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ABSTRACT

This paper describes a new method for calculating strong motion records
for a given seismic region on the basis of  the laws of  physics using
information on the tectonics and physical properties of  the earthquake
fault. Our method is based on a earthquake model, called a «barrier
model», which is characterized by five source parameters: fault length,
width, maximum slip, rupture velocity, and barrier interval. The first
three parameters may be constrained from plate tectonics, and the fourth
parameter is roughly a constant. The most important parameter
controlling the earthquake strong motion is the last parameter, «barrier
interval». There are three methods to estimate the barrier interval for a
given seismic region: 1) surface measurement of  slip across fault breaks,
2) model fitting with observed near and far-field seismograms, and 3)
scaling law data for small earthquakes in the region. The barrier intervals
were estimated for a dozen earthquakes and four seismic regions by the
above three methods. Our preliminary results for California suggest that
the barrier interval may be determined if  the maximum slip is given. The
relation between the barrier interval and maximum slip varies from one
seismic region to another. For example, the interval appears to be
unusually long for Kilauea, Hawaii, which may explain why only
scattered evidence of  strong ground shaking was observed in the epicentral
area of  the Island of  Hawaii earthquake of  November 29, 1975. The stress
drop associated with an individual fault segment estimated from the
barrier interval and maximum slip lies between 100 and 1000 bars. These
values are about one order of  magnitude greater than those estimated
earlier by the use of  crack models without barriers. Thus, the barrier
model can resolve, at least partially, the well known discrepancy between
the stress-drops measured in the laboratory and those estimated for
earthquakes.

Introduction
We are interested in predicting earthquake strong

motion on the basis of  the laws of  physics using information
on the tectonics and physical properties of  the earthquake
fault which can be measured at the present time. Recent
advances in the study of  earthquake source mechanisms,
plate tectonics, rock mechanics, and approach viable and
gation in realistic media have made this new approach viable
and promising to supplement the conventional approach
based entirely on the past records of  strong motion and
earthquake statistics.

The first successful attempt of  theoretical prediction of
strong motion was made by Aki [1968] and Haskell [1969]
for the station no. 2 record of  the Parkfield earthquake of
1966. The earthquake model used by them was a
propagating dislocation parametrized by fault length, fault
width, rupture velocity, final uniform slip, and rise time.
Among these five parameters, the first four can be
determined relatively easily from various seismological data
and their reliable estimates have been obtained for many
earhquakes. The results from plate tectonics also gave
constraints on these parameters.

For the prediction of  strong motion, however, the most
important parameter is the rise time which controls the high
frequency end of  seismic spectra. Because of  difficulties in
separating source and path effects on short period waves, the
determination of  this parameter has been made for only a
few earthquakes.

To resolve this problem, we have taken two approaches:
spectral analysis of  small earthquakes and theoretical work
on rupture propagation. In the spectral analysis work, we
used the coda method developed by Aki and Chouet [1975]
for separating the source, attenuation, and scattering effects
on short period waves. The main purpose of  the work was to
find the scaling law of  seismic spectrum which describes how
the seismic spectrum grows with earthquake magnitude.

The other approach was to find the fault slip as a
function of  time and location on the fault for given
conditions of  tectonic stress, material strength on the fault,
and the fracture criterion. The results of  such work will not
only give us the physical meaning of  «rise time», but also
allow us to relate the physical properties of  an earthquake
fault with seismic motions generated from the fault. Thus,
Das and Aki [1977] arrived at a new versatile earthquake
model called the. «barrier model». In this model, the ad-hoc
parameter «rise time» is replaced by a more physical
parameter, «barrier interval». The new model allows us to
estimate the barrier interval from the observed seismogram
of  an eartihquake, from the scaling law of  seismic spectrum
for small earthquakes in a seismic zone, and from the direct
measurement of  fault breaks along an earthquake fault.

