Studio preliminare sulle oscillazioni libere del Lago di Sauris a due diverse quote (*)

G. ROMUALDI - M. C. SPADEA

Ricevuto il 30 Maggio 1966

RIASSUNTO. --- In questa prima parte, viene applicato al Lago di Sauris il metodo di Hidaka --- opportunamente esteso --- allo scopo di studiarne le oscillazioni libere.

La ricerca è stata particolarmente interessante per i due seguenti motivi:

1. – Si tratta di un bacino artificiale formato dallo sbarramento del torrente Lumiei (Diga del Lumiei alta 130 m).

2. – Si è potuto studiare il Lago a due diverse quote (980 m, invaso pieno — e 939 m, quota allegerimento), fatto che è pressoché impossibile riscontrare in un lago naturale.

Sono stati così determinati i periodi, la posizione dei nodi e le ampiezze corrispondenti alla sessa uni- e bi-nodale alle due diverse quote.

Nella seconda parte, di prossima pubblicazione, lo studio sarà esteso al confronto fra i dati qui ottenuti per via teorica e quelli ottenuti per via sperimentale mediante registrazioni limnografiche.

SUMMARY. — In the first stage concerning the free oscillations of the Sauris' Lake, we limited ourselves to the periods, knots and amplitudes determination of the uni and bi-nodal seiche, making use of the Hidaka's method. The investigation is particularly interesting due to two particular reasons:

1. - It is an artificial reservoir, formed barring the Lumiei torrent. (Lumiei Dam, high 130 m).

2. - The Lake has been studied at two different altitudes (whole basin, 980 m- and 939 m), matter which in a natural lake is almost impossible to find.

In the second part, the research will be exended to the comparison of the theoretical results. here achieved with the experimental results obtained by limnographic records.

(*) Questo lavoro è stato compiuto con contributi del C.N.R.

PARTE I

PREMESSA.

L'accordo fra teoria (applicazione di vari metodi matematici di Chrystal, Defant, IIidaka, Goldberg, alcuni dei quali opportunamente estesi) e osservazione (registrazioni ottenute con limnografi nello studio delle oscillazioni libere di laghi naturali, golfi, etc...) è stato più volte confermato, come risulta dai numerosi lavori già pubblicati.

Il lavoro è stato diviso in due parti. Nella prima, che concerne questa nota, il lago artificiale di Sauris viene studiato dal punto di vista teorico; nella seconda parte – di prossima pubblicazione – lo scopo sarà quello di dimostrare che l'accordo sopra menzionato viene rispettato, anche nel caso di laghi artificiali quale è quello del Lumiei, formatosi quest'ultimo dopo la costruzione della diga sul torrente omonimo, uno dei tanti affluenti del Tagliamento.

1. – La diga del Lumiei è sita in località Maina di Sauris (Carnia) a 1000 m. di altezza s.m., del tipo ad arco-cupola (arco a doppia curvatura); essa è alta 136 m, con uno spessore di 16 m alla base e di 3,5 m al coronamento (sezione maestra), ed ha creato un serbatoio della capacità utile di 70 milioni di m³.

Il lago di Sauris dopo un'ansa piuttosto larga a monte della diga, si restringe notevolmente assumendo una forma molto allungata. La profondità massima si ha appunto in corrispondenza di questa ansa, ed essa decresce rapidamente in concomitanza al diminuire della larghezza, tanto da essere minima all'estremo opposto.

Nel caso specifico vanuo sottolineati tre aspetti del lago:

- a) è un bacino artificiale;
- b) di forma irregolare (vedi curva normale: Figg. 1-2);
- c) è soggetto a forti variazioni di livello.

Quest'ultima caratteristica ci ha permesso di studiare il lago di Sauris in due diverse situazioni di invaso: a invaso pieno (m. 980) e ad una quota di alleggerimento (m 939), quasi si trattasse di due laghi diversi, tali risultando dal punto di vista morfometrico.

A nostro avviso il punto c) è il più significativo, dato che non è possibile usufruire in natura di un lago che, in epoche diverse, presenti differenze di quota di oltre 40 metri.

,

La prima parte di questa nota si riferisce appunto allo studio delle oscillazioni libere del lago di Sauris a invaso pieno e a quota di alleggerimento (41 metri sotto il livello normale).

Va ancora messo in evidenza che la batimetria del lago è perfettamente conosciuta, a causa del rigoroso rilevamento topografico cui il bacino è stato sottoposto prima della costruzione della diga; ciò che ovviamente non avviene per i laghi naturali la cui batimetria è sovente inesatta, in ogni caso ottenuta con un troppo limitato numero di sondaggi, ripetuti soltanto a lunghi intervalli di tempo.

LAGO DI SAURIS A QUOTA 980.

2. - I principali elementi morfometrici del lago di Sauris a bacino pieno sono:

altezza	m. 980 s.m.
superficie	km^2 1.765.122
profondità massima	m 140.

