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ABSTRACT

This study provides an overview of  relative-intensity (RI)-based earthquake
forecast models that have been submitted for the 5-year and 10-year testing
classes and the 3-month class of  the Italian experiment within the
Collaboratory for the Study of  Earthquake Predictability (CSEP). The RI
algorithm starts as a binary forecast system based on the working
assumption that future large earthquakes are considered likely to occur at
sites of  higher seismic activity in the past. The measure of  RI is the simply
counting of  the number of  past earthquakes, which is known as the RI of
seismicity. To improve the RI forecast performance, we first expand the RI
algorithm to become part of  a general class of  smoothed seismicity models.
We then convert the RI representation from a binary system into a testable
CSEP model that forecasts the numbers of  earthquakes for the predefined
magnitudes. Our parameter tuning for the CSEP models is based on the
past seismicity. The final submission is a set of  two numerical data files
that were created by tuned 5-year and 10-year models and an executable
computer code of  a tuned 3-month model, to examine which testing class
is more meaningful in terms of  the RI hypothesis. The main purpose of
our participation is to better understand the importance (or lack of
importance) of  relative intensity of  seismicity for earthquake forecastability.

1. Introduction
The crust of  the Earth is clearly extremely complex, and

it is generally accepted that seismicity is a chaotic
phenomenon [Turcotte 1997]. Thus, as in the case of
weather forecasting, earthquake forecasting must be
considered from a statistical stand point [Rundle et al. 2003].
The statistical properties of  seismicity patterns can be used
to forecast future earthquakes. Basic types of  statistical
seismicity precursors include foreshock, quiescence, swarms,
activation and doughnuts [see, for example, Mogi 1985,
Turcotte 1991, Scholz 2002, Kanamori 2003]. Several groups
have systematically developed algorithms to search for
premonitory seismicity patterns. A Russian group has
studied premonitory seismic activation for some strong
earthquakes that occurred in California and Nevada, using
the «CN» algorithm, and for a magnitude M > 8 worldwide,
using the «M8» algorithm [see, for example, Keilis-Borok

1990, Keilis-Borok and Rotwain 1990, Keilis-Borok and
Kossobokov 1990, Keilis-Borok and Soleviev 2003]. Another
group showed premonitory seismic quiescence for Armenian
and Landers earthquakes using the parameter known as the
Z-value [see, for example, Wyss 1997, Wyss and Martirosyan
1998, Wyss and Wiemer 2000]. A new approach to
earthquake forecasting was proposed by Rundle and
coworkers, known as the Pattern Informatics (PI) approach
[Rundle et al. 2002, Rundle et al. 2003, Tiampo et al. 2002,
Holliday et al. 2005, Holliday et al. 2007, Nanjo et al. 2006a,
Nanjo et al. 2006b, Nanjo et al. 2006c]. This approach is based
on the strong space-time correlations of  seismicity, using the
ideas of  driven non-linear threshold dynamics, as well as of
mean-field long-range theory. This PI technique has thus
been used to detect precursory seismic activation and
quiescence, and to provide earthquake forecasts for
California and Japan, and also on a worldwide basis. 

An alternative approach to earthquake forecasting is
much simpler than the algorithms indicated above. This is
the use of  the Relative Intensity (RI) of  past seismicity, which
is based on counting the number of  earthquakes that
occurred in the past. RI suggests that future earthquakes are
most likely to occur where historical seismicity has been
relatively high [Tiampo et al. 2002]. RI belongs to a general
class of  smoothed seismicity models, which also includes
proximity to past earthquakes [Rhoades and Evison 2004],
cellular seismology [Kafka 2002], and other members [e.g.,
Kagan and Jackson 2000, Kossobokov 2004, Helmstetter et
al. 2007] that essentially offer slightly different
representations of  the same basic hypothesis. Of  note,
seismicity changes are not taken into account with RI
forecast generation. Although the RI idea is very simple,
based on previous studies, its forecast performance is
considerable [Rundle et al. 2002, Rundle et al. 2003, Tiampo
et al. 2002, Holliday et al. 2005, Holliday et al. 2006a,
Holliday et al. 2006b, Nanjo et al. 2006a, Nanjo et al. 2006b,
Nanjo et al. 2006c, Zechar and Jordan 2008]. Our challenge
is to move towards a systematic prospective for the testing
of  the RI hypothesis under a well-controlled environment.
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Associated with resurgence in earthquake predictability
research, the working group on Regional Earthquake
Likelihood Models (RELM) has established a facility for
prospective testing of  scientific earthquake predictions in
California [Field 2007]. One of  the successors of  RELM is an
international partnership to develop a Collaboratory for the
Study of  Earthquake Predictability (CSEP), which is designed
to support a global program of  research on earthquake
predictability [Jordan 2006]. Prospective testing experiments
under the CSEP have been carried out for California and
other regions (http://www.cseptesting.org/). One of  the
newly involved regions is Italy. The Italian territory is
characterized by a relatively high seismic risk [Marzocchi
2008], with the strongest earthquakes ranging from medium
to relatively large magnitudes (up to about M 7). Using
these circumstances, the CSEP Italian prospective testing
experiment that is hosted by the European Testing Center was
officially started on August 1, 2009. In this study, we present an
overview of  the RI models submitted for this experiment.
Details of  the "rules of  the game" for this experiment are
given on the website at: http://eu.cseptesting.org/. Three
forecast models for the 5-year and 10-year classes and the
3-month class have been submitted to the testing center. Our
aim here is to examine which of  these classes is more
meaningful for the RI hypothesis.