We have estimated the barrier interval for six
earthquakes by direct measurement of  the fault slip, for an
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additional six earthquakes by model fitting with observed
seismograms, and for four seismic areas from locally
observed scaling laws of  seismic spectra. The results suggest
that the barrier interval may be reliably determined by
knowing the expected maximum slip. On the other hand, the
expected maximum slip, fault length, and width are
constrained by plate tectonics and the rupture velocity is
usually within the range of  2 to 3 km/sec. Thus, our barrier
model can give all the necessary parameters for calculating
strong motion by the laws of  physics. An interesting and
important aspect of  this model is that the tectonic stress is
implicitly contained in the maximum slip vs. barrier interval
relation but is not an explicitly required parameter for
calculating strong motion.

In the present paper, we shall first review how the idea
of  the «barrier interval» has evolved from the analysis of  the
growth of  source spectrum with magnitude. Then, we shall
discuss the results of  numerical calculation of  rupture
propagation over a fault plane with distributed barriers. We
shall show how the barrier model determined

seismologically compares with the surface measurements of
fault breaks for the San Andreas fault. We shall then obtain
the barrier interval for many earthquakes and several seismic
areas by comparing synthetic seismograms with observed
data, and by direct measurements of  fault slip. The results
will be summarized in a diagram showing barrier interval as
a function of  maximum slip.

Observed scaling law
of seismic spectrum for small earthquakes

The manner in which the seismic spectrum grows with
earthquake magnitude is called the «scaling law». A simple
scaling law based on the assumption that large and small
earthquakes are similar has explained fairly well observations
of  earthquakes with magnitudes M greater than 6 [Aki 1967,
1972]. The similarity assumption implies the constancy of
stress drop independent of  magnitude which is supported by
observations, at least for shallow earthquakes with M > 6
[Kanamori and Anderson 1975]. The validity of  the similarity
assumption means that there is no unique physical length
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Figure 1. Growth of  the seismic source spectrum with magnitude for
earthquakes in the San Andreas rift zone near Stone Canyon, central
California. The locus of  corner frequencies appears to consist of  three
distinct segments between magnitudes 1 (M 1) and 5 (M 5). Reproduced
from Chouet et al. [1978].

Figure 2. Comparison of  the corner-frequency vs. moment relation
determined by the coda method (solid line), various deterministic methods
(for individual earthquakes) and extrapolation from larger earthquakes
(dashed lines). Reproduced from Chouet et al. [1978].
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involved in earthquake phenomena except the total fault
length.

Using the coda method developed by Aki and Chouet
[1975], we have studied the scaling law for small earthquakes
in Tsukuba and Oishiyama, Japan, Stone Canyon and San
Fernando, California, and Kilauea, Hawaii. As described in
Chouet et al. [1978], except for Hawaii, all of  the areas
showed some departure from what would be expected under
the similarity assumption. For example, if  the similarity
assumption is valid, the relation between corner frequency
and seismic moment must be a straight line in the log-log plot
with a slope of  – 3. Except for Hawaii, the loci of  corner
frequency follow zig-zag paths consisting of  segments of  two
distinct types. One is a vertical path with constant corner
frequency and the other is an inclined line with a slope of  – 3.

A similar zig-zag path was found by Street et al. [1975] for
earthquakes in the central United States. Violation of  simple
similarity assumption was also observed by Tsujiura [1978] for
the Kanto region, Japan, and by Rautian and Khalturin [1976]
for Garm region, USSR, using the coda method.

Let us now examine closely the results from Stone
Canyon, California, to find a clue for the physical meaning of
the observed scaling laws. Reproduced from Chouet et al
[1978], Figure 1 shows the average source spectra for various
magnitudes and Figure 2 compares the corner frequency
with those obtained for earthquakes in the same area but by
various methods based on deterministic models. Since our
method relies on coda waves, for which the path effect and
the effect of  azimuthal radiation is presumably average out,
we expect our estimate of  corner frequency to be more
stable. In fact, the points obtained by other methods scatter
around the curve obtained by the coda method. In particular,
the very weak dependence of  corner frequency (near 1 Hz)
on magnitude observed by Johnson and Mc Evilly [1974] is
supported by our results. While the corner frequency is
nearly constant at 1 Hz the spectral shape changes with
magnitude as shown in Figure 1. The high frequency
asymptote shows a steeper slope for M = 5 than for M = 4.
We shall find that all these observations can be explained by
considering rupture propagation along a fault plane with
distributed barriers.