3. – Dato il particolare tipo di lago, abbiamo ritenuto opportuno applicare il metodo di Hidaka (²), il più idoneo per laghi irregolari, la cui curva normale risulti complicata (Fig. 2).

Fig. 2

Nel caso in esame per ottenere i dati necessari alla determinazione di detta curva ci siamo serviti di una carta batimetrica del lago 1 : 2000 (disegno fornito a suo tempo dalla SADE). L'estensione del metodo (³), non solo consente di determinare i periodi delle oscillazioni libere, ma anche la posizione delle linee nodali, nonché l'ampiezza degli spostamenti verticali nelle singole sezioni trasversali, tracciate perpendicolarmente alla linea di valle dall'estremo 0 alla diga; dette sezioni distano una dall'altra 100 m (Fig. 3). Tutti i dati numerici necessari all'applicazione del metodo sono riportati nella Tabella I.

4. – Metodo di Hidaka. Senza soffermarsi sulla teoria, già più volte ampiamente esposta e opportunamente ampliata (³), richiamiamo solo le formule fondamentali, necessarie a fornire i dati numerici per il nostro lavoro.

Detto ξ lo spostamento orizzontale delle particelle liquide di una stessa sezione trasversale S(x) e posto $u := \xi \cdot S(x); v = \int_{0}^{x} b(x) dx$, dove b(x) rappresenta la larghezza variabile del bacino misurata alla superficie libera, l'equazione sul moto libero dei laghi (equazione di Chrystal) (¹) assume la forma:

$$\sigma(v) \frac{d^2 u}{dv^2} + \frac{4\pi^2}{gT^2} u = 0 \quad .$$
 [1]

In essa, valgono le condizioni ai limiti u(o) = u(a) = 0 (a = superficie totale del lago).

Nella [1] $\sigma(v) = S(x) \cdot b(x)$ rappresenta la curva normale del lago (con $\sigma(v)$ che si annulla agli estremi in modo che sia $\sigma(o) = \sigma(a) = 0$) nella quale i valori di $\sigma(v)$ sono riportati in ordinata e quelli dell' $\int b(x) dx$ in ascissa.

Posto $z = \frac{v}{a}$ la [1] diviene:

$$\frac{d^2u}{dz^2} + \frac{\lambda}{\sigma(z)} u = 0 , \qquad [2]$$

con le condizioni ai limiti

$$u(0) = u(1) = 0$$
 [3]

0

$$\lambda = \frac{4\pi^2 a^2}{q T^2} . \qquad [4]$$

G. Romualdi - M. C. Spadea

Hidaka integrando la [2] con le condizioni [3], ha provato che questo equivale alla ricerca del valore minimo dell'integrale:

$$I(u) = \int_{0}^{1} \left\{ \left(\frac{du}{dz} \right)^{2} - \frac{\lambda}{\sigma(z)} u^{2} \right\} dz .$$
 [5]

Posto

$$u = \sum_{0}^{m} A_{i} z (1-z) z^{i} \quad \text{con } A_{i} = \text{cost.}, \quad [6]$$

e sostituendo la [6] nella [4], determiniamo le m + 1 costanti $A_0, A_1, ...$ A_m in modo che la [5] diventi un minimo, il che presuppone l'annullamento dei rapporti delle derivate $\frac{\partial I}{\partial A_i}$.

Con opportuni calcoli si ottiene un sistema di m + 1 equazioni:

$$\begin{cases} \left(\frac{1}{3} - I_{0}\lambda\right)A_{0} + \frac{1}{6} - I_{1}\lambda\right)A_{1} + \left(\frac{1}{10} - I_{2}\lambda\right)A_{2} + \dots = 0 \\ \left(\frac{1}{6} - I_{1}\lambda\right)A_{0} + \left(\frac{2}{15} - I_{2}\lambda\right)A_{1} + \left(\frac{1}{10} - I_{3}\lambda\right)A_{2} + \dots = 0 \\ \left(\frac{1}{10} - I_{2}\lambda\right)A_{0} + \left(\frac{1}{10} - I_{3}\lambda\right)A_{1} + \left(\frac{3}{35} - I_{4}\lambda\right)A_{2} + \dots = 0 \end{cases}$$
[7]

Eliminando le A_1 costanti, si annulla il determinante dei coefficienti di A_0 , A_1 , A_2 ,..., la cui soluzione dà l'equazione dei periodi. In questa equazione si ha:

$$I_n = \int_{0}^{1} \frac{z^2}{\sigma} \frac{(1-z)^2 z^n}{\sigma(z)} dz .$$
 [8]

Poiché la soluzione diviene tanto più difficoltosa quanto maggiore è il valore di m, Hidaka fornisce le soluzioni per m = 1 ed m = 2, soluzioni più che sufficienti per il nostro problema.

