A computation program for numerical filtering

M. Attolini (${ }^{*}$) - L. Dall'Olio (**) - V. Gufrrieri (**) - P. Randi (*)

Ricevuto il 9 Aprile 1968

Riassunto. - Viene deserito un programma, serito in linguaggio FORTRAN IV, per il filtraggio mumerico di serie temporali. Tale programma e stato provato con un calcolatore del tipo IBM 70947040 DOS

Loperazione di filtraggio mumerico permette di estrare o sopprimere, in una serie temporale, onde di frequenza prefissate indipendentemente da variazioni di fase ed ampiezza con cui esse si possono presentare.

Summary. -- A computation program, writen in FORTRAN IS language, for mumerical filtering of time series is described. It was fested with an IBM $7094 / 7040 \mathrm{DCS}$ computer.

The mumerical filtering operation allows to extract or suppress in a time series prefixed frequency waves indipendently by the change of phases and wideness with which they can appear.

Method.

It has been described, in a previous paper ('), a filtering operation of time series on equispaced data, corresponding to a prefixed response.

In the following paper is described a computation program based on the method developed in (').

A numerical filtering operation on an equispaced data serics $n_{i}(i=1,2, \ldots$.$) is obtained by computing a new series:$

$$
\begin{equation*}
n^{\prime}{ }_{k}=\sum_{-r}^{s} a_{j} n_{k+j}, \quad k \geqslant r+1, \tag{1}
\end{equation*}
$$

(*) Istituto di Fisiea Università di Bologna. Gruppo Italiano di Fisica Cosmica. Consiglio Nazionale delle Ricerche.
(**) Centro di Calcolo di Bologna. Comitato Nazionale per l'Energia * Nucleare.
where the $(r+s+1)$ quantities as are called coefficients or weights of the nomerical filter, as described in (${ }^{1}$). The series $\mu^{\prime}{ }_{k}$ contains the allowed frequencies computed by means of the used filter.

For obtaining a new series $\|^{\prime \prime} k$ which does not contain the same frequency hands, one must reverse the coefficients sign of the filter, except the central one which is replaced with the difierence between number 1 and the central coefficient, and the so obtained filter must he used on the original data series.

The two operations, numerical filtering and the diflerence from the original series, are equivalent to the resulting series $n^{\prime \prime}{ }_{k}=n_{k}-n_{k}{ }_{k}$.

The choice of the cocficients of the filter is stricly connected to the knowledge of the physical problem and it depends on the restrictions imposed on the frequency band to search and also on the independence of the results.

D FACRIPTION OF THE PROGRAM.

The program has been carried out at "Centro di Calcolo del (NEN" in Bologna using the FORTRAN IV language, version 13 , under the IBSYS $7094 / 7040$ DOOS monitor control.

The data set that can be elaborated is practically unlimited; the maximum allowed set of coeflicients of the filter is 99 . This data set is extremely sufficient for many problems but it can also be increased by modifyng the appropriate statements.

Sometimes it may be necessary to compute series of filtering operations on the same data, and, in this case, it will be sufficient to follows the suggestions described after for obtaining series of computations at a lowest time.

It has also foreseen the elaboration of several data series with the same coefficients or with different coefficients for gaining the setup time, in the computer, of the running progrann.

Besides, it has been considered the necessity of groupping the initial of filtered series data before a numerical filtering: it, allows to reduce that random noise that should give no information about the testing series.

The problem to treat will suggest, time after time, the right choice for groupping.

The problem consists in keeping the time position of the original data, naturally providing that the number of the coefficients $(r+s+1)$
will be odd. The computed coefficient n^{\prime} s is set in the middle of the interval only if the condition $r=s$ is satisfied. The conditions $r=s$ must be satisfied in order to use this program correctly.

A further expedient, to avoid orer-excess of figures for subsequent elaborations and with no damage to the clearness of the problem and to the amount of the gainable information, consists in selecting the significant figures, in the results of every operations, for the considered problem.

Besides, this expedient allows to rescale the results as desired so as to be seen in an appropriate scale.

Further expedients have been described below.

Order of data cards deck set-up.

All cards must be included in the order shown below.
[A] $=$ time series data parameter card.
[B] $=$ variable format card for time series input data.
$[\mathrm{C}]=$ time series data.
$[\mathrm{D}]=\mathrm{END}$ punched in col. 1-3.
[E$]=$ comment card.
[F] = parameter card for a filter operation.
[G] = variable format card for output data to be put on logical tape NTPO.
$[\mathrm{II}]=$ variable format card for output data to be printed.
[I] $=$ filter coefficients.

