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Summary. — We study some explicit cases of marine thermocline. We 
focus our at tention on the strongly vertically t rapped internal waves, which 
in our cases allow an explicit dispersion relation and a simple behaviour in 
terms of elementary functions. The explicit form of the Vaisala-Brunt fre-
quency N2{z) is proportional to 1 / \z—20| in one case and to A2—B2(z—zD)2 

in the other. A comparison with some experimental da ta concerning the 
Ligurian Sea is actually in course. 

Riassunto . — In relazione a determinate condizioni di superfìcie, la 
s t ru t tu ra verticale del mare si caratterizza mediante una brusca variazione 
nella densità. Nel presente lavoro vengono studiate le onde interne che vi 
risultano for temente intrappolate, ot tenendo relazione di dispersione, velocità 
di gruppo e correlazione in termini di funzioni elementari per due situazioni 
sperimentali individuabili anali t icamente at traverso la frequenza di Vàisàla-
Brun t N2(z) proporzionale a I /\z—za \ in un caso ed uguale a A2-B2(z—z0)2 

nell 'altro. È in corso un confronto con i dat i provenienti da campagne di 
misura effe t tuate nel Mar Ligure. 

1 . - I N T R O D U C T I O N 

A n i n t e r e s t i n g p r o b l e m in t h e ene rgy b a l a n c e of a sea, conce rns 
t h e i n t e r n a l w a v e s a n d t he i r energies. These a re waves which p r o p a g a t e 
hor i zon ta l ly a n d t he i r l a rges t a m p l i t u d e is r e l a t e d t o t h e v e r t i c a l 
v a r i a t i o n s of t h e dens i t y g(z). This is d u e t o t h e ve r t i ca l v a r i a t i o n s 
of t e m p e r a t u r e a n d sal ini ty , which a re o r ig ina ted b y t h e in t ense ex-
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change of moment and heat with the mowing atmosphere. More in 
detail, one could first separate a "mixed layer" which has a vertical 
extension of some tens of meters under the air-sea surface. This layer 
is mixed by the turbulence propagating downward from the moving 
atmosphere (this is one of the effects of winds, storms, atmospheric 
turbulence etc.). I ts energy propagates downward freely and makes 
temperature, salinity, density and motion-homogeneous in this "mixed 
layer". The surface under this mixed layer is the natural domain of 
propagation for the most intense internal waves. I t has however to be 
remarked tha t it is not very easy to distinguish what percentage of 
atmospheric energy generates internal waves and what percentage of 
energy is used by the system to erode the underlying stratified region. 
Practically, moreover, one can remark tha t many times the mixed layer 
has not a very sharp division with the underlying stratified region, but 
has a vertical extension of 50 --500 meters. The resulting periodic 
phenomena, the internal waves, are in this case related to a smoother 
variation of the density than in the case of the sharp division between 
the mixed layer and the deeper stratified region. 

Tts stratification is a rather curious phenomenon: one can experi-
mentally remark many sheets of an horizontal extension of kilometers 
and this is a surprising contrast with the vertical extension of few 
centimeters. Practically, forgetting this "fine-structure", one could see 
it as a stable region of slowly varying density g0(z). 

In the lowest part , g0(z) decreases with the depth as a slow expo-
nential exp (— az), where a is a constant. 

In this contest, we have remarked tha t the surface between the 
mixed layer and the stratified thermocline is the domain of many 
interesting and important phenomena, related to the internal waves 
distribution of energy inside the fluid ("). I t can be shown, more pre-
cisely, tha t the knowledge of exact shape of g0(z), the static density 
profile, could give essential informations concerning the internal waves 
structure, their correlations and their energetics. 

More explicitly, it has to be added tha t the experimental evidence 
stresses tha t this is not really a sharp surface, but it appears rather as a 
vertical region of transition between the homogeneous mixed layer 
and the stratified thermocline. This appears interesting because the 
internal waves can be described by a simple equation (if one assumes 
the linear waves and if the Boussinesq approximation is assumed valid: 
see, for example, Phillips (°) and Thorpe (7)) where the explicit shape 
of Q0{z) plays an explicit role. 