Per m = 1, dalla [6] risulta $u = z (1 - z) (A_0 + A_1 z)$, l'equazione del periodo della sessa uninodale si ottiene annullando il determinante formato dai coefficienti di A_0 e A_1 nelle prime due equazioni della [7]:

$$\begin{array}{c|c} \left(\frac{1}{3}-I_0\,\lambda\right) & \left(\frac{1}{6}-I_1\,\lambda\right) \\ \left(\frac{1}{6}-I_1\,\lambda\right) & \left(\frac{2}{15}-I_2\,\lambda\right) \end{array} \right| = 0 ,$$

sviluppando il quale si ha:

$$\left(I_0 I_2 - I_1^2\right) \lambda^2 - \left(\frac{2}{15} I_0 - \frac{1}{3} I_1 - \frac{1}{3} I_2\right) \lambda - \frac{1}{60} = 0 .$$
 [9]

Sostituendo ad I_0 , I_1 , I_2 i valori numerici ricavati dalla Tabella I, si ha un'equazione di 2º in λ le cui radici sono:

$$_{1}\lambda_{1} = 0,00952$$
 , $_{1}\lambda_{2} = 0,06171$.

Ricordando la [4], dove $T_1 = \frac{2 \pi a}{\sqrt{g_1 \lambda_1}}$ e $T_2 = \frac{2 \pi a}{\sqrt{g_1 \lambda_2}}$, siamo final-

mente arrivati alla determinazione dei periodi della sessa uni e binodale:

$$T_1 = 6^m \, 03^s$$
 $T_2 = 2^m \, 22^s$ [10]

Per m = 2, sempre dalla [6], si ha

$$u = z (1 - z) (A_0 + A_1 z + A_2 z^2) .$$

L'equazione dei periodi si ottiene sviluppando e annullando il determinante formato dai coefficienti di A_0 , A_1 , A_2 , nelle prime tre equazioni del sistema [7]:

$$\begin{vmatrix} \left(\frac{1}{3} - I_{0} \lambda\right) & \left(\frac{1}{6} - I_{1} \lambda\right) & \left(\frac{1}{10} - I_{2} \lambda\right) \\ \left(\frac{1}{6} - I_{1} \lambda\right) & \left(\frac{2}{15} - I_{2} \lambda\right) & \left(\frac{1}{10} - I_{3} \lambda\right) \\ \left(\frac{1}{10} - I_{2} \lambda\right) & \left(\frac{1}{10} - I_{3} \lambda\right) & \left(\frac{3}{35} - I_{4} \lambda\right) \end{vmatrix} = 0 \\ \left(I_{0} I_{2} I_{4} - I_{0} I_{3}^{2} - I_{1}^{2} I_{4} + 2 I_{1} I_{2} I_{3} - I_{2}^{3} \right) \lambda^{3} - \left|\frac{3}{35} \left(I_{0} I_{2} - I_{1}^{2}\right) + \\ & + \frac{1}{5} \left(I_{1} I_{2} + I_{1} I_{3} - I_{0} I_{3}\right) + \frac{2}{15} I_{0} I_{4} + \\ & + \frac{1}{3} \left(I_{2} I_{3} + I_{2} I_{4} - I_{1} I_{4} - I_{3}^{2}\right) \right| \lambda^{2} + \\ & + \left(\frac{1}{700} I_{0} - \frac{3}{350} I_{1} + \frac{53}{2100} I_{2} - \frac{1}{30} I_{3} + \frac{1}{60} I_{4}\right) \lambda - \frac{1}{10500} = 0 . \end{aligned}$$