2. Evidence for using RI in forecasting seismicity
As described in the previous section, RI is a very simple

algorithm. However, this provides us with a relatively strong
approach to earthquake forecasting. Evidence in support of
RI is based on three main lines, as summarized below:

1. RI-based forecasting is better than random forecasting.
Together with the PI method, the RI method has been
applied for prospective forecasting of  a variety of  tectonic
regimes, including California and Japan, as well as on a
worldwide basis [see, for example, Rundle et al. 2002, Rundle
et al. 2003, Tiampo et al. 2002, Holliday et al. 2005, Nanjo et
al. 2006a, Nanjo et al. 2006b, Nanjo et al. 2006c]. The output
is a map of  areas in a seismogenic region where earthquakes
are forecast to occur over a future 10-year time span. Using
Relative Operating Characteristics (ROC) diagrams [Mason
2003] and log-likelihood tests, both methods outperform
random guessing (i.e., random forecast maps) under most
circumstances.

2. RI forecasting is associated with occurrence of  large
earthquakes. Holliday et al. [2006a, 2006b] showed that PI and
RI have comparable accuracies for spatial forecasting in
retrospective testing of  California data using ROC diagrams
[Mason 2003]. In addition, they examined the relative forecast
accuracies of  PI and RI as functions of  time, where they
showed that the time-dependence is highly correlated with

the occurrence of  large earthquakes: M ≥ 6 earthquakes since
1960 have occurred during intervals of  time where RI
outperforms PI. These authors also found that their approach
is applicable to Sumatra, to show that M ≥ 8 earthquakes since
1980 have occurred over time intervals when RI provides
better performance relative to PI.

3. Significant gains of  RI relative to the U.S. Geological
Survey National Seismic Hazard Map. Zechar and Jordan [2008]
presented a method for testing alarm-based earthquake
predictions, on the basis of  Molchan diagrams [Molchan
1990]. These diagrams provide the plot of  miss rate o as a
function of  fraction of  space-time occupied by alarm x. To
illustrate the method, they considered a 10-year experiment
by Rundle et al. [2002, 2003] to predict M ≥ 5 earthquakes in
California, and they tested forecasts from three models: RI,
PI, and National Seismic Hazard Map (NSHM; a model that
uses seismicity smoothed over regions of  as much as 60 km,
zones of  background seismicity, and explicit fault
information). These authors used the RI alarm function as
the prior distribution, and they computed the Molchan
trajectories for the PI and NSHM forecasts (Figure 1a). The
Molchan trajectories for PI and NSHM are close to the
descending diagonal. This indicates much smaller probability
gains for PI and NSHM using the RI reference. Based on
these results, the authors stated that neither PI nor NSHM
provide significant performance gains relative to the RI
reference model. Their Molchan diagram is a one-sided test
with only one forecast model considered for setting up the
null hypothesis: only that taking RI as a reference. We used
the data and program code in their online article, and took
NSHM as the reference. Figure 1b shows that PI and RI are
far from the descending diagonal for o~0.0-0.5 at >95%
confidence (or significance a < 5%), indicating significant
gains relative to NSHM at low miss rates o. These Molchan
analyses indicated that both PI and RI can deliver
performances that are statistically superior to NSHM. Thus,
both PI and RI can be significantly better at forecasting future
earthquakes than NSHM at the 95% confidence level, even
though RI is the simplest algorithm among the three. We
also took PI as the reference and found that neither RI nor
NSHM provide significant performance gains relative to the
PI reference model.

The challenge is to move from specific case studies to a
systematic prospective testing under the well-controlled
Italian CSEP experiment.

3. RI and its modification
Here, we first provide the basics of  the RI algorithm,

and then a possible modification that allows RI to belong to
a general class of  smoothed seismicity models. Note that this
modification does not violate the RI hypothesis. Instead, our
idea is to examine whether inclusion of  smoothing into
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construction of  the RI model can improve the performance
of  earthquake forecasting. Most seismicity-based models use
smoothing [Rhoades and Evison 2004, Kafka 2002, Kagan
and Jackson 2000, Kossobokov 2004, Helmstetter et al. 2007].
Inclusion of  smoothing into model construction reflects
likelihood of  an increase in a subsequent earthquake
occurrence in neighboring areas to current and past
earthquakes. The physical basis for this increase is the
concept of  fault interaction via Coulomb Failure Function
(CFF): the location for subsequent earthquakes off  the fault
of  the main shock can be explained by the spatial changes in
CFF [e.g., Stein et al. 1992]. Of  course, the action of  each
earthquake is neither isotropic nor uniform; however, we use
uniform smoothing as the simplest solution to take theses
effects into account.

