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ABSTRACT

This study investigates the basic properties of  the recent shallow seismicity
in Italy, through stochastic modeling and statistical methods. Assuming that
earthquakes are the realization of  a stochastic point process, we have
modeled the occurrence rate density in space, time and magnitude using an
epidemic-type aftershock sequence model. By applying the maximum
likelihood procedure, we estimated the parameters of  the model that best fit
the Italian instrumental catalog, as recorded by the Istituto Nazionale di
Geofisica e Vulcanologia (INGV) from April 16, 2005, to June 1, 2009. Then
we applied the estimated model to a second independent dataset (June 1,
2009, to September 1, 2009). We show that the model performed well on this
second database, through the relevant statistical tests. The model proposed
in the present study is suitable for computing earthquake occurrence
probability in real time, and to take part in international initiatives such as
the Collaboratory Study for Earthquake Predictability, where we have
submitted this model for daily forecasting of  Italian seismicity for ML>4.0.

Introduction
There is a growing consensus for the acceptance of  the

existence of  an intrinsic stochasticity of  earthquake
generating processes [see Vere-Jones 2006, for a review on
the use of  stochastic models for earthquake occurrence].
This view has promoted the formulation of  different
stochastic models that have been applied on different spatio-
temporal scales [Kagan and Knopoff  1981, Ogata 1988,
Ogata 1998, Kagan and Jackson 2000, Faenza et al. 2003,
Rhoades and Evison 2004, Gerstenberger et al. 2005,
Helmstetter et al. 2006, Lombardi et al. 2006, Lombardi et
al. 2007, Marzocchi and Lombardi 2008, Lombardi et al.
2010]. Each model describes one or more different coexisting
physical processes (tectonic loading, co-seismic stress
interactions, post-seismic deformation, aseismic processes,
and others) that have greater or lesser relevance to
earthquake occurrence, depending on the maturity of  the
seismic cycle. Here, we have focused our attention on daily
forecasts. For this class of  forecast, stochastic models that
describe the phenomenon of  earthquake clustering are

becoming widely accepted in the seismology community
[e.g., Reasenberg and Jones 1989, Reasenberg and Jones 1994,
Gerstenberger et al. 2005, Marzocchi and Lombardi 2009].

We describe here a short-term, earthquake-forecasting
model that we have submitted to the European Union – Italy
Collaboratory Studies for Earthquake Predictability (CSEP)
experiment. This forecast method uses earthquake data only,
with no explicit use of  tectonic, geological or geodetic
information. The method is based on the observed regularity
of  earthquake occurrence, rather than on any physical
model. The basis underlying this earthquake-forecasting
method is the popular concept of  an «epidemic» process:
every earthquake is a potential triggering event for
subsequent earthquakes [Ogata 1988, Ogata 1998, Console
et al. 2003, Helmstetter et al. 2006, Lombardi and Marzocchi
2007]. We have applied a version of  the epidemic-type
aftershock sequence (ETAS) model to the seismicity
recorded in Italy over recent years. For a first retrospective
test, we applied a well-know procedure that consists of  fitting
the model to the early part of  the Italian earthquake catalog
and then testing it on the most recent part of  the dataset.
The real-time forecasting performance of  the model was
successfully checked on the occasion of  the recent L'Aquila
earthquake in central Italy on April 6, 2009 (Mw 6.3) [see
Marzocchi and Lombardi 2009].

The spatio-temporal ETAS model
The ETAS model [Kagan and Knopoff  1981, Ogata

1988, Kagan 1991, Ogata 1998] is a stochastic point process of
particular relevance for modeling co-seismic, stress-triggered
aftershock sequences. Its formulation followed on from the
observation that aftershock activity cannot always be
predicted by a single modified Omori function [Omori 1894,
Utsu 1961], and that seismicity can include the production
of  conspicuous secondary aftershocks. Therefore, this model
assumes that each aftershock has some magnitude-
dependent «ability» to perturb the rate of  earthquake
production, and therefore to generate its own Omori-like
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aftershock decay. Following the first time-magnitude
formulation proposed by Ogata [1988], many other time-
magnitude-space versions have been published, most of
which have been based on empirical studies of  past seismicity
[Ogata 1998, Zhuang et al. 2002, Console et al. 2003,
Helmstetter et al. 2006, Lombardi and Marzocchi 2007].
These approaches have described the seismicity rate of  a
specific area as the sum of  two contributions: the
«background rate» and the «rate of  triggered events». The
first refers to the seismicity that is not triggered by previous
events in the catalog, and the second is associated with stress
perturbations that have been caused by previous earthquakes
in the catalog.

