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RIASSUNTO. — Le radici maggiori dell 'unità dell 'equazione di Rayleigh 
applicate ad un semispazio elastico contribuiscono alla soluzione solo per 
valori abbastanza grandi del coefficiente di Poisson (a > 0.309). Una delle 
radici corrisponde ai " leaking modes " i quali hanno velocità di fase 
minore della velocità delle onde longitudinali. Un'analoga onda con diversa 
dispersione può esistere nel caso in cui un semispazio elastico è coperto da 
uno s t ra to caratterizzato da velocità a e fi minori di quelle del semispazio. 
Lo spessore dello s trato non deve essere troppo piccolo in corrispondenza 
della lunghezza d 'onda. 

SUMMARY. —• The extra roots of the Rayleigh equation for an elastic 
halfspace contr ibute to the solution only for large enough values of the 
Poisson coefficient (a > 0.309). One of them corresponds to leaking modes 
with the phase velocity less t han the velocity of the longitudinal wave. 
A similar wave with distinct dispersion may exists in the case where an 
elastic halfspace is covered by a thin layer with lower velocities of elastic 
waves. The thickness of a layer should be not too small in comparison 
with the wave length. 

I N T R O D U C T I O N . 

Since the basic paper of Rayleigh (L) on surface waves in 
an elastic halfspace was published, a significant number of papers 
have considered the physical meaning of extra roots of the Rayleigh 
equation. 

(*) Soviet Geophysical Committee, Moscow (USSR). 
(**) Ist i tuto di Fisica, Is t i tuto di Geodesia, Bologna (Italia). 
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Recently we have the papers of Caloi (2), (3), (*), Caloi and 
Romualdi (5) which link at least one of these roots to the Somigliana 
waves and give some physical arguments and experimental data for 
their existence. 

Iii this review we want to reconsider this problem, basing our 
arguments on some results of Ewing, Jardetzky and Press (6). 
Phinney (7), Gilbert and Laster (8), Gilbert (9). 

1. - Plane wares in a halfspace. 

Let us consider an elastic homogeneous halfspace and let a and 

/? be the velocities of P and S waves y = | J and a be the Poisson's 

ratio. 
The fundamental Ravleigh equation for unknown phase velocity c 

of surface wave running along a free surface is 

2 (0 \2 
l/2 (c \2 
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Like Rayleigh we assume tha t the signs of radicals are positive, then 
the equation has oidy one positive real root ci (0 <c i </?), which is of 
course the Rayleigh root. 

If the signs of radicals are not specified two additional (extra) 
roots arise (C2 and C3); if a > ac (etc = 0.263082) both roots are complex 
and conjugated; moreover if a > as (as = 0.309) then the real par t 
of 02 and C3 is less than a, i.e. with usual notations Be 02,3 < a; finally 
if (Jc < a < as then lie 02,3 > a. 

For 0 < (ic both roots are real and C3 > C2 > a. These real roots 
are linked to waves which Caloi called Somigliana waves. Fig. 1 
gives the roots versus a. 

I t was shown by F u (10) tha t the phase velocities C2 and C3 
correspond to such angles of emergence e2 and e3 of the plane waves 
at the free boundary for which reflected plane waves of the same 
kind do not exist; this is expressed by the following formulae 





Fig. 2 - Dependence of angles and i"s
2,n on a. 
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The dependence of angles of emergence e''2,3 and es°,3 on tr < ac is 
shown in Fig. 2. 

I t is easy to compute the components of the displacement vector 
at free surface as a function of the angle of emergence of plane P 
or S wave of constant amplitude. Such functions for a = 0,25 are 
shown in Fig. 3. Tt is seen tha t no peculiarities exist for angles of 
emergence e2 and e3 in both cases; the more complicated behaviour of 
these functions for S incident wave is due to the existence of the cri-
tical angle ec = arcos in this case (u). Therefore plane wave 

theory gives no clew for understanding a particular role of these 
extra roots of the Rayleigli equation. 

2. - Lamb's problem. 

Following Gilbert (9) we write the solution of nonstationary 
two-dimensional Lamb's problem 

f = Re dick Jo (kr) | [3] 1 F {a>, k) 

where r is horizontal distance from the source to the receiver, z is 
the depth of the receiver, k is the wave number, to = ck is the circular 
frequency; / (to,k,z) depends on the source frequency spectrum, on the 
position and model (vertical or horizontal) of the receiver. F (to, k) is 
the Eayleigh function, J0(kr) is the Bessel function. 

The estimate of the inner integral in [3] is usually made by con-
tour integral method. Due the presence of the radicals 

1 ' CO2 , 1 „ CO2 

V = / 1 — — - and V = / 1 
I a 2 k 2 | ' k2 

in / and F both these function are multivalued. To eliminate the 
multivalue nature of the function branch-cuts are introduced on 
the plane of the complex variable co. 