Sezioni	⊿x 10²m	b(x) 10 ² m	S(x) 10 ³ m ²	v(x) 10^4 m ²	V(x) 10 ⁴ m ²	$\sigma(x) =$ $= S(x) \cdot b(x)$ 10^{5}m^{3}	$z = \frac{V}{a}$		$M = rac{z^2(1-z)^2}{\sigma(z)} \Delta z \ rac{10^{-10} \mathrm{m}^{-3}}{-10^{-10} \mathrm{m}^{-3}}$	Mz 10 ⁻¹⁰ m ⁻³	Mz ² 10 ⁻¹⁰ m ⁻³	_l[z ³ 10 ⁻¹⁰ m ⁻³	Mz ⁴ 10 ⁻¹⁰ m ⁻³
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0,58	0,494	0,4116	0,4116	0,2865	0.00233	0.00233	0.00439	0.00001	0	0	0
2	2	1,29	1,579	1,2188	1,6304	2,0369	0.00924	0.00691	0.02850	0.00026	0.000003	0	0
3	3	1,93	2,590	1,4552	3,0856	4,9987	0.01748	0.00824	0.04863	0.00085	0.000015	0	0
4	4	2,14	3,600	1,1948	4,2804	7,7040	0.02425	0.00677	0.04921	0.00119	0.00003	0.000001	0
5	5	2,24	3,951	1,6220	5,9024	8,8502	0.03344	0.00919	0.10851	0.00363	0.00012	0.000004	0
6	6	1,98	3,889	2,1968	8,0992	7,7002	0.04588	0.01244	0.30954	0.01420	0.00065	0.000030	0.000001
7	7	2,06	4,189	2,0700	10,1692	8,6293	0.05761	0.01173	0.40073	0.02309	0.00133	0.000077	0.000004
8	8	2,04	3,731	2,1702	12,3394	7,6112	0.06991	0.01230	0.68326	0.04777	0.00334	0.000233	0.000016
9	9	2,34	4,970	2,1068	14,4462	11,6298	0.08184	0.01193	0.57917	0.04740	0.00388	0.000318	0.000026
10	10	2,60	6,1245	2,3746	16,8208	15,9237	0.09530	0.01346	0.62830	0.05988	0.00570	0.000543	0.000052
11	11	2,81	7,3475	2,7040	19,5248	20,6465	0.11061	0.01531	0.71765	0.07938	0.00878	0.000971	0.000107
12	12	2,79	7,144	2,8152	22,3400	19,9318	0.12656	0.01595	0.97788	0.12376	0.01567	0.001983	0.000251
13	13	3,70	10,174	3,3008	25,6408	37,6438	0.14526	0.01870	0.76581	0.11124	0.01616	0.002347	0.000341
14	14	3,14	9,9005	3,2406	28,8814	31,0876	0.16362	0.01836	1.10600	0.18096	0.02961	0.004845	0.000793
15	15	3,82	12,188	3,4400	32,3214	46,5582	0.18311	0.01949	0.93661	0.17150	0.03140	0.005750	0.001053
16	16	3,44	11,098	3,6336	35,9550	38,1771	0.20370	0.02059	1.41903	0.28906	0.05888	0.011994	0.002443
17	17	3,06	11,540	3,0140	38,9690	35,3124	0.22077	0.01707	1.43062	0.31584	0.06973	0.015394	0.003399
18	18	3,56	14,038	3,2580	42,2270	49,9753	0.23923	0.01846	1.22354	0.29271	0.07002	0.016751	0.004007
19	19	3,77	16,880	3,9504	46,1774	63,6376	0.26161	0.02238	1.77721	0.46494	0.12163	0.031820	0.008324
20	20	4,57	20,204	4,1708	50,3482	92,3323	0.28524	0,02363	1.06377	0.30343	0.08655	0.024688	0.007042
21	21	4,30	21,684	4,4256	54,7738	93,2412	0.31031	0.02507	1.23152	0.38215	0.11858	0.036797	0.011418
22	22	4,46	22,845	4,3920	59,1658	101,8887	0.33519	0.02488	1.21254	0.40643	0.13623	0.045663	0.015306
23	23	3,84	24,262	4,6104	63,7762	93,1661	0.36131	0.02612	1.48459	0.53640	0.19380	0.070022	0.025300
24	24	5,26	23,110	5,0448	68,8210	121,5586	0.38989	0.02858	1.33036	0.51869	0.20223	0.078847	0.030742
25	25	5,08	24,116	5,0974	73,9184	122,5093	0.41877	0.02888	1.39662	0.58486	0.24493	0.102569	0.042953
26	26	5,02	27,182	5,1072	79,0256	136,4536	0.44771	0.02894	1.29668	0.58054	0.25991	0.116364	
27	27	5,80	31,322	5,7994	84,8250	181,6676	0.48056	0.03285	1.12676	0.54148	0.20021	0.125047	0.000093
28	28	5,97	33,627	6,0688	90,8938	200,7532	0.51494	0.03438	1.06843	0.55018	0.28330	0.145882	0.075120
29	29	7,20	34,639	6,6464	97,5402	249,4008	0.55260	0.03766	0.92300	0.51005	0.28180	0.135750	0.035071
30	30	10,79	43,489	8,3460	105,8862	469,2463	0.59988	0.04728	0.38049	0.34822	0.20890	0.125515	0.075059
31	31	12,02	72,418	11,8180	117,7042	870,4644	0.00083	0.00099	0.37904	0.20014	0.18801	0.137721	0.100883
32	32	12,52	57,4925	11,5948	129,2990	719,8061	0.73252	0.00509	0.35038	0.35436	0.10001	0.216587	0.169326
33	33	7,32	43,220	8,6968	137,9958	310,3704	0.78179	0.04927	0.45527	0.33430	0.21704	0.194804	0.159918
34	34 95	6,72	35,739	6,9064	144,9022	240,1001	0.82092	0.03913	0.18902	0.16166	0.13827	0.118260	0.101145
30	30	0,72	41,437	0,0034	150,9676	278,4500	0.80028	0.03430	0.17347	0.15482	0.13818	0.123326	0.110068
30 97	30	0,20	31,8000	0,0088	107,0004	197,9723	0.89200	0.03722	0.08538	0.08164	0.07806	0.074641	0.071372
01 90	20	0,24	20,983	11,2404	108,1818	100,0000	0.99020	0.00370	0.01468	0.01445	0.01422	0.013995	0.013774
20	30	0,10	12,010	1,3440	175 5709	8 6636	0.00421	0.02001	0.00360	0.00358	0.00356	0.003541	0.003522
40	39,7	0	0,870	0,9324	176,5122	0	1.00000	0.00528	0	0	0	0	0
									27.91089	9.05947	3.95689	2.11545	1.30720
									I _o	I1	I ₂	I ₃	I4