Smoothing also has different supporting reasons. First,
cataloged earthquake data that researchers use are always
limited in time: for example, as described below, we have used
data since 1985. On a high-resolution grid such as the case of
the Italian CSEP experiment, even in areas of  high seismic
activity many bins can remain "empty", just on a statistical
basis, and not because of  physical reasons. Smoothing can
thus compensate for this lack of  data. Secondly, the accuracy
of  epicenter determination can be lower than the grid step,
particularly in the older sections of  earthquake catalogs.
Smoothing can reflect the degree of  trust that we have in the
spatial resolution. Therefore, the use of  smoothing for the
binning process in the generation of  a forecast can account
for error in the event location. In any case, a fundamental
question is the effect of  smoothing on improvements in the
performance of  earthquake forecasting.

For RI formulation, we define two periods: a forecast
period from t2 to t3 (t2< t3) that is fixed under a predefined

rule, and a learning period from t0 to t1 (t0< t1 ≤ t2< t3) that
can be defined by a modeler who generates a RI forecast.
Using earthquakes in the learning period, we then forecast
seismicity in the period from t2 to t3.

The first step of  the original RI approach is to divide a
region of  interest into a grid of  boxes. We next count the
number of  earthquakes with M ≥ a lower cut-off  magnitude
(ML) for the i-th box during the period from t0 to t1, denoted
by ni (t0, t1,ML). This number is computed for all of  the boxes.
Then, the relative values of  these numbers are given in the
form ni (t0, t1,ML)/ nj (t0, t1,ML), where the sum for j is taken
over all of  the boxes. For the sake of  simplicity, we define
Pi (t0, t1,ML) ≡ ni (t0, t1,ML)/     nj (t0, t1,ML), where     Pi (t0, t1,
ML) = 1. Thus, Pi (t0, t1, ML) reflects the relative intensity of
seismicity on the basis of  counting the number of
earthquakes. In the framework of  RI, large earthquakes in the
period from t2 to t3 are considered likely to occur for boxes
with high Pi (t0, t1,ML) values. This type of  approach is called
alarm-based forecast. That is, the RI forecast is a binary: an
earthquake is forecast to occur in the i-th box when Pi (t0, t1,
ML) is larger than a given threshold, while it is forecast not to
occur when Pi (t0, t1, ML) is smaller than the threshold. The
standard approach to the evaluation of  binary forecasts is use
of  Molchan [Molchan 1990] and ROC [Mason 2003] diagrams.

We modified the original RI approach for the process of
binning the data. This idea was first introduced to improve PI
forecasts [Holliday et al. 2007, Nanjo et al. 2006a]. We take a
similar approach to RI model construction. The binning is
implemented by the averaging seismicity over the i-th box
and the nearest 8 surrounding boxes. Where there is an
earthquake with M ≥ ML in the i-th box during the period
from t0 to t1, we assign 9−1 to the i-th box and 8 surrounding
boxes, while unity is assigned only to the i-th box in the
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Figure 1.Molchan trajectory analysis. (a) PI (filled squares) and NSHM (open triangles) relative to the RI reference model. (b) RI (filled squares) and PI
(open triangles) relative to the NSHM reference model. The Molchan trajectories are shown by the plots of  the miss rate o as functions of  fraction of  space-
time occupied by alarm x. Each plot also shows the a = 1%, 5% and 10% significance boundaries. In the Molchan trajectory plots, the points below these
boundaries reject the null hypothesis. In (a), neither PI nor NSHM provide significant gain relative to RI. In (b), both PI and RI can be significantly better
at forecasting future earthquakes than the NSHM for o~0.0-0.5 at the 95% confidence level (or a < 5%). (a) is a reproduction using the data and program
code supplemented in the online version of  Zechar and Jordan [2008], while the same data and program code were used to create (b).
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original approach. Thus, implementation of  this assignment
smoothes the seismicity pattern in space. Above, we have
considered the immediately adjacent boxes. Expansion
includes the second nearest boxes: the number of  25−1 is
assigned to the i-th box and the 24 surrounding boxes. This
expansion to higher orders (third nearest boxes, fourth
nearest, and so on) is possible: the number of  (2S − 1)−2 is
assigned to the i-th box and the (2S − 1)−2 −1 surrounding
boxes, where S = 1, 2, 3, ... and where the case of  S = 1
corresponds to the original RI approach without the binning
implementation. Hereinafter, we refer to S as the smoothing
parameter. The larger the S is, the smoother the spatial
pattern of  Pi (t0, t1,ML) is. Note that the minimum value (S=
1) already implies smoothing because the RI approach
without smoothing corresponds to an epicenter map of  past
events. The smoothing parameter S is tuned because for each
model a better value for S is unknown.