ON L I N E A R I N T E R N A L W A V E S ON T H E SEA E T C . 2 4 3 

Now, this equation has simple dispersion relation and solution in 
some cases rather well known in the literature. These are supplied 
when the Vaisala-Brunt frequency 

, , dp0 q 
N2 «) = r~ • — > 0 d Z Q O 

has a d(z) behaviour or JV-(z) = const, behaviour (Phillips (6)) and when 

N*(z) = 
0 for 0 <z<d ((j i s t ] i e depth of the discontinuity 
e-az for z>d in the density) 

as in the classical analysis of Garret and Munk (3) and in few other 
cases studied by Thorpe (8). 

The realistic cases are rather different; one could easily solve them 
numerically, but this would imply some loss of informations. For this 
region we have studied two rather realistic profiles 

N*(z) = a2l\z—z0\ and N2(z) — A2 — B2{z—z0)2 

These profiles can, in some cases, simulate correctly the experimental 
situation and they also allow an explicit calculation of the internal 
waves, their dispersion relation, their group and wave velocities, then-
correlations. 

An experimental verification is actually in course (x). 

2 . L I N E A R T H E O R Y O F M A R I N E I N T E R N A L W A V E S 

The theory of internal waves is rather well known (Phillips (°), 
Thorpe (8)). In the following we will repeat the essential results on 
the t ime evolution of these waves. 

In fact, in the case tha t the Boussinesq approximation can be 
assumed and the earth's rotation can be disregarded, the velocity 
components satisfy the equations (6|7). 

1 i)« 
+ — - f - = 0 

Qo 

+ — ~ = 0 
(?o ty 

i q' *tw + — -J- + g = 0 
Q o "Z Qo 

10 
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where p is the departure from the hydrostatic pressure and one has 
assumed 

Q = QO(z) + Q' (X, y, z, T) 

with the density variation Q'<S:Q0. 
In the same frame of approximation, one also assumes tha t the 

water is incomprensible: 

ixU + + izlV = 0 

dp V V <>g' 
at it ix 7>y iz 

Calculating first the time derivative of the vorticity, one lias 

( i * - + — JL V = o 
\ iz ix J it Q O ÍX 

. iv iw \ i a io' 
Vu — — — + — - - — = 0 iz iy J it go iy 

and, taking into account the <y~ = 0 relation, one has 
Cli 

i l g ig' g i i , g d g o iw 
~ì)t Qo ÌX Qo ÌX it ~ Qo dz iz 

i g io' g i 5 , g dp0 iio 
it go iy Qo iy it ^ ~ Qo d» iy 

Taking then the horizontal divergence, one has the basic relation 

y-tt (Vxz + i\y + W (X, t) + A^X^+S2,,,,) W (X, z,t) = 0 [2.1] 

where N-(z) = — — - f - > 0 is the Vàisàla-Brunt frequency. 
QO d z 

Assuming a plane progressive wave solution of the form 

w (x, z, t) = 17 (z) exp i(Kxx + Kyy + Kzz — wt) 

one easily arrives to the equation 

+ K2 — K2\ W(z) = 0 [2-2] 
d*W\z) , j N2(z) 

dz2 
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with 
17(0) = o a t the rigid free surface (9) 
W(—d) = 0 at the bottom 

The informations concerning the stratification are included in the 
particular shape of N2(z). This is rather constant in the mixed layer. 
In the lower region it has many sharp variations (the fine-structure). 

These variations give the classical behaviour of N2 (z) in the 
tliermocline when, in some sense, they are averaged in 2. At last N2 —> 
const, value in the deepest regions can be found. 

As the various preceding cases have been studied, we have focused 
our attention to two explicitly solvable cases: 

where a, A, B, are constants to be determined on experimental ground. 
The depth z0 is tha t corresponding to the zone of highest variation of 
the Yaisala-Brunt frequency N2(z). The cases seem to be general 
enough to approximate realistic cases, particularly in the parabolic case. 