Repeat [E] through [I] as desired.
$[\mathrm{J}]=$ blank card.
[K] = blank card.

Repeat [A] through [K] as desired.
$[L]=$ blank card (to notify the program that the entire jobs is completed and control must be returned to the Monitor).

Examplje of data deck set-dp.

1. Repeated as desired (see page 3)
2. Repeated as desired (see page 3)

Card preparation.
Card

columns | Corre- |
| :---: |
| sponding |
| variable |\quad IGSCRIPTION

[A] card		Format (4I2)
1-2	NDS	- number of time series data contained in each input card.
3-4	NTPI	- logical tape number of input (5 if input is from punched cards).
5-6	KE	- number of decimal figures if conversion is used (*)
7-8	IT	- $=0$ if input conversion is required (*)
		$\neq 1$ " \quad " not required (*).

(*) One must use conversion when time series input data are punched as integer constants having the sign (hole zone) over the less significant figure of the number. In this case each field of width w, contaning the number, is considered like it were formed of two sequential fields: the Ist of integer-type of whidth $x-1$, the 2nd of alphameric-type of width 1 . i.e.: if number 12.125 is punched according to the format specification f: 7.3 no conversion is required, being a Fortran number (in this case $I T=0$). The character string $1212 N$, (where N means holes 5 and 11 , minus sign overpunched) columns of the card punched in a field of width $w=5$ for having the same value as the above one, must be read according to the format specification ($\mathrm{It}, \mathrm{A} 1$) and must be $K E=3$ (decimal figures of the number) and $I T \neq 0$.

Card	Corre- columns sponding variable

[F]	(cont.)	
7-8	NR	- number of input data to be groupped before executing filter operation.
$9-10$	NTI'O	- logical tape number on which (if MPER $\neq 0$) output data are put (i.e. for punching off-line).
11-12	MSTA	- 1 to print output 0 not to print output
13-14	MPER	- 1 to put output on logical tape NTPO 0 not to put output on logical tape NTPO
15-16	IC	-1 if output conversion for recording on logical tape NTPO is required 0 if output conversion is not required.
17-18	KA 2	- number of figures for output data.
19-32	A1	- rescale factor.

The rescale factor (Al) allows the program the rescaling of the obtained results. KA2 allows the user to fix the number of output figures of the rescaled results.
i.e.: if the filter operation has given the number 23456 and user desires to output only the number 34 (2nd and 3 rd figures of that result) he must fix $K A 2=2$ and $A 1=0.01$.
[G] card
1-80 FR2

Format $(13 A 6,42)$

- format of output data to be put on logical tape NTPO (see [H] card) if these output are not desired (MPER $=0$ in $[F]$ card) this card can also be a blank card.

If MPER $\neq 0$ the format specified must be like (I3, specifications for output data). Columns 1-3 of output records to be put on logical tape NTPO contain a card sequence number. «specification for output data» must be like, Iw, A1, where $\mathrm{w}=\mathrm{K} .2-1$ if $\mathrm{IC}=1$, or like..... $\mathrm{I} w \ldots$. where $w=K A \geq$ if $\mathrm{IC}=0$ for each output data.
[H] card
Format $(13 A 6, A 2)$

- format of output data to be printed. If this output is not desired (MSTA $=0$ in [H] card) this card can also be a blank card.

DESCIRIPTION

If MSTA $\neq 0$ the format specified must be like (I5, specifications for output data).

The 1st 5 characters of each printing line are the line sequence number. "specifications for output data " must be like.... I Iw, where w-. K. 12 for each output data.
[I] aard Format (8X,12F6.5)
9-80 COEF - filter coefficients. (These must be punched in the following order: central coefficient and those at its right).
[J], [K] and [L] must be blank cards.
Repeat [E] through [I] cards to do other numerical filter operation or using initial data (NFEL $=1$) or using output data obtained from the initial ones (see [C] card).

Comment.

In the following pages it has been reproduced the list of the described program. As an example of usage of the results it has been also reproduces a plotter (see Fig. 1) obtained handling the 7094/7040 DCS outputs by an additional program running on an IBM 1620 computer.

The authors have mainly contributed each in their activity field.

Acknowledgments.