The ETAS model defines the total space-time conditional
intensity m (t, x, y, m/Ht) (i.e., the probability of  an earthquake
occurring in the infinitesimal space-time volume conditioned
to all of  the past history), according to Equation (1):

(1)

where Ht = {(ti, xi, yi, Mi); ti< t} is the observation history up
to time t, Mc is the completeness magnitude of  the catalog,
o is the rate of  background seismicity for the whole area, K,
c and p are the parameters of  the modified Omori Law that
describe the decay in time of  short-term triggering effects, a
determines how the triggering capability depends on the
magnitude of  an earthquake, the parameters d and q
characterize the spatial probability density function (PDF)
of  the triggered events, is the relative
normalization constant, ri is the distance between the
location (x,y) and the epicenter of  the i-th event (xi,yi), the
function u(x,y) is the spatial PDF of  the background events,
and finally, b = b ln(10) is the parameter of  the well-known
Gutenberg-Richer Law [Gutenberg and Richter 1954], which
is assumed to hold for all magnitudes and to be invariant in
space. Specifically, the model assumes that large earthquakes
are indistinguishable from smaller earthquakes, and
therefore they have the same distribution.

The most recent versions of  the ETAS model
[Helmstetter et al. 2006, Ogata and Zhuang 2006] have been
characterized by the introduction of  a further term that
takes into account the correlation between the aftershock
area and the magnitude of  the triggered events. Some
preliminary results have shown that this correlation might
be negligible for Italy [see Marzocchi and Lombardi 2009].
We therefore decided to use the version of  the ETAS model
as described by Equation (1), in which the spatial decay of
the triggered activity is independent of  the magnitude of  the
triggering shock. A deeper analysis of  this topic will be
presented and discussed in future reports.

The parameters (o, K, c, p, a, d, q, b) of  the model for the

events within a time interval [Tstart, Tend] and a region R can be
estimated by maximizing the log-likelihood function [Daley
and Vere-Jones 2003], as given by Equation (2):

(2)

where Mmax is the expected maximum magnitude for the
region R. The parameters of  the model are estimated using
the iteration algorithm developed by Zhuang et al. [2002].
By using a suitable kernel, in addition to the model
parameters, this procedure provides an estimation of  the
PDF u(x,y) for background events. The background rate is
given by Equation (3):

(3)

where T is the length of  time recovered by the dataset, pj is
the probability that the j-th event is not triggered by previous
shocks in the catalog, and Kdj is a Gaussian kernel function
with a spatially variable bandwidth. Similarly, the rate of
triggered events is given by Equation (4):

(4)

Several physical investigations have shown that static
stress changes decrease with epicentral distance as r−3 [Hill
et al. 1993, Antonioli et al. 2004]; therefore, in the present
study we imposed q = 1.5. This choice was also justified by
the trade-off  between parameters q and d that can cause
different pairs of  q and d values to provide almost the same
likelihood of  the model [Kagan and Jackson 2000].

Testing the model
The gold standard for scientific evaluation of

earthquake-forecasting models is through the comparison of
forecasts and true values in prospective experiments [see,
e.g., Field 2007, Schorlemmer et al. 2007, Luen and Stark
2008, Zechar et al. 2009]. However, a model can also be
evaluated through retrospective experiments; e.g., by
dividing an available dataset into two parts, the first of  which
can be used to set up the model, hereinafter the learning
dataset, and the second of  which can be used to check the
reliability of  the model, hereinafter the testing dataset
[Kagan and Jackson 2000]. Verification of  the forecasting
capability of  the model can be achieved by a comparison of
the observations and the forecasts. This testing enables
verification whether the model is performing significantly
well, and eventually, identification of  the features that will
allow better forecasting. In the following subsections, we
describe the statistical tests used in the present study to
retrospectively check our model.