4. Requirement for CSEP testing
The first requirement for CSEP testing is that the N-, L-

and R-Tests used by the CSEP [Schorlemmer et al. 2007]
cannot handle a forecast that consists of  boxes with zero
values if  a target earthquake occurs at a zero-value box. To
put any RI forecast model under such a test, the smallest
value among Pi (t0, t1, ML) > 0 is assigned to every box with
Pi (t0, t1,ML) = 0 in the process of  model construction.

A second requirement is that any model must forecast
the number of  earthquakes for a given magnitude bin M at
the i-th box, m iM. Each bin expressed by M covers from
M −0.05 to M +0.05. For the 3-month class, the range of
magnitude bins is M = 4.0, 4.1, …, 9.0. Similarly, the
magnitude bins for the 5-year and 10-year classes are 5.0, 5.1,
…, 9.0. To meet these requirements, our challenge is to move
RI from the original alarm-based forecast to the CSEP
forecast. Below we give a brief  explanation of  this conversion
of  Pi (t0, t1,ML) to miM.

We first estimate the total number of  events with M ≥ ML

in the learning period t0 to t1, and we call this NT. We next
compute the number of  events with M ≥ ML in a time
window with a length equal to Dt ≡ t3 − t2, NTDt (t1− t0)−1.
We then multiply Pi (t0, t1, ML) by NTDt (t1− t0)−1 for the i-th
box, and assume that this gives the number of  events with
M ≥ ML for the forecast period of  Dt.

To extrapolate our forecast into any magnitude bin
expressed by M1 ≤M<M2, we use the Gutenberg-Richter
(GR) frequency-magnitude law:

(1)

where the parameters A and b are constants, and N is the
number of  earthquakes with M ≥ m. Substituting m= ML and
N = NTDt (t1− t0)−1 Pi (t0, t1,ML) into Equation (1), we obtain
A = log10 [NTDt (t1 − t0)−1 Pi (t0, t1,ML)] + bML for the i-th box.
Substitution of  this equation into Equation (1) gives N= 10b(m)

with b(m) = log10 [NTDt (t1 − t0)−1 Pi (t0, t1,ML)] − b (m−ML).
This is the equation to compute the forecast number of
events with M ≥ m for the i-th box in the period from t2 to t3.
Finally, the difference in N between m= M1 and m= M2 gives
the forecast number (miM) of  events for the bin M1≤M<M2 at
the i-th box in the period from t2 to t3: miM ≡ 10b(M1) − 10b(M2).
Thus, the final output is a set of  miM values.

5. Data
According to the "rules of  the game", the testing center

has provided modelers with three catalogs for forecast-model
development: two historical catalogs, known as the CPTI
(Catalogo Parametrico dei Terremoti Italiani; http://emidius.
mi.ingv.it/CPTI/), from 1901 to 2006, and the CSI 1.1
(Catalogo della Sismicità Italiana; http://csi.rm.ingv.it/),
from 1981 to 2002; plus the Italian seismic bulletin (Bollettino
Sismico Italiano, BSI; http://bollettinosismico.rm.ingv.it/)
that currently provides data since April 16, 2005. The bulletin
data prior to this date are still being revised. The testing
center provides modelers with the BSI that include data until
March 31, 2009, for model development and forecast
generation. That is, we cannot use data from April 1, 2009, to
the model submission deadline ( June 31, 2009).

For our model development, we used the CSI 1.1 and
the BSI because the magnitude scale used for these catalogs
is the local magnitude scale and both include the
microseismicity data. On the other hand, the CPTI includes
macroseismicity. Furthermore, each event cataloged in CPTI
has information on the magnitude in one or multiple
scales: the scales used are body-wave magnitude, moment
magnitude, surface magnitude, and local magnitude. There
is no obvious authorized conversion equation between the
local magnitude scale and the moment magnitude scale for
Italy, and we would like to use microearthquake information
to construct RI forecasts. Thus, we did not use the CPTI.

We also did not use CSI 1.1 data prior to 1985, because
the number of  reported earthquakes in the period of  1981-
1984 was quite small. This was associated with the many
network changes that occurred in the early 1980s.

The gap between the periods over which the CSI 1.1
and the BSI cover ranges from tGS = January 1, 2003, to tGE =
April 15, 2005. In our forecast generation, the effect of  this
gap is taken into consideration where there is the need to use
the two catalogs for the generation.

6. Application to the Italian testing experiment
Previous studies have used RI for 10-year experiments

to predict earthquakes in California and Japan, and also on
a worldwide basis [Rundle et al. 2002, Rundle et al. 2003,
Tiampo et al. 2002, Holliday et al. 2005, Holliday et al.
2007, Nanjo et al. 2006a, Nanjo et al. 2006b, Nanjo et al.
2006c]. Following theses studies, our first application was
for the long-term (5-year and 10-year) models. Our further
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interest was to apply this to a 3-month testing model, to
examine which testing class is more meaningful for RI
forecasting.