Prof. M. Galli gave the opportunity of very interesting discussion. Prof. E. Clementel, Dr. A. Chiarini, Dr. C. Lolli made easy the IBM 7094/7040 DCS computers utilisation at the "Centro di Calcolo del CNEN" of Bologna (SHARE Installation BI).

| Required routines: | RF 5 K 01 | SDA | n. 3061 |
| ---: | :---: | :---: | :---: | :---: |
| and | RF 5 K 03 | SDA | n. 3057 |

JANUARY 1966

Figure 1 - Caption: A) Original Data; B) Filtered Data; C) Filtered Data hy reversed b) filter coefficients.

```
            DIMEVSION FCOM(14),FR1(14),FR2(14),FR3(14),EL(5000),FIL(5000),
            1KFIL( 5000).NREC(100),CDEF(100)
            DIMENSION KA(40),KB(40)
            EQUIVALENCE(FIL,KFIL)
            DATA KEND/3HEND/.KIFT/1073741824/
    530 READ(5,203)NDS,NTPI,KE,IY
        IF(NTPI.EQ.O.OR.NDS.EQ.D) GO TO 1530
    203 FORMAT(9I2,E14.6)
        KE=10**KE
        REWIND 3
        READ(5,202)(FR1(K),K=1.14)
    202 FORMAT(13AG.A2)
C
C
        END FILE 3
        NFILE=1
        VTOT=0
        IFIIT.LE.OIGO TO 500
    503 READ(NTPI,FRI)KFIN,(KA(J),KB(J),J=1,NDS)
        IFIKFIN.EG.KENDIGO TO 50I
        DO 502 J=1.NDS
        KB(1)=MOD(KB(J)/KIFT,16)
    502 EL(J)=ISIGN(KA(J):10+IABS(MOD(KB(1),10)),KB(1))/KE
    NTOT = NTOT+1
        WRITE(3)NTOT,(EL(J).J=1.NDS)
        GOTO 503
C
    500 READ(NTPI,FRI)KFIN,(EL(J),J=1,NDS)
        IF(KFIN.EQ.KENDIGO TO 501
        NTOT = NTOT+1
        WRITE(3)NTOT,(EL(J),J-1,NDS)
        GO TO 500
C
    501 END FILE 3
        NREC(NFILE)=NTOTMNDS
    536 READ(5,200)(FCOM(K),K=1,14)
    200 FORMAT(13AG,A2)
        WRITE(6,201)(FCOM(K),K=1,14)
    201 FORMAT(IH1,61/1,28X,13A6,A2//28X,80(1H-)1
C
C
    506 READ(5,203) NFEL,N,NDP,NR,NTPO,MSTA,MPER,IC,KA2,A1
        IF(NFEL.EQ.O.OR.NFEL.GT.NFILE.OR,N.EQ.O.OR.NREC(NFEL).EQ.OIGOT 0530
        READ(5,202)(FR2(K),K=1,14),(FR3(K),K=1,14)
        REWIND 4
        MFIL=NFILE-NFEL+2
        CALL BAKFIL{3.MFIL}
C
C
        MI=N/2
        M2=M1+1
        READ(5,337)(COEF(I),I=M2,N)
    337 FORMATI8X, 12F6.5)
        DO 50 I=1,M1
        M3=N-I+I
        EL(I)=0.
    50 COEF(I)=COEF(M3)
        KA2=10**KA2
```

```
            NN=NTOT-NVR+1
            DO 8 J=1,NVR
            EL(J)=EL(NN)
        8 \mp@code { N N = N N + 1 }
            I2=NvR
C
C
            NSP=K3/NDP.
            GO TO 513
        17 NSP=1
            IF(K3.EQ.NDP) GO TO 513
            K4=K 3+1
            DO 514 MM=K4,NDP
    514 FIL(MM)=0.
    513 DO 15 Jl=1,K3.NDP
            J2= J1 +NDP-1
            WRITE(4) (FIL(J).J=J1.J2)
    505 IF((MSTA+MPER).LE.O) GO TO 301
            DO 16 MJ=Jl,J2
            IFIFIL(MJ).NE.O.) GO TO 416
            KFIL(MJ)=0
            GO TO 16
    416 KFIL(MJ)=MOD(IFIX(FIL(MJ)EA1+SIGN(.5.FIL(MJ)I),KA2)
    16 CONTINUE
            IFIMSTA.GT.O)WRITE(6,FR3)JNP,(KFIL(J),J=J!,J2).
            IF(MPER.LT.1) GO TO 301
            IF(IC.EQ.I) GO TO 613
            HRITE(8,FR2)JNP.(KFIL(J).J=\l.J2)
            GO TO 301
613 00 300 J=J1,J2
            JJ=J-J l +1
            KAlJJ)=IABS(KFIL(J)/10)
    300 KB(JJ)=MOD(KFIL(J), 10)EKIFT
            WRITE(NTP0,FR2) JNP,(KA(J),KB(J),J= 1,JJ)
    301 JNP=JNP+1
    15 CONTINUE
            GO TO(511,110),KKK
    511 NRE=NRE-NTOT+IG-1
            IG=NVR+I