Rupture propagation
over a fault plane with distributed barriers

It is now well established, at least in numerical
experiments, that the in plane shear crack an propagate with
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Figure 3. The value of  (1 + S), a measure of  material strength relative to
tectonic stress is shown as a function of  distance, x1 along the path of
rupture propagation on the top of  the figure. This is the case P – SV – 0 in
which no barriers exist on the fault plane. At the bottom, snap shots of
the parallel component displacement on the crack surface u1 (x1, o, t) are
shown as a function of  x1. u1 is normalized by the factor L (τ0 – τf)/μ and
the number attached to each curve indicates time t measured in the unit
of  0.5 L/α, where L is the length of  the fault, α. is the compressional wave
velocity, μ is the rigidity, τ0 is the initial tectonic stress, and τf is the dynamic
function of  the fault plane. Reproduced from Das and Aki [1977].

Figure 4.Case P – SV – 1 in which one barrier exists on the fault plane. See
Figure 3 legend for details. The crack tip skips the barrier without breaking
it. Reproduced from Das and Aki [1977].



velocities beyond the Rayleigh wave velocity, not only for
cohesionless cracks [Burridge 1973], but also for cracks with
finite cohesive forces [Hamano 1974, Andrews 1976, Das
1976, Das and Aki 1977a]. This is because the dynamic stress
associated with P and S waves traveling ahead of  the crack-
tip can exceed the finite cohesive stress.

The same mechanism, when combined with barriers
distributed over a fault plane, can explain the observed
constant corner frequency path in the scaling law diagram
described in the preceding section.

Consider a segment of  fault bounded by two strong
barriers. A rupture will be nucleated near one of  the barriers,
propagate over the segment and stop at the other barrier.
Consider also relatively weak barriers distributed over the
fault segment. Das and Aki [1977b] showed that the
following three different interactions between the crack-tip
and the barrier on the fault segment can occur depending on
the strength of  the barrier relative to tectonic stress.

1. If  the tectonic stress is relatively high, the barriers on
the fault segment are broken as the crack-tip passes.

2. If  the tectonic stress is relatively low, the crack tip
proceeds beyond the barrier, leaving behind an unbroken
barrier.

3. If  the tectonic stress is intermediate, the barrier is not
broken at the initial passage of  the crack-tip; but eventually
breaks due to subsequent increase in dynamic stress.

Das and Aki [1977b] calculated the far-field spectrum of
body waves radiated from fault planes with various barrier
distributions and showed that this model offers a unified
theory for a variety of  observed seismic source functions.

As an example, we shall compare the case PSV-0, in
which all the barriers are broken as the crack-tip passes with
case PSV-1, in which one barrier is left unbroken. Figure 3,

QUANTITATIVE PREDICTION OF STRONG MOTION FOR A POTENTIAL EARTHQUAKE FAULT

84

Figure 5. The far-field wave form is shown for P waves for various
azimuths on the left for case P – SV – 1. The arrows indicate the arrival of
the stopping phase from the moving crack tip. The absolute value of  the
Fourier transform of  the far-field wave form is shown on the right in a
logarithmic scale normalized to the value at zero frequency. For
comparison, the dashed lines on the figure of  the spectrum show the
curves for case P – SV – 0. Reproduced from Das and Aki [1977].

Figure 6. Horizontal displacement along the fault of  Dasht-e Bayaz
earthquake of  1968. Vertical axis is left-lateral displacement in meters.
Horizontal axis is distance along the fault in kilometers. Solid circles
indicate north-facing scarp and open circles south-facing scarp. Note the
gap near 10 E. Reproduced from Tchalenko and Berberian [1975].

Figure 7. Frequency distribution of  the length of  fault strands along the
San Andreas fault. Reproduced from Wallace [1973].
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for case PSV-0, and Figure 4, for case PSV-1, show fault slip as
a function of  the length of  the fault at several time intervals.
The wave-forms of  the body waves radiated in case PSV-1 are
shown in Figure 5 together with the spectral density (solid
line). The dashed lines in Figure 5 show the shape of  spectral
density for case PSV-0. The corner frequency is nearly the
same for both cases PSV-0 and PSV-1, but the high-frequency
content relative to the low frequency is greater for case PSV-
1 than for case PSV-0.