In computing miM for an Italy-wide forecast based on
the RI hypothesis, the parameters (t0, t1,ML, b, S, depth, and
box size) were tuned, while t2 and t3 (giving Dt) were
predefined following the "rules of  the game". Our tuning
was based on the available past seismicity. While a model
with a well-tuned set of  parameters would be used
retrospectively to forecast seismicity, its ability to
prospectively forecast may be disappointing. Therefore, our
preferred approach was that all of  the parameters were
determined independent of  retrospective forecasting.
However, an appropriate value of  S is unknown, although
we explained the physical basis and other important reasons
for this parameter in Section 3. To find a better S value for
each model, we conducted parameter searches based on
retrospective forecasting. Below we briefly describe our
rationale behind each decision, after a brief  explanation of
depth and box size.

6.1. Depth and box size
We considered all of  the events down to a 30-km depth

for forecast generation, because the depths of  forecast
earthquakes are less than 30 km, according to the "rules of
the game".

The testing center provided modelers with a list of  8993
nodes (longitude and latitude pairs), where each miMmust be
computed. The ruled node spacing is 0.1˚ in latitude and
longitude, and the set of  nodes covers all of  the Italian
territory. We assumed that each node was the center of  a box
considered for RI model construction, and that the box size
is 0.1˚ in latitude and longitude.

6.2. Completeness magnitude and the t0 value
A small ML and a long period from t0 to t1 are desirable,

because the ideal construction of  any RI forecast map is
based on including smaller events and longer seismic history,
based on previous studies [e.g., Rundle et al. 2002, Rundle et
al. 2003, Tiampo et al. 2002, Holliday et al. 2005, Nanjo et al.
2006a, Nanjo et al. 2006b, Nanjo et al. 2006c]. On the other

RI-BASED EARTHQUAKE FORECAST MODELS

Figure 2.MC maps based on events in the four periods of: (a) January 1, 1985 - December 31, 1989; (b) January 1, 1990 - December 31, 1996; (c) January 1,
1997 - December 31, 2002; and (d) April 16, 2005 - March 31, 2009.



hand, small events are in general more frequently missed by
seismograph networks than large ones, and seismic networks
have been generally modernized over the past to improve
their earthquake detection capabilities. Thus, the work
necessary is the estimation of  the completeness magnitude
(MC), above which all of  the events are interpreted as
recorded. Various techniques to compute MC and their
applications were reviewed by Wiemer and Wyss [2002] and
Schorlemmer and Woessner [2008]. A frequently-used
method is based on detecting the point of  deviation from the
GR distribution in Equation (1). The magnitude of  the
deviation point is defined as MC. Below MC, a fraction of
events is not detected by the seismic network. We adopted a
GR-based method known as the entire-magnitude-range
(EMR) method [Woessner and Wiemer 2005]. We used the
«ZMAP» seismicity-analysis software [Wiemer 2001], which
routinely maps the EMR-based MC.

To monitor the completeness in time and space, we
created MC maps (Figure 2) for the four periods: (a) January 1,
1985 - December 31, 1989; (b) January 1, 1990 - December 31,
1996; (c) January 1, 1997 - December 31, 2002; and (d) April 16,
2005 - March 31, 2009. Data from the CSI 1.1 and the BSI were
used for (a-c) and (d), respectively. We set the sample size of
earthquakes for each node as 200, and the node spacing as 0.1˚.
We excluded low- or no-seismicity areas from the mapping
nodes. For (a-d), the MC values are mainly 1.5-2.5. MC = 3.0-3.5
can be seen mainly in offshore regions for (a-d), and in the
western Balkan peninsula for (d): both of  these regions are on
and around the periphery of  the testing region. Although the
MC map in (a) was based on events for the oldest period, the
maximum MC was about 3.5. Based on the visual inspection
of  MC, we take ML to be 3.5 and t0 to be January 1, 1985.

6.3. The b-value
We used earthquakes with depths of  less than 30 km for

the period April 16, 2005 - March 31, 2009, for the cumulative
frequency of  earthquakes N as a function of  m in Figure 3. To
find the best set of  A and b, we applied the EMR method to
the same data. We obtained b= 1.19 ± 0.01, and A= 6.28 for
MC = 1.9. Using the GR fitting in Equation (1) with these
values, we got good agreement with the observation for m ≥
1.9. Thus, we assumed b = 1.20 for our forecast generation.

If  the b-value change led to significant changes in the
results in the parameter searches given below, the use of
b= 1.2 for prospective forecasting would be questionable. To
address this point, we also took two b-values in retrospective
forecasting: b = 1.1 and 1.3. However, below we see no
significant influences, supporting the use of  b = 1.2 for
formal prospective testing.