ETAS MODEL FOR ITALIAN SEISMICITY
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Residuals analysis
A common diagnostic technique that can be used for

stochastic point processes is based on the transformation of
the time axis t into a new scale, x, using the increasing
function given in Equation (5):

(5)

where Tstart is the starting time of  the observation history Ht

[Ogata 1988]. The random variable x represents the expected
number of  occurrences in the time period [Tstart, t] in whole
region R and with a magnitude above the Mc. If  a model with
a conditional intensitym (t, x, y, m/Ht) describes the temporal
evolution of  the process well, the transformed data xi = K (ti),
which are known in statistical seismology as the residuals, are
expected to behave like a stationary Poisson process with a
unit rate [Ogata 1988]. Therefore, the values Dxi = xi+1− xi are
random variables that are independent and exponentially
distributed (with a mean of  1). We can check this hypothesis
for the residuals of  our ETAS model by means of  two
nonparametric tests: the Runs test, to verify the reliability of
the independence property, and the one-sample Kolmogorov-
Smirnov (KS1) test, to check the standard exponential
distribution [Gibbons and Chakraborti 2003, Lombardi and
Marzocchi 2007]. We used both of  these tests because the KS1
test is not effective for checking the presence of  memory in a
time series. Hence, any discrepancies in the residuals of  the
Poisson hypothesis that are identified by either one or both of
these tests will be a sign of  the inadequacy of  the ETAS

model to explain all of  the basic features of  the seismicity
analyzed. This check on the analysis is similar to the N-Test,
which is currently used by the Regional Earthquake
Likelihood Model (RELM)/CSEP testing centers [Kagan and
Jackson 1995, Schorlemmer et al. 2007], although it avoids the
time binning that can lead to bias in the results of  the testing
phase [see, e.g., Lombardi and Marzocchi 2010].

Cumulative reliability diagram
The reliability diagram is a common diagnostic technique

that is used to measure the consistency of  a forecast model
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Figure 1. Completeness magnitude of  the INGV bulletin (from April
16, 2005, to June 1, 2009) obtained by the maximum likelihood method.
a) Frequency magnitude distribution for the whole dataset, giving Mc =2.0.
b) Mc as a function of  time. c) Mc as a function of  space.
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according to the observations. Roughly speaking, a probability
forecast is reliable if  the events actually happen with an
observed frequency that is consistent with the forecast. More
specifically, a reliability diagram consists of  a plot of  the
observed relative frequencies against the predicted
probabilities [Wilks 2005]. Reliability measures sort the
forecast/observation pairs (Fj/Oi) into groups according to
the values of  the forecast variables, and they characterize the
conditional distributions of  the observations according to the
forecasts. In particular, a way to visually identify departures
from reliability is to plot the cumulative conditional observed
frequency p(Oi/Fj) against the cumulative predicted
probability Fj ; this provides the cumulative reliability
diagram; perfect reliability will be seen as the diagonal.

We have used this type of  analysis to check the predicted
spatial distribution of  the observed seismicity. Specifically, we
applied a case of  dichotomous events, i.e., the observations are
limited to two possible outcomes: the occurrence (O1) or
nonoccurrence (O2) of  an earthquake. To define the forecasting
cumulative probabilities Fj, the area under analysis was
partitioned in a nonoverlapping and exhaustive set of  cells Ci ;
for each cell, we computed the proportion of  events fi that were
expected by the forecasting model. These values of  fi, which
by definition were between 0 and 1, were sorted into ascending
order and grouped into N bins Bj (j = 1…N), which formed a
partition of  the unit interval composed of  the overlapping
increasing subintervals. These bins were characterized by a set
of  forecasting probabilities Fj that defined the probability to
have at least one event in Bj, as shown by Equation (6):

(6)

The most intuitive choice was to take Fj as equally
spaced. If  the distribution of  the forecasts was nonuniform,
then choosing the bins so that the sets Ij were equally
populated (i.e with the same number of  events fi) was a good
alternative. The values Fjwere compared with the cumulative
observed frequencies, as shown in Equation (7):

(7)

where Ni is the observed number of  shocks in the cell Ci, and
N is the total number of  events. In the case of  perfect
reliability, the conditional probability p(Oi/Fj) is equal to Fj.