Since the average slip over the fault plane is smaller for
case PSV-1 than for case PSV-0, the seismic moment is also
smaller. Thus we can explain all of  the observations
described earlier for the Stone Canyon earthquakes with M
= 5 and M = 4 by identifying them as cases PSV-0 and PSV-1,
respectively.

The above agreement suggests the existence of  strong
barriers in the San Andreas fault near Stone Canyon with an
interval equal to the fault length corresponding to a corner
frequency of  1 Hz. Using Madariaga's formula for S-wave
corner frequency f from a circular fault with radius a, i. e.

(1)

the fault length (2 a) is estimated at 1.5 km for f = 1 Hz and
β = 3.5 km/ sec. We now seek to determine if  there is any
geologic evidence supporting this value for the barrier
interval.

Geologic evidence for barriers along a fault plane
The U. S. Geological Survey published a series of  maps

showing recently active breaks along the San Andreas and
related faults. As pointed out by Wallace [1973], the pattern
of  surface faulting shown in these maps is not a single
continuous fracture but consists of  multiple breaks, like a
long rope made of  many shorter strands. The long est
individual fault «strands» are about 10 to 18 km long,
comparable to the depth of  the deepest earthquakes,
suggesting that individual fractures may be relatively
equidimensional in length and depth. Larger earthquakes, in
which several tens or hundreds of  kilometers of  fault length
are involved, would then require multiple fractures. Earlier
Wallace [1968] discovered in the Carrizo plain streams with
no apparent offset lying along fault segments on which tens
of  feet of  offset had occurred during the great earthquake
of  1857. He suggests that the pattern of  fault slip along the
fault during the 1857 earthquake may consist of  composite
segments, each several miles long, along which displacement
reaches a maximum near the midsection of  the segment and
then dies out at the ends, similar to the theoretical curve
shown in Figure 4, for the case of  PSV-1. A similar
observation has been made for other earthquakes. One of
the most impressive examples is shown in Figure 6,
reproduced from Tchalenko and Berberian [1975].

Figure 6 shows the pattern of  fault slip in the bedrock
section (Khidbas) and alluvial section (Nimbluk) during the
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Figure 8. Fault-plane geometry used to model the San Fernando
earthquake of  1971 and the site of  the strong motion seismograph at
Pacoima Dam. Reproduced from Bouchon [1977].

Figure 9. Slip functions obtained as a numerical solution of  a crack
problem on the left and those approximated by a sequence of  ellipses used
in calculating the synthetic seismogram at Pacoima at Dam. Reproduced
from Bouchon [1978].

Table 1.

0.21f Hz a= b^ h



Dasht-e Bayaz earthquake of  1968. There was no fault break
between the two sections for about 4 km.

Some of  the gaps in fault breaks reported by geologists
may be due to the properties of  the soil near the surface and
some may even be due to the erasure of  the fault break by
erosion and vegetation. Others, however, may be a direct
expression of  the pattern of  slip on the fault plane. Then, the
length of  fault strand may be directly related to the barrier
interval along the fault plane.

The frequency distribution of  length L of  a fault strand
for the San Andreas fault is shown in Figure 7, reproduced
from Wallace [1973]. The distribution is exponential for L <
8 km with a tail of  roughly uniform height for 8 < L < 20
km. If  we neglect the tail part, the probability density
function is given by

(2)

with β = 0.66 km–1. The mean of  L is given by

(3)

Thus, the average value of  the fault strand is exactly equal
to the average barrier interval estimated from the corner
frequency for earthquakes with magnitudes 4 to 5.

This exact agreement is probably fortuitous. The fault
zone from which Wallace's distribution function was
obtained includes our Stone Canyon area but extends outside
the area for a great distance. Since the nature of  fault breaks
is different between the north and south of  Middle
Mountain, we recounted the number of  fault strands
mapped by Brown [1970] with a scale of  1:62.500 for the fault
zone between North Gabilan Range and Middle Mountain
which includes our Stone Canyon area. Table 1 shows the
number of  fault segments with a given range of  length. The
numbers in brackets are obtained if  we exclude branches of
the main fault.