6.4. Smoothing parameters
Log-likelihood tests: Our statistical test to find a better S

value was based on the log-likelihood (LL), which is used to
evaluate the consistency of  a forecast (a set of  miM) with an
observation (a set of  target earthquakes). Our LLwas defined
as follows:

(2)

where ii is the sum of  miM over all of  the target magnitude
bins (ii ≡ miM), and ~i is the number of  target earthquakes.
This is a simplified version of  the CSEP test [Schorlemmer et
al. 2007]. Our test compared in LL among forecasts: the higher
the LL value is, the better the agreement between forecast
and observation is. A useful measure for this comparison is
DLL ≡ LLMAX − LL(S), where LLMAX is the maximum for LL
among forecasts generated using different S values, and LL(S)
is the LL obtained for S. DLL = 0 indicates the best among
the candidates. Thus the corresponding S value is
considered to be optimal to forecast the observed targets.
On the other hand, DLL > 0 indicates worse performing
forecast than does DLL = 0.

5-year and 10-year classes: Our target was a set of  31
observed 4 ≤ M ≤ 9 earthquakes that occurred in the testing
region during the period from t2 = April 16, 2005, to t3 =
March 31, 2009 (Dt= 1446 days). This is the period over which
the BSI covers. For the formal prospective testing in the 5-year
and 10-year classes, the target magnitude range was 5 ≤ M ≤ 9.
However, the number of  earthquakes in this range during
the same period was 1: this was not enough for statistical
testing. Thus, our lowest magnitude was reduced to M = 4.
Also note that our target period was about 4 years: this
period is shorter than the periods for the 5-year and 10-year
classes. It is possible to take t2 to be a date before the start
day of  the catalog gap (tGS), in order to set the lengths of
the retrospective forecast periods as 5 and 10 years.
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Figure 3.Cumulative number of  earthquakes as a function of  m. Based on
events in the period from April 16, 2005, to March 31, 2009. The straight line
shows the GR law in Equation (1), with b= 1.19 and A= 6.28. The inverted
triangle indicates MC = 1.9.
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However, such cases are believed to be far from 5-year and
10-year seismicity clustering patterns. Thus, we assumed
that the use of  our target period can capture the essence of
such long-term testing classes.

Our forecast for 4 ≤ M ≤ 9 was based on 857 events with
M ≥ML = 3.5, for the period from t0 = January 1, 1985, to t1 =
December 31, 2002. For the forecast generation, we used
b = 1.2, Dt = 1446 days, and different S-values: 1, 2, 3, …, 7.

DLL is given in Figure 4a as a function of  S for b = 1.2
(red diamonds). The optimal forecast was obtained for S= 5.
It was also seen that the case of  the minimal smoothing (S= 1)
did not show a better performance than for the optimal case
(S = 5). This shows that the inclusion of  smoothing into
constructing RI can improve the performance of  earthquake
forecasting. To indicate that the LL-Test did not show
different results when various b-values were used, the curves
for b = 1.1 and 1.3 are given in Figure 4; these provide
support for the result for b = 1.2. Using the parameters and
the optimal S = 5, we mapped the cumulative numbers (ii)
of  forecast earthquakes over 4 ≤ M ≤ 9 in Figure 5a. We
then plotted the 31 targets. Our prospective forecasts for the
5-year and 10-year testing classes were generated using S= 5.

3-month class: For our parameter search, we first assumed
the target period t2 = January 1, 2009, to t3 = March 31, 2009
(Dt = 89 days). The lowest target magnitude was down to
M = 3.5. This is smaller than the M = 4.0 predefined for the
CSEP 3-month class, for the same reason as described for the
5-year and 10-year classes. The highest target magnitude was
M = 9.0. The number of  target earthquakes with 3.5 ≤ M ≤ 9
was six.

To generate a forecast, we used 930 events with M ≥ ML =
3.5 that occurred in the period since t0 = January 1, 1985. We

again used a default b = 1.2. We then took Dt = 89 days and
t1 = December 31, 2008. Note that the period from t0 to t1
included the catalog gap period (tGS to tGE); thus, the period
considered for the forecast generation consisted of  two
periods from t0 to tGS and from tGE to t1. Finally, taking various
S values (1, 2, …, 7), we generated the forecasts. Using the
LL-Test, the result is given in Figure 4b. The forecast with
S = 3 gaves the best performance. As with the long-term
case, the forecast with the minimal smoothing (S = 1) did
not show a better performance than that with the optimal
smoothing (S = 3).

The use of  6 targets appears to be insufficient for
statistical testing. To increase the number of  target
earthquakes, taking a value smaller than M = 3.5 would be
possible. However, this is not the case here, because as shown
in the completeness study (Section 6.2), the Italian seismic
network can only reliably detect M ≥ 3.5 earthquakes that
occur in the testing region. Thus, a meaningful alternative
was to carry out the same testing for a different target period.
We took the forecast period from t2 = October 1, 2008, to t3 =
December 31, 2008 (Dt = 91 days), and the targets were 9
earthquakes. The number of  earthquakes in the learning
period until t2 = September 30, 2008 was 921. The result in
Figure 4b shows DLL= 0 at S= 5, but very low DLL values are
also seen at S= 3 and 4. Thus, better forecasts for the second
period were given at S = 3-5. As for the long-term case, we
checked the influence of  the b-value change on the DLL-S
behavior, using b = 1.1 and 1.3: no significant influence was
seen (data not shown).