The INGV database
Italy is characterized by a generally high seismicity, with

observed magnitudes up to about 7.5. The long tradition of
seismological studies in Italy has produced many studies of
seismic data collection, and therefore today Italy can boast of
their careful seismic instrumental catalogs [Castello et al. 2005,
Schorlemmer et al. 2010; http://iside.rm.ingv.it/], as well as
of  tried and tested experience in the compilation of  historical
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Figure 2. Maps of  the seismic events with magnitudes >2.5 and depths
<30 km that occurred in Italy inside the collection area identified by the
CSEP experiment (blue solid line) [see Schorlemmer et al. 2010]. The
symbol sizes are scaled with magnitude. a) Events of  the learning dataset
used to set-up the model (April 16, 2005, to June 1, 2009; 2,100 events). b)
Events of  the testing dataset used for the retrospective forecasting test of
the model ( June 1, 2009 to September 1, 2009; 179 events).

;I i f B f Fj i j i ji Ij
= #e

e
" , /

P O F N
N

1 j
i

i Ij
=;

e
^ h /



159

databases [Boschi et al. 2000]. The most complete instrumental
catalog of  Italian seismicity is the seismic bulletin of  the INGV,
Istituto Nazionale di Geofisica e Vulcanologia (Bollettino
Sismico Italiano; http://bollettinosismico.rm.ingv.it/ and
http://iside.rm.ingv.it). The Italian seismic network has
changed significantly over the last few years. Indeed, April 16,
2005, marked the date when remarkable changes in the
Italian seismic network [Bono and Badiali 2005; see also
Schorlemmer et al. 2010] and the data processing began. Given
the large differences seen for the INGV bulletin before and
after this date, we set up our model using the parameters of
the events collected from April 16, 2005, to June 1, 2009. The
earthquakes from June 1, 2009, to September 1, 2009, were
instead used for the first retrospective test of  the model (the
testing dataset). In agreement with the CSEP requirements,
we selected events at <30 km in depth that occurred in the
collection area, as defined by the CSEP experiment.

A correct understanding of  the physical processes that
control the rate of  earthquake production depends on the
quality of  the seismic catalog that is available. Specifically, a
critical issue that has to be addressed before performing any
investigation is an assessment of  the completeness of  the
dataset. Here, we determined the completeness magnitude
(Mc) (the lowest magnitude at which a negligible number of
events are not detected) and its variation with time. The
algorithms used in this study are freely available together with
the software package ZMAP [Wiemer 2001]. To estimate Mc,
we used the method proposed by Cao and Gao [2002] that is
based on the stability of  the b-value as a function of  the cut-
off  magnitude [see also Woessner and Wiemer 2005, for
details on the method]. The numerical stabilization of  the b-
value was measured using the maximum likelihood method
[Aki 1965] to estimate the b parameter, and the algorithm
proposed by Shi and Bolt [1982] to quantify its uncertainty
[see also Marzocchi and Sandri 2003]. These algorithms
provided a value of  Mc (as local magnitude) of  2.0 and a

b-value of  1.0. (Figure 1a). The analysis of  the spatio-temporal
variation of  the Mc showed clear changes with time (Figure
1b) and space (Figure 1c). We performed these analyses using
a minimum number of  events of  100 and a radius of  50 km.
In particular, Mc reached about 2.5 soon after the recent
L'Aquila earthquake (April 6, 2009; MW 6.3; Figure 2b). This
value appeared to be a reliable completeness threshold for
most of  the national territory (Figure 2c). These data are also
in agreement with Schorlemmer et al. [2010], who defined
Mc = 2.5 as a reasonable magnitude threshold for most of  the
Italian territory. The only exception was for the southern part
of  Apulia and the western part of  Sicily, which showed higher
Mc [see also Schorlemmer et al. 2010, for details]. Considering
the small size of  these areas, for the present study we selected
the events above a magnitude of  2.5 that were recorded in the
INGV bulletin (2,100 events for learning, and 179 events for
testing). Figure 2 shows the distributions of  the selected
seismic activities for both the learning (Figure 2a) and the
testing (Figure 2b) databases, together with the boundaries
of  the collection area defined by the CSEP laboratory.

ETAS MODEL FOR ITALIAN SEISMICITY

Table 1. Parameters of  the ETAS model for Italian seismicity (Mc = 2.5;
April 16, 2005, to June 1, 2009; 2,100 events).

Figure 3. Maps of: a) the background seismicity rate ou(x,y); and b) the ratio between the triggered rate and the total seismic rate of  the INGV bulletin
learning dataset (April 16, 2005, to June 1, 2009; 2,100 events).