Dalla Tabella I, sostituiti ad I_0 , I_1 , I_2 , I_3 , I_4 i loro valori numerici $I_0 = 27,91089$; $I_1 = 9,05947$; $I_2 = 3,95690$; $I_3 = 2,11544$; $I_4 = 1,30720$,

abbiamo un'equazione di 3º in λ :

$$188972 \ \lambda^3 - 34583 \ \lambda^2 + 1337 \ \lambda - 9,52381 = 0 \ .$$

Mediante l'applicazione del metodo di Newton per successive approssimazioni otteniamo la prima radice corretta di λ ($_2\lambda_1 = 0,00920$): dividendo poi la [12] per la radice trovata si ha un'equazione di 2° in λ , risolvendo la quale abbianto i valori di $_2\lambda_2$ e $_2\lambda_3$:

 $_2\lambda_1 = 0,00920$, $_2\lambda_2 = 0,04134$, $_2\lambda_3 = 0,13247$.

Sostituendo nella [4] rispettivamente le tre radici trovate, si ricavano i periodi corrispondenti alla sessa uni-bi e tri-nodale:

$$T_1 = 6^{m} \, 09^{s}$$
 $T_2 = 2^{m} \, 54^{s}$ $T_3 = 1^{m} \, 37^{s}$. [13]

5. – Nodi. Per la determinazione dei nodi ci rifacciamo alla [6] limitandoci al caso m = 2.

Per m = 2,

$$u = A_0 z (1-z) \left(1 + \frac{A_1}{A_0} z + \frac{A_2}{A_0} z^2\right),$$

da cui derivando rispetto a z e ricordando che nei/nodi

$$\frac{du}{dz} = 0$$
 [14]

otteniamo

$$\frac{du}{dz} = 4 \frac{A_2}{A_0} z^3 + 3 \left(\frac{A_1}{A_0} - \frac{A_2}{A_0} \right) z^2 + 2 \left(1 - \frac{A_1}{A_0} \right) z - 1 = 0 .$$
 [15]

Per risolvere la [15], ci serviamo ancora una volta della [7], ricavando — da una qualunque coppia di equazioni del sistema — i _ivalori numerici dei rapporti $\frac{A_1}{A_0} e^{\frac{A_2}{A_0}}$;

$${A_1\over A_0}=-1,56949$$
 ${A_2\over A_0}=+0,85246$.

Sostituiti questi valori nella [15], otteniamo un'equazione di 3° in z, che risolveremo ricorrendo al metodo di Newton e rammentando la condizione ai limiti 0 < z < 1:

$$3,40984 z^3 - 7,26585 z^2 + 5,13898 z - 1 = 0.$$
 [16]

Risolvendo la [16], vediamo che l'unica radice possibile, delle tre ottenute, è

$$_{2}z_{1} = 0,31223$$
 ,

la quale rappresenta il valore dell'uninodo.

L'uninodo cade quindi fra le sezioni 21 e 22 a ca km 2,14 dall'estremo 0 del lago (v. Tab. I, Fig. 1).

Sostituendo nella [15] ai rapporti $\frac{A_1}{A_0}$ e $\frac{A_2}{A_0}$ i valori numerici ottenuti e servendoci del valore della radice $_2\lambda_2$, dalla [7] si ha:

$$16,25872 \, z^3 - 27,76689 \, z^2 + 12,38190 \, z - 1 = 0 \, .$$

Le radici utili, comprese cíoè fra 0 ed 1 sono:

$$_{2}z_{1} = 0,10320$$
, $_{2}z_{2} = 0,58381$

I due nodi, quindi, cadono rispettivamente fra le sezioni 10 e 11 ad una distanza di km 1,05 dall'estremo 0 del lago, e fra le sezioni 29 e 30 a circa 1 km dalla diga (Tab. 1 e Fig. 1).

6. - Ampiezze. Per determinare le ampiezze, la formula

$$\eta = -\frac{du}{dz}a$$
 (a = superficie totale del lago)

in particolare per il caso m = 2, si può scrivere:

Fig. 4

374

STUDIO PRELIMINARE SULLE OSCILLAZIONI LIBERE DEL LAGO DI SAURIS 375

Sezioni	⊿x 10²m	د. د	
0	0		1
1	i		
9	9		- 0,87150
3	3	-0.91840	0 79209
4	4	0.87962	0 71589
5	5	- 0.83618	0,11000
6	6	0.77915	0.48867
7	7	0.72741	0.37576
8	8	0.67509	0.26460
9	9	0.62624	0.16380
10	10	0.57328	0.05807
11	11	- 0.51583	- 0.05197
12	12	0.45910	+ 0.15518
13	13	-0.39637	+ 0.26254
14	14	-0.33874	- 0.35382
15	15	0,28168	-+ 0,43606
16	16	-0,22583	+ 0.50756
17	17	0,18292	+ 0,55513
18	18	0,13974	0,59562
19	19	0,09181	0,62997
20	20	0,04618	+ 0,65002
21	21	0,00306	0,65437
22	22		+ 0,64297
23	23	⊢ 0,06911	+ 0,61585
24	24	+ 0,10125	0,57035
25	25		0,50973
26	26	+ 0,15040	0,43694
27	27	+ 0,17004	+ 0,34217
28	28	+ 0,18524	+ 0,23325
29	29	+ 0,19643	+ 0,10667
30	30		0,05472
31	31	+ 0,20706	- 0,26929
32	32	+ 0,20591	0,43875
33	33	+ 0,20603	- 0,52217
34	34	+ 0,20857	- 0,55308
35	35	+ 0,21362	- 0,54943
36	36	+ 0,22301	- 0,50833
37	37	+ 0,25171	0,33369
38	38	+ 0,27049	- 0,20990
39	39	+ 0,27863	0,15540
40	39.7	1 0 98907	- 0 12627

Tabella II

Riprendiamo i valori $_2\lambda_1$ e $_2\lambda_2$, corrispondenti alla sessa uni e binodale, rispettivamente, la [19] diviene:

$$\zeta' = 3,40984 z^3 - 7,26585 z^2 + 5,13898 z - 1$$

$$\zeta'' = 16,25872 z^3 - 27,76689 z^4 + 12,38190 z - 1.$$
[20]

Servendoci ora dei valori numerici di z dati dalla Tabella I e sostituendoli nella [20], si ha l'andamento delle ampiezze per le due sesse considerate. La Fig. 4 dà una rappresentazione grafica di detto andamento, mentre i risultati del calcolo sono contenuti nella Tabella II.

LAGO DI SAURIS A QUOTA 939.

7. - 1a possibilità di eseguire registrazioni nei periodi di svaso di un lago artificiale, ci ha permesso di studiare il lago¦ di Sauris a q. 939 (quota di alleggerimento della diga), applicando lo stesso metodo usato per il lago ad invaso pieno, allo scopo di determinarne i periodi, i nodi e le ampiezze della sessa uni- e binodale.

Va premesso che la diminuzione del livello del bacino, e quindi della superficie libera del lago, lascia al di fuori dell'acqua tutta la zona compresa precedentemente fra le sezioni 0...13 (Fig. 1). La sezione 0 del lago a quota 939, coincide pertanto con la sezione 13 del lago a quota 980.

Il grafico in Fig. 5 rappresenta la curva normale, quello in Fig. 6 l'andamento delle sezioni verticali alla quota in esame.

I dati che caratterizzano la forma del lago sono contenuti nella Tabella III, dalla quale si traggono anche i valori numerici per l'applicazione del metodo di Hidaka:

$$\begin{split} I_0 &= 80,50657 \qquad I_1 = 28,62169 \qquad I_2 = 13,60640 \qquad I_3 = 7,81607 \\ I_4 &= -5,12866 \ , \end{split}$$

valori necessari al calcolo dei periodi, dei nodi e delle ampiezze.

8. – Periodi. Trascurando il caso m = 0, per m = 1 l'equazione di 2º grado in λ risulta:

$$276,203456 \lambda^2 - 5,729090 \lambda + 0,016667 = 0 ,$$

le cui radici sono;

$$_{1}\lambda_{1} = 0,00350$$
 $_{1}\lambda_{2} = 0,01724$. [22]