Considering both cases of  the different target periods,
S = 3 was our choice for the 3-month class. The 3-month
forecast maps using S = 3 for the first and second
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Figure 4. DLL as a function of  S. (a) Retrospective forecast period from t2 = April 16, 2005, to t3 = March 31, 2009. Targets are 31 earthquakes of  4 ≤ M ≤ 9
that occurred during this period. We considered b = 1.2 (red diamonds). Also included is the DLL-S dependence for b = 1.1 (black circles) and 1.3 (blue
crosses). (b) Retrospective forecast periods from t2 = January 1, 2009, to t3 = March 31, 2009 (black circles), and from t2 = October 1, 2008, to t3 = December
31, 2008 (red diamonds). Targets are 6 and 9 earthquakes with 3.5 ≤ M ≤ 9 for the former and latter periods, respectively.



retrospective tests are given in Figure 5b,c, respectively.
Figure 5b,c also shows the respective plots for the 6 and 9
earthquakes that were used as the targets in the retrospective
testing.

7. Conclusion and discussion
Based on the RI hypothesis, we prospectively forecast

the numbers (miM) of  earthquakes for each box for each of
the magnitude bins 4 ≤ M ≤ 9 for the predefined consecutive
3-month periods (starting at t2 = August 1, 2009, November
1, 2009, February 1, 2010, and May 1, 2010). Similarly, we
forecast this number for each of  the magnitude bins 5 ≤ M ≤ 9
for the predefined 5-year period (t2 = August 1, 2009, to t3 =
August 1, 2014) and the 10-year period (t2 = August 1, 2009,
to t3 =August 1, 2019). An executable computer code for the
3-month model and numerical tables for the 5-year and 10-
year models have been submitted to the Italian prospective
testing at the CSEP European Testing Center. The main
purpose of  the submission of  the RI-based models to
different classes is to determine which class is more
meaningful for the RI hypothesis.

For the 5-year-class model submitted, we chose the set
of  ML = 3.5, t0 = January 1, 1985, and t1 = March 31, 2009.
The number of  earthquakes with depths less than 30 km for
the generation of  a forecast was 936. Note that the data until
t1 were only available before the model submission deadline.
We took the catalog gap period (tGS to tGE) into account. We
then used S = 5 and b = 1.2. The map of  the cumulative
number (ii) for 5 ≤ M ≤ 9 is shown in Figure 6a, using the
numerical data in the submitted table. Our model predicts

ii = 2.8 events in total for the testing region.
We did the same for the 10-year model, with t3 as August

1, 2019. As for the 5-year model, the resultant map is shown
in Figure 6b. The cumulative number (ii) for the 10-year class
for each box is twice that for the 5-year class, as the forecast
period for the former class is twice that for the latter. The
predicted total number of  earthquakes is     ii = 5.6, which
is again twice that for the 5-year forecast model.

In the computer code of  our 3-month model, we fixed
ML= 3.5, S = 3, t0 = January 1, 1985, and b = 1.2. Similar to
the long-term models, the code takes the catalog gap period
(tGS to tGE) into account in the forecast generation. For each
forecast implementation, given t2 and t3, we asked the
testing center to equate t1 to t2 and to provide the BSI that
includes the earthquakes until t1 (i.e., t2) as an input data
catalog. This is because the data until t1 (i.e., t2) must be
available for forecast generation. Using the submitted code
with the fixed parameter set and the currently available
input data until t1 = March 31, 2009, Figure 6c shows the
map of  the cumulative number (ii) of  events over the
magnitudes 4 ≤ M ≤ 9.

The present study has at least two very important
independent aspects. First, the RI model is most commonly
considered as a reference (or null hypothesis) to test other
forecast models, for at least those that are alarm based. We
extended the RI-type models, which are originally alarm-
based, to a more general class, to be probability based. Thus
the RI-type models become natural references for joint tests
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Figure 5.RI-based retrospective forecast maps. (a) Forecast period from t2 =
April 16, 2005, to t3 = March 31, 2009 for 4 ≤ M ≤ 9 events. The smoothing
parameter used was the optimal S= 5, based on the search shown in Figure
4a. The logarithm of  the cumulative forecast number (ii) is given in the color
code. The targets (stars) show 31  4 ≤ M ≤ 9 events that occurred during the
forecast period. (b, c) Forecast periods from t2 = January 1, 2009, to t3 = March
31, 2009 (b), and from t2 = October 1, 2008, to t3 = December 31, 2008 (c)
for 3.5 ≤ M ≤ 9 earthquakes. Smoothing parameter used both was the
appropriate value (S= 3) based on the search in Figure 4b. Stars indicate the
6 and 9 target earthquakes that occurred in the forecast periods, respectively.

i/
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with any forecast models. These tests will provide an
important answer to the question: does a specific forecast
model give more information about future earthquakes than
just the known spatial distribution of  the earthquake
frequencies in the past? Secondly, the RI-type models use

spatial smoothing of  earthquake frequencies. We introduced
a wider smoothing in the modified version than in the
original one, and we studied different sizes (changing the
smoothing factor S) in retrospective forecast tests. Our goal
was to understand how wide the smoothing should be to
provide a better forecasting performance.