 

 

Parameter Value 

 237 ±8 (year–1) 

K 0.011 ±0.001 (year p – 1) 

p 1.16 ±0.02 

c 0.00004 ±0.00001 (year) 

 1.3 ±0.1  

d 1.10 ±0.05 (km) 

q ! 1.5 

Log-likelihood – 7808.1 
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Application and testing of the ETAS model on the Italian
seismicity

We applied the ETAS model to this Italian seismicity
recorded in the learning database described above. Following
the procedure proposed by Zhuang et al. [2002], we
estimated the model parameters together with the spatial
distribution of  the background seismicity (u(x,y)). Table 1
lists the inferred values of  these model parameters, together
with their standard errors and the associated log-likelihood
values. The totals for the triggered and spontaneous events
identified by the model were 46% and 54%, respectively.
Figure 3 shows two maps: the first represents the distribution
of  the time-independent background rate (ou(x,y); see
Equation 3); and the second the distribution of  the clustering
ratio r(x,y); i.e., the ratio between the triggered and the total
rates, for the whole learning period. The clustering ratio was
obtained according to Equation (8):

(8)

where c(x,y) and m (t, x, y, m/Ht) are defined by Equations (1)
and (4), respectively. By comparing the two maps shown in
Figure 3, it can be seen that the spatial distribution of  the
triggering capability was not a proxy for the seismogenetic
potential. As an example, the southern part of  the Italian
peninsular showed a lower triggering rate with respect to the
other areas (Figure 3b) whenever this area was one of  most
active of  the whole region (Figures 2 and 3a). The estimated
Omori law decay predicted that the probability of  triggering
one or more events with a magnitude above 2.5 for an
earthquake of  magnitude 3.0 was below 1% after about 5 to
6 hours. The corresponding times for a triggering an event of
magnitude 5.0 and 7.0 were 2 to 3 days and about 1 month,

respectively (Figure 4a). We stress that these probabilities
referred to direct triggering effects, as the secondary
triggered events were not included in this calculation. For the
spatial decay of  the triggering capability, an event had a 50%
probability to trigger one or more events within 2 km of  its
epicenter, and about a 40% probability at a distance >10 km,
regardless of  its magnitude (Figure 4b).

A preliminary check of  the goodness of  the inferred
ETAS model was carried out by applying residual analysis to
the learning dataset used to set up the ETAS model. The
residuals passed the KS1 test (p-value, 0.8), but the Runs test
rejected the hypothesis of  no correlation (p-value, 0.007).
The cumulative distribution of  the residuals (Figure 5a)
showed a clear deviation from the expected Poisson behavior
soon after the occurrence of  the Mw 6.3 L'Aquila earthquake
(April 6, 2009). If  we took the L'Aquila sequence out of  the
learning period, the ETAS model also passed the Runs test
(p-value, 0.07). We would argue that this result is probably
due to the spatial variation of  some of  the parameters. In
other words, at a local scale, the model might be significantly
different with respect to the same model calibrated using the
whole Italian territory. For example, Marzocchi and
Lombardi [2009] reported an a-value of  1.5 for the L'Aquila
region that increased to 2.0 when Mc = 2.5 was considered;
this value is certainly larger than the 1.3 seen here for the
whole Italian territory (see Table 1).

To test the forecasting performance of  the ETAS model,
we analyzed the residuals and plotted the cumulative
reliability diagram of  the testing dataset. Using the KS1 test,
we were not able to reject the null hypothesis that the values
Dxi = xi+1− xi are exponentially distributed (with a mean of  1)
(p-value, 0.14). Figure 5b shows the cumulative number of
residuals xi versus the transformed time x (solid line) together
with the expected linear scaling that was predicted by a

ETAS MODEL FOR ITALIAN SEISMICITY
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Figure 4. Spatio-temporal behavior of  the triggering probability inferred by the ETAS model. a) Time decay (according to the Omori law) of  the probability
of  generating at least one event for different magnitudes. b) Cumulative spatial probability distribution of  triggering at least one event (see Equation 1).
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Poisson distribution (i.e., the cumulative number of  residuals
should lie along the bisector). Similarly, the Runs test did not
reject the independence hypothesis of  Dxi (p-value, 0.81),
which implied that the hypothesis of  uncorrelation of  the
residuals cannot be rejected. This result is supported by Figure
5c, in which we plotted the variables Uk+1 = 1 −exp(Dxk+1)
versus Uk for the testing dataset. If  Dxk are i.i.d. random
exponential variables with a unit mean, the statistics Uk are
i.i.d. random uniform variables on (0,1). Assuming that a
possible correlation was likely to show up in neighboring
intervals, the plot of  Uk+1 versus Uk should have recovered the
figure panel uniformly [Ogata 1988].