Nevertheless, we find a certain average value on a map
of  given exclude them.

The above average length of  fault segments depends on
the scale of  map used for mapping. Obviously, on the scale
of, say, 1:10.000.000, these segments will merge into a
continuous line. On the other hand, the average length may
become much shorter on the scale of, say, 1:10.000.
Nevertheless, we find a certain average value on a map of
given scale, although if  we look at the whole range from
grain size of  minerals to the length of  the entire San Andreas
fault, there is no physically meaningful average length of
fault segments. This situation is similar to the existence of
constant corner frequency for a certain range of  earthquake
magnitudes mentioned earlier.

If  we look at the whole range of  earthquake source size,
which covers from a few meters to a thousand kilometers,
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Figure 10. Synthetic surface ground motion at Pacoima Dam due to slip
on the lower segment fault. The top trace corresponds to the case of
uniform step-dislocation, the second from the top to the case of  a single
continuous unilateral crack nucleating at the bottom, the third to the case
of  a single continuous bilateral crack nucleating at the center of  the lower
fault segment, and the bottom trace to the case of  multple cracks with ten
equidistant unbroken barriers nucleated at the bottom. Reproduced from
Bouchon [1978].

Figure 11. Synthetic surface motion at Pacoima Dam due to slip on the
upper segment of  the fault. The top trace corresponds to the case of
uniform step-dislocation, the second to the case of  a unilateral single crack
nucleating at the bottom of  the upper fault segment, and the bottom trace
to the case of  multiple cracks with seven unbroken barriers.
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there is no physically meaningful average source size. The
observed constant corner frequency, however, suggests the
existence of  a physical condition which has a characteristic
average length and controls the occurrence of  earthquakes in
a certain magnitude range. The same physical condition may
also control the length of  fault breaks observed on the
surface. We propose to call this length «barrier interval».

The observed fault breaks along the San Andreas fault
from North Gabilan Range to Middle Mountain show an
average barrier interval of  3 to 4 km. On the other hand, the
corner frequency for earthquakes with 4 < M < 5, when
interpreted by a model of  a circular crack, suggests 1.5 km.

As discussed later, the barrier interval may not be a
constant of  a fault zone but vary with the amount of  slip and
other parameters of  the earthquake process.

Seismic motion due to rupture along a fault plane with
distributed barriers; comparison with observations of the
San Fernando earthquake of 1971

Let us now make a direct comparison of  synthetic
seismograms based on the barrier model with near - and far
- field seismograms observed during the San Fernando
earthquake of  1971. We find that a single continuous crack
propagation over a fault plane with no barriers (such as PSV-
0) cannot explain the observations. Interestingly, we find that
multiple cracks over a fault plane with distributed barriers is
roughly similar to the uniform dislocation source in seismic
radiation, especially in the forward direction, and both
explain observations better than a single continuous crack.
We now summarize the results obtained by Bouchon [1978]
using the method described in Bouchon and Aki [1977].

Figure 8 shows a simplified geometry of  fault planes for
the San Fernando earthquake consisting of  two planes; the
lower one dipping at an angle of  about 52˚, and the upper
one at a lower angle. The rupture originated at a depth of
12 to 14 km and propagated upwards until it broke the free
surface. The slip-functions obtained by Das and Aki [1977b]
for various barrier models, such as shown on the left hand
side of  Figure 9, are approximated by a sequence of  ellipses
as shown on the right hand side of  the same figure.

Figure 10 shows the synthetic surface ground
displacement records at the Pacoima Dam due to slip on the
lower segment of  the fault. These four records are computed
for different slip functions. From the top to the botton, they
are a uniform step-dislocation, a single continuous unilateral
crack nucleating at the bottom, a single continuous bilateral
crack nucleating at the center of  the lower fault segment,
and multiple cracks with ten equidistant unbroken barriers
nucleated at the bottom and propagated in the manner
similar to the one obtained for the case PSV-1 by Das and
Aki. The results for the uniform dislocation and the multiple
crack slip functions are remarkably similar. They both show
a sharp change in slope at the arrival of  the shear waves from
the nucleation point. Such sharp arrivals were recorded by a
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Figure 12. Synthetic horizontal particle velocities at Pacoima Dam
obtained from the displacements shown in Figure 11. The upper trace
corresponds to the case of  uniform dislocation and the lower trace to the
case of  multiple cracks. Reproduced from Bouchon [1978].