3 . T H E E X P L I C I T C A S E N2(Z) = a2/\z— z0\ 

We are now going to study the case above mentioned 
N2(z) = a21\z—z0\. The equation [2.2] now results 

We assume tha t the distance among zD, the bottom z = — d and the 
surface 2 = 0 could be considered large. In practice z0 is 20-50 meters 
for localized seas (*) and hundred meters for the Ocean. The depth 
d of the bottom is usually fixed to be larger, in order to avoid bottom 
effects. For strongly trapped internal waves, the vertical region of 
interest is determined in order to fix the vertical scale of motion. I t 
usually is of the order of magnitude of few meters. Outside this region 
2 = z0, the Yaisala-Brunt frequency decays rather rapidly, as a power 
of 2. Much more quick, however, is the decay of the solution IF, 
which results in general a negative exponential. So one could also 
assume for these waves an idealized boundary condition 

a) N2(z) = a211 z—z0 \ 
b) N2(z) = A2 — B2 (z—zo)2 

d2 W(z) 
dz2 [3.1] 

W (± 00) = 0 
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which simplifies the calculations. Then one can say tha t our eigen-
value equation can assume an infinity of eigensolutions, labelled 
by 11 = 1, 2, 3 . . . 

The general solution is (see Appendix): 

Wfl = A^xo™o> L}^ {2K\z—z0\} [3.2] 

where A/t is a constant and the function L)i_l (g) is called Laguerre 
polynomial. At z — za, the function is complicated: the equation shows 
tha t its second derivative diverges. Then Wp results a continuous 
function symmetric around the peak z0 One can moreover say (see 
Appendix) tha t the solution exist if and only if 

a2K 
- — = p =1,2, . . . 

I t ' s interesting to note t ha t the preceding dispersion relation for 
these internal waves is similar to t ha t of the two-fluid system. 

Then one can calculate the group velocity cg 

da> 1 a2 

°g = d K = Y 1W(2JL)1'2 

One has also to remark tha t W¡i. is proportional to exp-/t 12—z0\ 
so t ha t the behaviour of the wave decays exponentially outside the 
zone of sharp variat ion of A2(2). 

This implies tha t we mus t consider only waves with a large K 
value fixed by the dimension of the physically interesting region through 
the relation K ~ 1 \L. One could enlarge the preceding t rea tment of 
the individual s tructure of internal waves by considering the correlation 
function. This quanti ty is 

+ 00 
B/tfl' (K) = l l> u y = I WM W%' dz' 

I t appears interesting because it is a powerful tool in the comparison 
between theoretical models and experimental da ta (4). I n our case 
it results: 

LI 2 

B^ (K) = ^X
KL j AfxA%' e - 2 ^ 0 ) Lji^ L\*_! d {2K\zr—z0\) 
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The Laguerre polynomial are on orthogonal set, therefore one has 

1 0 for n ^ fi' 
BNi' ( K ) = i 

1 — { l A p U / t - i y . ? 2C-i for ¡X = n ' 

this K ' 1 behaviour of the correlation function is rather interesting 
and is in agreement with the results of Phillips (6) for a range of the 
spectrum of the lowest internal mode. If one wants to calculate also 
the cross-correlation WV, the continuity equation 

i KyV + W = 0 

must be used. This can give the matrix element 

/ dW 1 ] W d = 0 
d z 

One could add that the matrix element 

dWn 
iz Wm &z' 

is not zero if (and only if) w = to ± 1. In more detail 

d W. \ _ , , U W ^ dz' = 1 / JL dz J • "" ' 2 

and 

/ -dz ) " T i | 2 

To finish, also the case 

a2 B-
JV2(«) = — a, /? const. 

z z2 

could be exactly treated. I t results, however, of different physical 
interest because it describes an instable case, whereas in this note one 
studies stable phenomena only. 
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4 . T I I E C A S E O F A P A R A B O L A A 2 (Z) = A2 — IP (Z—ZA)2 

By repeating the preceding considerations, one can arrive to the 
equation: 

= (z-zo)
2 1F(.) - i ^ f ' - J D 1 * ( . ) ; ^ 

Az2 to2 [ u)2 J 

with the boundary conditions (°), 

W(0) = 0 

W(—d) = 0 

In this case also there is an infinity of solutions (see Appendix): 

'<K , „ U K B V ' 2 

W, = At e"a j ,z'z°' Hq — (z—z0)\ q = 1, 2, . . . [4.1] 

Where A„ is a constant and Hq(o) is an Hermite polynomial. From 
this equation one can see tha t the wave amplitude decreases more 
rapidly than in the preceding case (eq. [3.2]) as \z—z01 increases. 

