Since E is known
for this earthquake (~ 5.1022 ergs) p can be estimated using (6).

The movement took place along the fault ~ 60 km long.
Designating the depth of the rupture in kilometres by Hwe obtain
S= 6H 10¹¹ cm². Then with µ= 5.10¹¹ cgs and  a= 0 we get

H is unlikely to be greater than 35 km (the thickness of  the
crust in California) and less than 15 km. Than p� (5-9).107 cgs.
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Since the source of  this earthquake is greatly elongated
if  would be more reasonable to use formulas for two-
dimensional problems. Assuming again that H = from 15 to
35 km, we obtain from the formulas of  Knopoff: p � (1.5-
3.4).107 cgs. The obtained values of  p are of  the same order;
we shall try to use them for the study of  other earthquakes.

In conclusion it should be noted that in a number of  paper
the volume Vof the region of stress accumulation was estimated
from the energy of  earthquakes E applying the formula:

The value v should not be mixed up with the volume of
the model (1): the latter may be equal to zero (with a = 0);
although E remains finite. One can see from figure 2 that E
relatively little depends upon the volume of  the source and
is determined mainly by the area of  a fault and by the initial
stress p.

Formulas (2), (3) can be used also for the estimating of
the influence of  earthquakes on the stress field around the
source. In a small region around (1) the tangentional stress
diminishes near the x-axis and becomes maximal near z-axis
(where the screw-deformation occurs). This can stimulate
the expansion of  the fault or the formation of  new faults
along z- direction, perpendicular to the motion direction x.
But it would be especially important to take into account
non-ideal elasticity when studying the stress in the final field.

4. Comparison with observations
Unfortunately the greater part of  observational data

refers to strong earthquakes with surface faults which are
certainly far from the circle (fault planes are unlukly to go
much deeper than the earth's crust and their horizontal
length amounts to hundreds of  kilometres).

For the San Francisco earthquake of  1906 the length of
a fault was l = 435 km; assuming S = lH we obtain with
H= 35 km (the thickness of  the crust in California) S= 1.5; 1014.
Assuming a= 0, µ= 3.1011we obtain from formula (7) V� 3 m.
This value is of  the same order that the actual one.

From formula (6) S � 0.7.1014 cm2 which also agrees
with actual data.

It would be interesting also to compare the analogous
computations with the empirical relation between E, V and
S communicated by Don Tocher at the Toronto meeting;
however he studied the strong earthquakes for which
Knopoff's formulas are more valid.

In conclusion it is interesting to compare formulas (6);
(7) with the data on the frequency of  occurence of
earthquakes. B. Gutenberg and C. Richter showed, that with
the decrease of  energy of  each earthquake by 100 the
number of  such earthquakes increases only by 10; therefore
the part of  weak earthquakes in the total amount of  annually
released seismic energy is very small. However with the

decrease of  E by 100 the total area of  faults will decrease
(after (6)) only by 101/3 and the total movement (according to
(7)) will even increase by 101/3. Certainly fault areas and
movement values cannot be summed up in such direct way.
However these estimates show that weak earthquakes can
take an essential part in causing great faults or in movements
along them.

(The frequency of  weak earthquakes is determined for
short-period ones; each of  them can correspond to the
movement along a part of  a great fault. F. Press discovered
also the long-period weak shoks, and explained them as a
weak movement along a large faults as a whole).
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