Table 2. Average barrier interval estimated from surface measurement of  fault slip.



strong motion seismograph at Pacoima Dam. On the other
hand, single continuous cracks cannot generate these sharp
S arrivals in contradiction to observation.

The synthetic ground displacement due to slip on the
upper segment of  the fault is shown in Figure 11. For this
segment, we find a striking difference between the uniform
dislocation and the multiple cracks with seven unbroken
barriers. The latter produces a large high-frequency
component of  3 to 4 sec duration, while the former does not.
This is because the rupture now propagates mostly away
from the Pacoima Dam site. Long trains of  high-frequency
waves are noted also by Das and Aki [1977b] for azimuths
opposite to the direction of  rupture propagation in the case
of  fault planes with distributed barriers.

Figure 12 shows synthetic horizontal particle velocities
at the Pacoima Dam obtained from the displacement due to
the faulting of  the upper segment; uniform dislocation at the
top and multiple cracks at the bottom. The last sharp arrival
is the Rayleigh wave from the point of  surface break. The
model of  multiple cracks explains well the major features of
the Pacoima Dam records.

The methods used for calculating synthetic
seismograms at the Pacoima Dam are restricted to two-
dimensions. We need a threedimensional model for
comparison with teleseismic P wave data. For this purpose
we assumed that the initial crack of  the multiple crack model
is a circular shear crack expanding at a rupture velocity of
0.9β and stopping suddenly. The slip function for this crack
has been calculated by Madariaga [1976]. Bouchon [1978]
again uses an analytic approximation of  Madariaga's
solution. Synthetic P wave forms are computed for a circular
crack buried at the hypocenter in a half-space. The effects of
geometrical spreading, reflection losses, mantle attenuation,
and instrument response are taken into account. The
synthetic P wave forms for different choices of  crack radius
are computed for four Scandinavian stations and compared

with the initial part of  the observed short-period
seismogram. The best fit of  synthetic and observed
seismograms was obtained for a crack radius of  1.5 to 2 km
and a maximum slip of  2.5 to 3 meters.

Empirical relations
between barrier interval and maximum slip

Detailed mapping of  slip across fault breaks on the
surface has been made along the length of  the fault for
several earthquakes. The distribution of  slip as a function of
distance is never a smooth curve with one peak at the center
such as expected for a crack without barriers, the case PSV-
0, described earlier (Figure 3). A remarkably smooth slip
distribution reported by Matsuda and Yamashina [1974] for
the Izu-Hanto-Oki earthquake of  1974 is very much like the
case PSV-1 with one barrier. It consists of  two peaks with an
apparent node in the middle at which a slight change in the
strike direction occurs. In most cases, the slip shows several
peaks suggesting that an earthquake fault is usually a
composite of  faults separated by barriers.

A summary of  barrier intervals and maximum slip
inferred from the observed slip is shown in Table 2 for
earthquakes studied by Matsuda [1972, 1974, 1976], Matsuda
and Yamashina [1974], and Tchalenko and Berberian [1975].
Representative values for the great Fort Tejon earthquake of
1857 are taken from the description by Wallace [1968, 1973]
although the slip distribution along the total fault length is
not available for this earthquake.

In order to estimate the barrier interval seismologically,
we must calculate synthetic seismograms using the barrier
model and compare with the observed data. Bouchon [1978]
made such a comparison for the San Fernando earthquake
of  1971 as summarized in the preceding section. He also
showed that the «composite cracks with unbroken barriers»
model is roughly equivalent to the dislocation model with
uniform slip such as that used by Aki [1968] and Haskell
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Table 3. Barrier interval and maximum slip estimated from rise time.
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[1969] for the Parkfield earthquake of  1966. From this
equivalence, one can make a rough estimate of  barrier
interval from the rise time such that

barrier interval ~ rupture velocity · rise time.           (4)

Table 3 summarizes the barrier interval and maximum
slip estimated using the above equation from source
parameters given by Abe [1974a, 1974b, 1975] and Kanamori
[1972] for four Japanese earthquakes.