The cumulative reliability diagram of  the spatial
distribution of  the events collected by the testing dataset
showed reliable forecasting (Figure 6). To define the
forecasting probabilities Fj, we computed the expected
fraction of  events fi according to the ETAS model, for each
cell Ci of  the testing grid defined by the CSEP laboratory. The
values fi were computed as the ratios between the expected
numbers of  events in the cell Ci and in the whole region R.
Specifically, we used the formula given in Equation (9):

(9)

where T was the testing period, R was the testing area
defined by the CSEP laboratory, Mwas the magnitude range
[2.5, 9.0], and Htwas the occurrence history, starting on April
16, 2005 (i.e., including the learning period).

We then regrouped these values into 10 bins Bj, which
were identified by increasing values of  probabilities Fj. The
error bars were defined so that the sets Ij (see Equation 6)
were equally populated. Table 2 gives the values of  the
probabilities Fj and p(O1|Fj) (i.e., the observed frequencies of
the events in bin Bj), as defined by Equation (7). These were
plotted as Figure 6. The error bars indicated the 95%
confidence interval of  the p(O1|Fj) values. These last were
obtained by applying the reliability analysis to 1,000 synthetic
catalogs. These had the same duration of  the testing period
as the INGV bulletin and were simulated in agreement with
the ETAS model, including the real learning period in the
past history. The reliability diagram showed that the pairs [Fj,
p(O1|Fj)] were well fitted by the diagonal, which indicated
perfect reliability. Moreover, they were in agreement with
the variation expected by the model. All of  these data
showed that the model estimated on the learning dataset was
in agreement with the seismicity that followed. This result
was also supported by the observation that the parameters
estimated from the entire catalog were not statistically
different from the parameters listed in Table 1.

This model formulated and tested above allowed us to
compute forecasts in the framework of  the CSEP

ETAS MODEL FOR ITALIAN SEISMICITY

Figure 5. Residuals analysis of  the ETAS model on the learning (April 16,
2005, to June 1, 2009; 2,100 events) and testing ( June 1, 2009 to September
1, 2009; 179 events) INGV bulletin events. a) Cumulative number of
transformed times xi (solid line) for the learning period together with the
theoretical distribution (dotted line) predicted by a Poisson distribution.
b) As for a) but for the testing period. c) Plot of  the values Uk+1 =
1−exp(xk+1−xk) versus Uk for the testing period.
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experiment. These predictions were in a form of  daily
probabilities of  occurrence for at least one earthquake with
ML ≥ 4.0 within a cell of  0.1˚× 0.1˚ in Italy. These were
obtained by integrating the intensity function of  the ETAS
model (Equation 1) for each cell Ci and for each forecasting
period Tj. The forecast rates for ML > 4.0 were obtained by
rescaling the rates of  earthquakes with ML > 2.5, in agreement
with the Gutenberg-Richter relation. Equation (1) shows that
time-dependent modeling such as this ETAS model also takes

into account the triggering effects of  the seismicity that
occurred before and that is expected during the forecast
interval. So we included in the past history all of  the real
seismicity with ML > 2.5 and a depth >30 km that occurred up
to the start of  the forecasting time window. Moreover, we
simulated 1,000 different stochastic realizations for the
forecasting time window using the thinning method
proposed by Ogata [1998] and the intensity function
formulated in Equation (1). Then we averaged the predictions
coming from each of  these synthetic catalogs.

Discussion and conclusions
In this study, we adopted a version of  the ETAS model to

describe the recent shallow seismicity that has occurred in
Italy. The main motivation behind this study was to submit
our model to the European Union – Italy CSEP laboratory for
1-day forecasts. To achieve this goal, we proposed a model that
represented the main average properties of  the Italian
seismicity. The reliability of  this model was successfully
checked at the local scale in a real-time forecasting experiment,
on the occasion of  the occurrence of  the recent L'Aquila
destructive earthquake [Marzocchi and Lombardi 2009].