There is also in this case a dispersion relation 

- - f 
I t has to be remarked that <o decreases as q increases, tha t is, for higher 
modes, the dimension L of the system fixes a K value K ~ 1 [L. From 
the above equation, one can derive: 

— CB + (G2B2 + 4J£2A2)1/2 

<» = 2 K — 0 = g + l [4.2] 

and then the group velocity can be deduced 

Cg = (G2B2 + h [ C B - ^ + 4 A 2 K ' ) v i 

In this case also it is easy to calculate the correlation function 

L/2 

B„' (K) = ~ f AqA*. e' K'1(z'-2a)1 Hq Hi dz' = 
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LI 2 

I A.q A.q' Hqllq' 6 UJ d 
KB\ 

(z' Zo) 

o 

which, remembering the orthogonality of the Hermite polynomials, 
becomes 

This result can be written in a more clear form by using the disper-
sion relation. 

In fact, from eq. [4.2] one has that 

roA'-i ~ JSC-2 

for which eq. [4.3] becomes 

In this case, the behaviour of the correlation function is different 
from the other one. 

As in the preceding section, if one wants to calculate the correla-

tion WV, one must use the continuity equation, giving V as a func-

tion of ' ' ^ . Now, the resulting matrix element 

can be found in the literature (5). 
The profile 

N2(z) = A2 — B2 (z—zo)2 + C (z—zo) + D (z—z a ) 3 

can also be calculated. The result is exact for C ^ 0 and with some 
approximation for D ^ 0. 

To finish, we want to note tha t results obtained in this note for 
the internal waves in the presence of a strong stratification are used 
for a comparison with experimental data concerning the Ligurian sea i1). 

[4.3] 

Bm' (K)ocK-v2 
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A P P E N D I X 

a2 
a) The case. 

I Z—Z o \ 

This equation is rather well known. We follow here a description 
of the solution which is widely used in quantum mechanics (2). In 
adimensional form, it results 

d *~u ( I 1 \ 
T 7 + M == 0 

dp2 \q 4 ) 

Asimptotically the solution results 

u ~ e ± e/2 

and if one wants u to he finite, u ~ e-e/2 

Multiplication by a polynomial doesn't change the asimptotic 
value 

This gives 

= F (Q) e-e/2 

dg- dg g 

Put t ing now 

F = S AK G* 

K = 1 

inside the preceding equation, one has 

(A — 1 ) A , + 2 A , = 0 

K(K+1)Ak + 1 + ( A — K ) Ak = 0 

Now, if one assumes tha t the series is infinite, then 

A K + I _ A — A 1 _ 

Ak ~ E (E+l) K 

which correspond to an exponential behaviour of F(g), is in contra-
diction with our hypothesis u ~ e~Si2. 
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Then the series cannot he infinite. 
The other only possibility is tha t }. be an integer n. 
Then one has the "eigenvalue condition" 

I = n 

AK = 0 Ii > ft 

The polynomials obtained in this way are related to the associated 
Laguerre polynomials: 

Ln(Q) = £ 0 ? " 

The first one are: 

L\ = 1 ; L\ = 4 — 2 g; L\ = 1 8 — 1 8 O — 3 <?-

L \ = 9 6 — 1 4 4 G + 4 8 O 2 — 4 Q3 

b) The A2—B2(z—z0)2 case 

We repeat here the preceding treatment of the equation. In adi-
mensional form 

T ! + - « = 0 

The asimptotic value being 

u ~ e 

If one assumes 

u = H(Q)C'Q*'2 

then obtains, for the basic equation 

^ - 2 , f + (A - 1) H = 0. [A.l] 
do2 do 

Now, writing for II 
N 

H = 2 an Q" 
H = 1 

the differential equation [A.l] gives 

« s + 2 ( 2 s + 1 ) — A 
(s + 2) (s + 1 ) 

s > 0 

10 
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Separating the even or add solutions, on then has 

I = 2 n + 1 

The solutions are even or add polynomials, the Hermite poly-
nomials 

d » o - G2 

H t { e ) = ( - D* • 

The first one are 

Ho = 1 ; H , = 2 g; H 2 = ±Q2—2; H 3 = 8 Q3 — 12 Q 
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