Tabella III

Sezioni	⊿x 10²m	<i>b(x)</i> 10 ² m	$S(x) \ 10^3 { m m}^2$	v(x) 10 ⁴ m ²	$V(x)$ $10^4 \mathrm{m}^2$	$\sigma(x) = \\ = S(x) \cdot b(x) \\ 10^5 \mathrm{m}^3$	$z = rac{V}{a}$	Δz	$M = {z^2(1-z)^2 \over \sigma(z)} \varDelta z \ 10^{-10} { m m}^{-3}$	Mz 10 ⁻¹⁰ m ⁻³	Mz ² 10 ⁻¹⁰ m ³	Mz ³ 10 ⁻¹⁰ m ⁻³	Mz ⁴ 10 ⁻¹⁰ m ⁻³
0 - 13	0	0	0	0	0	0	0	0	0	0	0	0	0
0 - 10	0		0 4905	0.760	0.760	0.497	0.00009	0.00889	0.14465	0.00128	0.00001	0	0
1 = 14	1	1,11	0,4385	0,700	0,700	1 9495	0,00882	0,00332	0,14405	0.01629	0,00001	0.00001	0
2 = 15	2	1,50	0,833	1,320	2,080	2,0925	0,02413 0.04377	0,01955	1 65004	0.07222	0,000317	0.00014	0.00001
3 = 16	3	1,50	1,395	1,690	5,770	2,0920	0,04377	0,01502	2 4 2 0 8 0	0,07222	0,00317	0,00014	0,00001
4 = 17	4	1,68	1,467	1,540	5,310	4 574	0,00105	0,01788	2,42989	0,14980	0,00323	0,00037	0,00005
5 = 18	5	2,20	2,079	1,970	7,280	4,074	0,08492	0,02287	2,98911	0,25204	0,02134	0,00130	0,00013
6 = 19	6	2,64	3,537	2,320	9,000	9,000	0,11140	0,02094	2,00100	0,31333	0,03311	0,00392	0,00044
7 = 20	7	2,83	4,986	2,720	12,320	14,110	0,14304	0,03158	3,30327	0,48108	0,00881	0,00384	0,00141
8 = 21	8	3,10	6,366	2,840	15,160	19,755	0,17001	0,03297	3,51400	0,01800	0,10888	0,01310	0,00937
9 = 22	9	3,14	7,169	3,181	18,341	22,311	0,21294	0,03093	4,00880	1 60220	0,20897	0,04400	0,00341
10 = 23	10	3,11	6,476	3,172	21,513	20,140	0,24977	0,03083	0,41947	1,00339	0,40045	0,10002	0,02498
11 = 24	11	2,89	7,303	2,841	24,354	21,106	0,28275	0,03298	0,42780	1,81740	0,51590	0,14001	0,04109
12 = 25	12	2,92	6,708	2,750	27,104	19,587	0,31468	0,03193	7,58337	2,38033	0,75091	0,23030	0,07430
13 = 26	13	3,66	9,242	3,330	30,434	33,826	0,35334	0,03866	5,96524	2,10776	0,74476	0,26315	0,09298
14 = 27	14	3,40	11,562	3,481	33,915	39,311	0,39375	0,04041	5,85541	2,30557	0,90782	0,35746	0,14075
15 = 28	15	4,00	13,479	4,180	38,095	53,916	0,44228	0,04853	5,47418	2,42112	1,07080	0,47359	0,20946
16 = 29	16	3,90	12,825	3,905	42,000	50,0175	0,48762	0,04534	5,65843	2,75916	1,34540	0,65604	0,31990
17 = 30	17	4,33	14,654	4,129	46,129	63,452	0,53556	0,04794	4,67415	2,50329	1,34064	0,71799	0,38452
18 = 31	18	9,86	27,981	7,062	53,191	275,893	0,61755	0,08199	1,65620	1,02279	0,63162	0,39006	0,24088
19 = 32	19	6,20	23,326	7,979	61,170	144,621	0,71018	0,09263	2,71406	1,92747	1,36886	0,97214	0,69040
20 = 33	20	4,78	17,893	5,520	66,690	85,5285	0,77427	0,06409	2,28801	1,77154	1,37164	1,06202	0,82228
21 = 34	21	4,10	12,791	4,476	71,166	52,443	0,82624	0,05197	2,04242	1,68753	1,39430	1,15202	0,95185
22 = 35	22	4,86	17,324	4,646	75,812	84,195	0,88018	0,05394	0,71201	0,62670	0,55161	0,48551	0,42734
23 = 36	23	5,32	8,459	5,163	80,975	45,002	0,94012	0,05994	0,41958	0,39446	0,37084	0,34863	0,32776
24 = 37	24	1,40	5,983	2,353	83,328	8,376	0,96744	0,02732	0,32238	0,31188	0,30173	0,29190	0,28240
25 = 38	25	1,14	4,755	1,481	84,809	5,421	0,98463	0,01719	0,07220	0,07109	0,07000	0,06892	0,06786
26 = 39	26	0,68	2,724	0,825	85,634	1,852	0,99421	0,00958	0,01533	0,01524	0,01515	0,01507	0,01497
27 = 40	26,70	0	0	0,500	86,134	0	1	0,00579	0	0	0	0	0
									80,50657	28,62169	13,60640	7,81607	5,12866
									Io	I ₁	I ₂	I ₃	I.
	•												

-

Sostituendo nella [4], i valori della [22], si hanno i periodi corrispondenti rispettivamente alla sessa uni- e bi-nodale:

$$T_1 = 4^{m}52^{s}$$
 $T_2 = 2^{m}12^{s}$. [23]

Per m = 2, si ha la seguente equazione di 3º grado in λ :

$$67,073756 \ \lambda^3 - 3,212071 \ \lambda^2 + 0,038071 \ \lambda - 0,0000952381 = 0 \ ,$$

risolvendo la quale si hanno le tre radici:

$$_{2}\lambda_{1} = 0,003416$$
. $_{2}\lambda_{2} = 0,013361$, $_{2}\lambda_{3} = 0,031111$. [24]

Introdotti i valori della [24] nella [4], si ottengono i valori dei periodi per la sessa uni- bi- e trinodale del lago:

$$T_1 = 4^m \, 56^s$$
 (uninodale)
 $T_2 = 2^m \, 29^s$ (binodale) [25]
 $T_3 = 1^m \, 38^s$ (trinodale).