One finding of  the present study is that the
generalization of  local models to the whole Italian territory
can be problematic for different reasons. First, the Mc varied
with space [Schorlemmer et al. 2010]; in this study, we
adopted Mc = 2.5, which was probably optimistic for some
zones. Indeed, the Mc for the whole of  the Italian territory
was about 2.9 (see Figure 1c, and Schorlemmer et al. 2010).
We were aware of  this limit, but we preferred to adopt a value
of  Mc that was reliable for most (if  not all) of  the Italian
territory. The area with Mc > 2.5 covered only a relatively
small part of  the whole region. The use of  a larger Mc caused
a strong reduction in the size of  the dataset, with the
consequent increase in the uncertainty of  our model. Of
potentially greater importance, it has been recognized that
smaller earthquakes have decisive roles in the triggering
processes [Felzer et al. 2002, Helmstetter and Sornette 2003,
Helmstetter et al. 2004]; therefore, a value of  Mc that was set
too high might have caused erroneous identification of  the
triggered section of  the seismicity.

Secondly, some of  the ETAS parameters can vary with
space. This means that some parameters that were estimated
for the whole territory or for a small region might be
significantly different. Local variations can occur only as a
consequence of  the occurrence of  large earthquakes. For
example, the model proposed here for the whole Italian
territory was not able to correctly reproduce the time
evolution of  the first part of  the 2009 L'Aquila sequence (see
Figure 3a). As indicated above, we argued that this
discrepancy was probably due to features of  the local
seismicity that cannot be extrapolated to the whole territory.
In particular, the seismicity of  the 2009 L'Aquila sequence
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1.6 × 10–3 1.8 × 10–3 
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3.5 × 10–2 3.2 × 10–2 
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1.7 × 10–1 2.2 × 10–1 
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Figure 6. Cumulative reliability diagram of  the spatial earthquake
distribution predicted by the ETAS model for the testing INGV bulletin
(Mc = 2.5; June 1, 2009 to September 1, 2009; 179 events). The stars mark the
pairs Fj/p(O1|Fj), i.e., the forecasts and the observed spatial distributions.
The dotted black line represents the perfect reliability. Error bars identify
the 95% confidence intervals of  the observed values p(O1|Fj). The forecast
probabilities Fj identify equally populated bins Bj (see text for details).

Table 2. Values for the cumulative reliability diagram of  the spatial distri-
bution of  earthquakes predicted by the ETAS model relative to the testing
INGV bulletin. (Mc =2.5; June 1, 2009, to September 1, 2009; 179 events).
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was characterized by a larger a-value with respect to the
whole Italian seismicity described by our ETAS model. The
a parameter is crucial in the quantification of  the
dependence of  the triggering effects according to the
magnitude of  the parent earthquake. The failure of  our
model to describe the starting phase of  the 2009 L'Aquila
sequence suggested that inconsistencies were possible in
forecasts of  the future seismicity. This problem might call for
the development of  more complicated models that can take
into account the local features of  seismic activity.

We would argue that other parts of  this model can also
be improved in the future. In the following, we report some
of  the possible indications in this direction. First, the model
can be enhanced by adopting a modified magnitude
distribution, to explicitly allow for the decrease in detection
soon after a large earthquake [Kagan 1991, Helmstetter et al.
2006]. Secondly, the background rate and the basic clustering
proprieties of  the aftershock sequences were assumed to be
stationary in time. This assumption was mainly motivated
by the short learning dataset used; longer-term datasets
might allow departures from stationarity to be captured,
such as long-term time evolution of  the seismicity [e.g.,
Lombardi and Marzocchi 2007, Marzocchi and Lombardi
2008]. Moreover, other time-dependent processes that act over
short time scales, like fluid injection, might have significant
impact on the short-term spatio-temporal evolution of  the
seismicity, and therefore it might be necessary to include these
in the ETAS model [Hainzl and Ogata 2005, Lombardi et al.
2006, Lombardi et al. 2010]. Thirdly, the ETAS model
proposed here assumed that all of  the earthquakes were equal.
Possible distinctive precursory activities that anticipate large
shocks were not considered in this parametrization. Finally,
the present model did not incorporate tectonic/geological
information. Inclusion of  such information might represent
a possible future direction of  investigation for the
improvement of  the forecasting of  large shocks. For
example, the Gutenberg-Richter law is used everywhere
indistinctively; this means that a magnitude 8 earthquake is
considered possible anywhere. It can thus be argued that in
the future, geological information will provide a more
appropriate frequency-magnitude law that varies in space.
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