However, the smoothing also had a negative effect. The
seismicity is usually strongly clustered to the faults. The
smoothing "disperses" the earthquake frequencies, assigning
predatory values to the less active places between and
outside the faults. Thus, for evaluating some forecast models,
it is not appropriate to use a reference model with
significantly wide smoothing. Accordingly, the significant
gain of  RI relative to NSHM might result from a similar
effect: the PI and RI models are just much less smoothed in
comparison to that of  NSHM (see Figure 1b). This is similar
to the evaluation of  any forecast model versus a uniform
reference model: practically any model gives results that are
far from the diagonal in this case. To examine the effects of
this smoothing on prospective forecasting, we have already
submitted a variety of  improved RI-based models with wide
smoothing ranges to the Japanese experiment [Hirata et al.
2009] within CSEP.

Although we generated the RI-based forecasts on the
basis of  a non-declustered (original) catalog, the use of  a
declustering algorithm [e.g., Gardner and Knopoff  1974,
Reasenberg 1985] would be of  interest. A usual RI-type
model based on a non-declustered catalog might
overestimate forecast frequencies near the epicenters of  past
large earthquakes, because aftershocks that dominated the
seismicity near these epicenters are included in the forecast
generation. However, for purely statistical reasons, the
application of  any declustering algorithm might
unfortunately prevent this hypothesis from being exploited
for the Italian testing experiment. For example, for the long-
term retrospective testing in Section 6.4, the forecasts were
generated using events with M ≥ML= 3.5 for the period from
t0 = January 1, 1985, to t1 = December 31, 2002. However, the
number of  events used for the forecast generation was 857,
a quite small number compared with the number of  grid
nodes (8993). In addition to this, it can be recalled that the
number of  earthquakes after declustering is, in general,
approximately fewer than half  the number of  earthquakes
before declustering, although the details of  the declustered
data depend on its desclustering algorithm. Without a large
smoothing factor, target earthquakes might very likely fall
into "empty" boxes, to which the minimal frequency value is
assigned. Thus, declustering-based implementation needs to
overcome these testing circumstances. According to the
"rules of  the game", some masking of  the original testing
region can be applied. If  the center approves a proposal of
masking off  the areas of  larger MC values, a testing region
characterized by small MC values can be defined. This allows
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Figure 6. RI-based prospective forecast maps. (a, b) Forecast maps for the
5-year period from t2 = August 1, 2009, to t3 = August 1, 2014 (a) and the
10-year period from t2 = August 1, 2009, to t3 = August 1, 2019 (b), for
5 ≤ M ≤ 9 events. The logarithm of  the cumulative forecast number (ii) is
given in the color code. The tables of  the numerical data used for these maps
have been submitted to the testing center. (c) Forecast map for the period
from t0 = January 1, 1985, to t1 = March 31, 2009, for the 3-month forecast
for 4 ≤ M ≤ 9 earthquakes. An executable computer code that can compute
the forecast numbers miM used for (c) has been submitted to the testing center.



the inclusion of  small events into the dataset available for
model development and forecast generation, resulting in
avoiding targets falling into "empty" boxes. If  this testing
region is set in the second-round experiment, we would like
to submit both non-declustered (original) and declustered
versions based on the RI algorithm, and to examine whether
the former significantly outperforms the latter in forecasting
future seismicity. 

In summary, our submitted RI models allow for a
systematic test of  the hypothesis that the relative intensity
of  past seismicity (on the basis of  counting the number of
events) can give information for forecasting future moderate-
to-large earthquakes in Italy. Future modifications to RI
model construction can include regional variations in the
b-value [Wiemer and Schorlemmer 2007], while here we
used a uniform constant, b = 1.2. Another example includes
the use of  a declustering algorithm [e.g., Gardner and
Knopoff  1974, Reasenberg 1985] to remove aftershocks for
forecast generation, while we used the non-declustered
(original) catalog here, as discussed in some detail in the
previous paragraphs. It might be of  interest for future studies
to compare the currently implemented version and the
proposed modified one to determine whether these
modifications are significantly fruitful for improving future
seismicity forecasts. Despite leaving such possible
modifications for later, we believe that the results that we will
obtain through the Italian prospective experiment will be
valuable for our better understanding of  the importance (or
lack of  importance) of  the simple relative intensity of
seismicity for earthquake forecastability.
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