9. – Nodi. Nel caso m = 2, sostituendo nell'equazione dei nodi [15] il valore $_2\lambda_1 = 0.003416$, si ha un'equazione di 3º grado in z:

$$3,02960 \ z^3 - 6,57654 \ z^2 + 4.86956 \ z - 1 = 0 \ .$$

L'unica radice possibile (0 < z < 1) è quella minore dell'unità:

$$_{2}z_{1} = 0.33021$$
 . [27]

che rappresenta il valore corrispondente all'uninodo; questo viene dunque a trovarsi fra le sezioni 25-26 e dista 1,24 km circa dall'estremo O del lago (v. Fig. 1, Tabella III).

Sostituendo poi nella [15] la radice $_{2}\lambda_{2} = 0.013361$, si ha:

$$14,11492 z^3 - 24,92157 z^2 - 11,55692 - 1 = 0, \qquad [28]$$

le cui soluzioni valide sono:

$$_{2}z_{1} = 0.11175$$
 $_{2}z_{2} = 0.60362$. [29]

I due binodi cadono, pertanto, fra le sezioni 19-20 e 30-31 e distano rispettivamente circa 0,6 km dall'estremo 0 del lago, e circa 0,9 km dalla diga (v. Fig. 1, Tabella III).

378

10. – Ampiezze. Per m = 2, le equazioni delle ampiezze relative alle oscillazioni dell'uninodale e della binodale sono [6], [7]:

$$\zeta' = 3,02960 \ z^3 - 6,57654 \ z^2 + 4,86956 \ z - 1$$

 $\zeta'' = 14,11492 \ z^3 - 24,92157 \ z^2 + 11,55691 \ z - 1$.

Sostituendo nella [30] i valori numerici di z dati dalla Tab. III, si ottengono le ampiezze delle oscillazioni in corrispondenza delle varie

Sezioni	Δx 10 ² m	ζ'	ζ''
0 = 13	0	1	1
1 = 14	1	0,95758	0.90005
2 = 15	2	0,88617	0,73515
3 = 16	3	- 0,79925	0,54087
4 = 17	4	- 0,72408	- 0,37897
5 ≟ 18	5	- 0,63356	0,19268
6 == 19	6	- 0,53474	0,00192
7 = 20	7	0,42914	+ 0,18456
8 = 21	8	- 0,33014	+ 0,33899
9 = 22	9	- 0,23202	+ 0,46720
10 23	10	0,14677	+ 0,55187
11 = 24	11	0,08042	+ 0,59438
12 = 25	12	0,02446	+ 0,60882
13 = 26	13	- 0,03317	+ 0,59467
14 = 27	14	+ 0,08269	+ 0,54842
15 = 28	15	+ 0,12936	+ 0,45756
16 = 29	16	+ 0,16204	+ 0,34627
17 = 30	17	+ 0,18704	+ 0,20961
18 = 31	18	+ 0,21264	0,04301
19 = 32	19	+ 0,22649	0,30613
20 = 33	i 20	+ 0,23403	0,44033
21 = 34	21	+ 0,24267	- 0,50290
22 = 35	22	+ 0,25696	- 0,51025
23 = 38	23	+ 0,28275	— 0,43331
24 = 37	24	+ 0,29897	- 0,36042
25 = 38	25	+ 0,31081	- 0,30807
26 == 39	26	+ 0,31807	0,27256
27~=~40	26,7	+ 0,32262	0,24973
	l		

Tabella IV

sezioni del lago; i valori ottenuti — riportati nella Tabella IV — ei banno permesso di costruire graficamente le curve delle ampiezze (Fig. 7).

CONCLUSIONI.

In questa prima parte del lavoro sulle oscillazioni libere di un lago artificiale, quale è il lago di Sauris, ci siamo limitati a determinare i periodi della sessa uni e bi-nodale nei casi m = 1 ed m = 2, la posizione dei nodi e l'andamento delle ampiezze, alle (quote 980 (invaso pieno) e 939 (quota alleggerimento diga).

Dai valori numerici si sono potuti ricavare i grafici relativi.

La seconda parte, che è in fase di compimento, sarà dedicata al confronto fra i dati ottenuti per via teorica e quelli ottenuti per via sperimentale.

1

Ringraziamo il Prof. P. Caloi per l'assistenza e per i preziosi consigli fornitici, i quali ci hanno permesso di portare a termine questa prima parte dello studio del lago di Sauris.

BIBLIOGRAFIA

- (1) CHRYSTAL G., On the hydrodynamical Theory of Sciences. Transactions of the Royal Society of Edinburg. XLI (1905), XLV (1906), XLVI (1907-8).
- (2) HIDAKA K., Application of Ritz's Variation to the Determination of Seiches in a Lake. The Memoirs of the Imperial Marine Observatory, VI, 2, (1960).
- (3) CALOI P., Le sesse del Lago di Garda. Parte I, « Annali di Geofisica », I, 1, (1948).
- (4) CALOI P., Le sesse del Lago di Garda. Parte II, «Annali di Geofisica», I, 2, (1948).