As discussed earlier, the corner frequency of  small
earthquakes may be related to the barrier interval of  the fault
zone. The observed constant corner frequency of  about 1
Hz for earthquakes in the Stone Canyon area with
magnitude 4 < M < 5 suggests a barrier interval of  1.5 km if
interpreted by the use of  a circular crack model. Assuming
that the «highest stress drop» earthquake located at the top of
the constant corner frequency path may be modeled by the
circular crack (without barriers) of  Madariaga [1976], we
shall apply the following formulas to this earthquake.

(5)

where M is seismic moment, μ is rigidity, ΔUmax is the
maximum slip, a is the radius of  the crack, β is shear velocity,
f is corner frequency and Δσ is stress drop. Using the values
of  seismic moment and corner frequency for the «highest
stress drop» earthquake, we find not only its barrier interval,
L = 2a, but also its maximum slip, ΔUmax.

For the Stone Canyon area, we find that L = 1.5 km and
ΔUmax= 1 m corresponding to the top of  the constant corner
frequency path (M 5 in Figure 1). The corresponding stress
drop is about 400 bars according to equation (5).

In Figure 13, an arrow is marked on the diagram

showing the maximum slip and barrier interval. The end of
the arrow corresponds to the «highest stress drop
earthquake» in the Stone Canyon area. The arrowhead
points to the direction of  constant stress drop. We plot, in
the same figure, the results obtained by Wallace [1968, 1973]
for fault breaks of  the 1857 earthquake in the Carrizo Plain
and by Bouchon [1978] for the initial part of  the San
Fernando earthquake of  1971. These points appear to lie
along the extension of  the arrow for the Stone Canyon area,
with a slight increase in stress drop for greater earthquakes.
Although the data are too scanty to draw any definitive
conclusion, they suggest that the barrier interval is not a
constant for a fault zone, but increases with the amount of
slip involved in an earthquake.

Figure 13 also shows the results for other areas obtained
by geologic and seismic methods as listed in Tables 2 and 3,
together with the results from the scaling law data obtained
by Chouet et al. [1978]. The data points in Figure 13 are
scattered over an area between two lines corresponding to
stress drops of  100 and 1000 bars. These values are about an
order of  magnitude greater than those estimated earlier by
the use of  crack models without barriers [Aki 1972,
Kanamori and Anderson 1975]. Thus the barrier model can
resolve, at least partially, the well known discrepancy
between the stress drops measured in the laboratory and
those estimated for earthquakes.

The results for Kilauea, although the data are the least
complete, show extremely low stress drop, or a long barrier
interval for a given maximum slip. This may explain why
only scattered evidence of  strong ground shaking was
observed in the epicentral area of  the Island of  Hawaii
earthquake of  November 29, 1975 [Rojahn and Morril 1977].

Prediction of strong motion
With further studies using both geologic and seismic

methods, we hope to establish a reliable relation between the
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Figure 13. Relation between the barrier interval and the maximum slip obtained by various methods.
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barrier interval and the maximum slip for a given seismic
region. If  this· is done, we shall have a powerfull method for
calculating the strong motion seismogram for a potential
earthquake fault. Among the parameters of  an earthquake
source needed for calculating the seismogram, the fault
length and width may be supplied from maps of  geology,
seismicity, and plate tectonics. The rupture velocity appears
to be roughly a constant. The maximum slip for a fault zone
may be estimated from the rate of  plate motion and geologic
history of  slips. Then, the diagram shown in Figure 13 can
supply the final crucial parameter, i. e. the barrier interval,
needed for calculating the strong motion seismogram.

This approach, at least, offers a framework in which
geologic data on past fault breaks and seismological data on
small earthquakes can be combined for the purpose of
estimating the strong motion of  a large earthquake in a given
seismic region.
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