Usually they are taken along the line Rev = 0, Re v' = 0. The 
Bieman surface is formed by four sheets identified by the signs of 
Re v and Re v'. To close the contour the sheet with Rev > 0, Re v' > 0 
is used. I t is noted as ( + , + ) sheet. We are interested only in the 
fourth quadrant of the to plane. For real positive k there is only one 
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simple pole of the integrand related to the Bayleigli root of tlie equat-
ion F(o>,k) = 0 namely co = lee 1. 

The contribution of the body waves is described by the integral 
along the branch lines (Fig. 4a). 
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Fig. 4a - Branch points, branch cuts, initial contour 
of integration 011 complex plane. 

This method of describing the contribution of the body waves is 
of course not unique. If we cut the branches vertically down from 
branch points co ka, co — kfi and we keep the upper par t of the plane 
011 the same sheet as before, i t is possible to uncover previously inac-
cessible par t s of other sheets with Rev > 0, Rev' < 0 ( + j —) and 
Rev < 0, Rev' < 0 (—, —). 

Then our solution may be presented as a contribution to the 
integrals along the new branch cuts describing main body waves (be-
cause of the lca and kp poles) plus the contribution of the Rayleigh 
pole plus the contribution of the poles from the uncovered par t s of 
the (-{-, —) and the (—, —) sheets if such poles exist (Fig. 4b). 

At our case the poles at the uncovered par t of (—, —) sheet are 
absent . For a < ac the poles co = kc2 and co = kcs related to the extra 
roots of [1] are si tuated to the right of co = ka on inacessible par t 
of ( + , —) sheet and do not contribute to our solution. The same si-
tuat ion exists for complex poles Rem2,3 ± ilma)2,3 when a < 0,309; 
only for a > 0,309 there is a complex pole Recoil — iImco2,a a t the 
accessible pa r t of ( + , •—) sheet which contributes to the solution as 
so called P pulse or PL wave (e.g. Phinney (7), Gilbert and Laster (8), 
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Manuchov, Agurtsoff (13). This wave is a weak disturbance behind P 
wave. I t becomes more and more distinct as a increases. 

As extra roots do not contribute to tlie solution for a < 0.309. 
Somigliana waves do not exist in this case. 

Fig. 4b - Branch points, branch cuts, used contour 
of integration on complex plane. 

3. - Layered half space. 

Let us consider the effect of thin elastic layer overlaying the 
same elastic half space with a < ac. Such a layer as Caloi (') mentioned 
is necessary to generate the Somigliana waves. The thickness of a 
layer is H and its congressional and shear velocities are a0 and fio 
respectively (/?» < /3). The formula of displacement looks like [3] 
but the function / and F shoidd be replaced by the new functions 
F* (co, h, z) and F* (co, 7c) which tend to / and F as E — > 0. 

Let us fix 1c > 0. Then for infinitely small IcE we have the same 
situation as before. As TI increases the poles of F*(OJ,IC) shift f rom 
their positions for H = 0. The Eayleigh pole keeps on the accessible 
part of ( + , + ) sheet moving from u> = Jcci to co = kc0 (here e0 is ve-
locity of Eayleigh wave at the halfspace with velocities of body waves 
a0 and fi„ along the real axis). The behaviour of other poles is much 
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more complicated. The couple of poles on the real axis to the right 
of co = Iri situated on the covered part of ( + , —) sheet unites in 
the conjugated couple and moves to the left as H increases. The pole 
which moves at the fourth quadrant eventually crosses the P branch-cut 
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Fig. 5 - Movements of pole P+_ for fixed Ic and variable Tl. 

to appear on the open part of ( + , —) sheet. Only now it begins to 
contribute to the solution as dispersive leaking mode PL (P+ -). 
As H increases more it crosses the uncovered stripe of the ( + , —) 
sheet and S branch-cut, to the covered part of the same sheet. Here 
it unites to the conjugated pole at the second quadrant to become 
real. Then one of them still keeps on the same par t of ( + , —) sheet, 
and the other one overtakes the branch-cut to appear 011 accessible 
part of ( + , + ) sheet to the left of co = ft/?. Now it contributes as the 
first shear mode and its evolution is limited by points co = /.•/?<> and 
co = 1<!5 (Fig. 5). 

In a similar way the other couple of real poles on the covered 
(—, —) sheet unites at the conjugated couple as H increases. The 
pole at the fourth quadrant after some evolutions appears on the unco-
vered par t of ( + , —) sheet to contribute as leaking mode P i n (P-+ 
of Gilbert). Then if H is large enough it goes to ( + , -¡-) sheet to 
become the third shear mode. 
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We do not discuss here the behaviour of other poles of F(co, k) 
which are not related to the roots of Rayleigh equation. 

Thus the existence of t he surface layer really "wakes u p " the 
extra roots of Rayleigh equation permit t ing them to contr ibute to 
the solution. However this happens only if the layer is thick enough. 
For the continental E a r t h model, Gilbert 's figure 21 the PL wave 
gives the relation min (kH) ^ 0.2: for PL>, wave we get f rom Gilbert 's 
figure 23 the est imate min (A:77) «a 1.9. I n frequency domain it 
means t h a t for 11 = 35 k m wave PL does not carry periods more 
than 140 sec and PLS wave more t h a n 14 sec. 
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