            IFINRE.LE.O IGO TO 104
            GO TO 11
    104 IFINVR.LT.NRENIGJ TO 110
            KKK=2
            GO TO 105
    110 MFIL=MFIL-1
            CALL SKPFILI3,MFILI
            NFILE=NFILE+1
            REWIND }
C
C
    JNP=JNP-1
    INP=0
    IFIJNP.LT.NDSIGD TO 507
    Kl=JNP/NOS
    OO 508 MM=1,<1
    J l=1
    J2=NDP
    DO 509 MJ=1,NDS
```

```
            JNP=1
            NVR=0
            N1=1
            KKK=1
            IFINR.GT.lIGO TO 13
            NR=1
            GO TO 111
        13 N1=2
            Ml=Ml=NR
            DO 600 I=M2.MI
    600 EL(I)=0.
    M2=M1+1
    111 IG=M2
c
L
            Kl=4800
            NRE=NREC(NFEL)
        11 IF(KI.GT.NREIKl=NRE
            Kl=KI+IG-1
            DO l Il=IG.KI.NDS
            I2=II+NDS-1
            1 READ(3)NUM.(EL(J),J=11.I2)
    105 NTOT=I2
            HRITE(6,767)(EL(J),J=1,NTOT)
    767 FORMAT(24F5.0)
            NRAG=NTOT/NR
            K3=NRAG-N+1
            IF(KKK.EQ.2)GO TO 18
            KRES=MOD(K3.NDP)
            K3=K3-KRES
        18 GO TO (701.702).N1
C
C
    702 NR1=1
            NR2=NR
            NRAG=K3+N-1
            FRAG=NR
            DO 20 KRA=1.NRAG
            EL(KRA)=EL(NR 1)
            NRl=NRl+l
            DO 21 IRA=NRI.NR2
            21EL(KRA)=EL(KRA)+EL(IRA)
            EL(KRA)=EL(KRA)/FRAG
            NR1=NR2+1
            20 NR2=NR2+NR
c
C
    701 DO 12 KK=1.K3
            FIL(KK)=EL(KK)*COEF(1)
            K2=KK
            DO 14 MK=2.N
            K2=K2+1
    14 FIL(KK)=FIL(KK)+EL(KZ)*COEF(MK)
    12 CONTINUE
C
C
    IF(KKK.EQ.2) GO TO 17
    NVR=NTOT-K3*NR
```

```
        READ(4)(FIL(J),J=J1,J2)
        J]=J2+1
        509 J2=J2+NDP
        Jl=1
        J2=NDS
        DO 510 MJ=1. NDP
        INP=INP+1
        WRITE(3)INP.(FILIJ),J=J1.J2)
        Jl=J2+1
    510 J2=J2+NDS
    508 CONTINUE
    507 KM=MOD(JNP,NDS)
        IF(KM.EQ.O)GO TO 561
        J l=1
        J2 = NOP
        DO 512 MJ=1,KM
        READ(4)(FIL(J),J=J1,J2)
        J1=J2+1
    512 J2=J2+NDP
        IF(KKK.NE. 2)K 3=NDP
        NTRA=KM*NDP-NDP+K3
        KM=NDS-MOD(NTRA,NDS)
        IF(KM.EQ.O)GO TO 515
        DO 516 MJ=1.KM
        MM=NTRA+MJ
    516 FIL(MM)=0.
    515 KM=NTRA/NDS+1
        IF(MOD(NTRA,NDS).EQ.O) KM=KM-1
        Jl=1
        J2=NDS
        DO 517 MJ=1.<M
        INP = INP + I
        WRITE(3)INP,(FIL(J),J=J1,J2)
        J l= J 2 +1
    517 J2= J2+NDS
    561 NTOT=INP
    GO TO 501
C
C
    1530 STOP
    END
```

Timing:

1) to test 960 input data of a time series with 2 numerical filtering each of 69 coefficients groupping initial data 2 by 2 , it takes $1^{\prime} 12^{\prime \prime}$ (including the monitor time and the program compilation, therefore the time of computation is only $20^{\prime \prime}$).
2) to test 3456 input data of a time series with 3 numerical filtering of $9,69,35$ coefficients respectively groupping 2 by 2 on crossing from 1° to 2° it takes $1^{\prime} 43^{\prime \prime}$ (ihcluding the monitor time and the program compilation: therefore the time of computation is only $39^{\prime \prime}$).

REFERENCES

${ }^{(1)}$ Gable M., Randi P., On the Design of the Optimum. Numerical Filler with a Prefixed Response. "Ammali di Geofisica", XX, 4, (1967).

