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ABSTRACT

The article describes the design of  the Community Seismic Network, which
is a dense open seismic network based on low cost sensors. The inputs are
from sensors hosted by volunteers from the community by direct connection
to their personal computers, or through sensors built into mobile devices.
The server is cloud-based for robustness and to dynamically handle the load
of  impulsive earthquake events. The main product of  the network is a
map of  peak acceleration, delivered within seconds of  the ground shaking.
The lateral variations in the level of  shaking will be valuable to first
responders, and the waveform information from a dense network will allow
detailed mapping of  the rupture process. Sensors in buildings may be useful
for monitoring the state-of-health of  the structure after major shaking.

Introduction
The most important information that can be provided

to emergency responders in the minutes to hours following
an earthquake is an assessment of  damage, and the best
proxy we have to produce estimates on this time scale are
measurements of  ground shaking. Products such as
ShakeMap [Wald et al. 1999a] do this with near real-time
sensors that are available from traditional seismic networks
such the Southern California Seismic Network (SCSN).
However, the sensors are sparsely distributed and the
resulting maps have low-resolution and require model-driven
interpolation, which means they need to know the
earthquake hypocenter and magnitude. Sensors are typically
separated by several kilometers (approximately 10 km in the
case of  the SCSN). Increasing the density of  seismic
networks beyond that needed for their basic function of
earthquake location is cost prohibitive under their current
paradigm of  operation of  closed networks with high-quality
(expensive) sensors. The capital and maintenance costs,

permitting and data analysis are the usual limiting factors.
Another approach to providing this information is to use

crowd-sourcing to obtain the measurements. The “Did You
Feel It” (DYFI) product of  the US Geological Survey (USGS)
[Wald et al. 1999b] does this with a simple post-earthquake
web interface, where users enter intensity observations with
postal codes providing the location information. The sheer
numbers of  reports largely overcome the simple and subjective
measurement scale and crude location mechanism. Recent
mild but widely-felt, earthquakes in the Los Angeles region
have produced over 40,000 entries. When the inverse-distance
dependency is removed from these maps such as in Figure 1,
there is surprising level of  detail revealed about the lateral
variations in shaking intensity. One drawback to this form of
sensing is the human responders in the areas of  heavy shaking
usually do not make the data entry their first priority, and hence
information from the most critical areas is usually late in arriving.

In this paper we describe an alternative way to achieve
the goal of  providing detailed and rapid assessment of
ground shaking in urban areas. The method is based on an
open-network of  low-cost sensors that are hosted by
volunteers and the telemetry is provided by the internet.
The Community Seismic Network (CSN) (http://www.
communityseismicnetwork.org) described here can be viewed
as a quantitative version of  DYFI. The primary product of  the
CSN is a map of  ground shaking that can be delivered within
seconds of  major shaking. With a dense network this can be
generated before accurate estimates of  the location and
magnitude are obtained. The measurement of  moderate
earthquakes will provide maps of  anomalous ground
amplification. The waveforms from the network will provide
the information to determine the dynamic slip on the fault.
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The concept of  basing a seismic network on micro-
electromechanical systems (MEMS) sensors was proposed
by Evans et al. [2005]. In the time since that suggestion, the
sensors have become much more sensitive (and cheaper).
The Quake-Catcher Network [Cochran et al. 2009a,
Cochran et al. 2009b, Chung et al. 2011] and the Home
Seismometer Network [Horiuchi et al. 2009] are also based
on low-cost MEMS sensors. The oil-industry has been
increasing the use of  MEMS accelerometers in their surveys,
driven by the need for low-cost compact three-component
sensors [Hons et al. 2008, Mougenot et al. 2011].

The CSN described herein is under development with
approximately 100 sensors deployed, and thus far no felt
earthquakes have occurred. Consequently, the system has
not been tested under real event conditions. The CSN is
embedded in the reporting region of  the SCSN, which is
jointly operated by Caltech and the USGS. The CSN is not
intended as a replacement for traditional networks, but
rather as a supplement to increase the resolution of  ground
shaking measurements. The MEMS sensors that are
currently used by the CSN are not sensitive enough to detect
regional or small local earthquakes.

COMMUNITY SEISMIC NETWORK

Figure 2. Effect of a dense array. The upper row shows the output of  simulated motion in southern California, and a perfect point source. The middle
row shows the current seismic network density (the SCSN) and the reconstruction of  the point source. The bottom row shows the results for a dense array
of  1000 stations.



Advantages of a dense network
With the CSN, the quality of  an individual sensor is

traded-off  against the density of  the network. The tradeoff  is
common in the seismic exploration industry, where the goal is
to measure the wavefield in an unaliased manner. For
earthquake monitoring, a dense network is important when
there are significant lateral variations in the intensity of
ground shaking [Field and Hough 1997]. This is likely the case
when there are near surface structures such as micro-basins or
when there are variations in soil conditions. In Figure 2, a
synthetic example shows the effect of  a sparse and dense
network on an interpolated wavefield. Analysis methods that
utilize sampled wavefields will not work with sparse networks.

One advantage of  a dense network is that the real-
time processing is generally simpler. The first group of
responding stations provides a fairly accurate location of
the hypocenter of  the event if  it occurs within the
network. Also a map of  shaking can be produced directly
from the observations rather than from a model-based
interpolation that depends on knowing the epicenter of
the event.

In Figure 3, a real example of  a dense network is shown.
In this case, it is an exploration network that happened to
capture a nearby earthquake. The recorded wavefield is
unaliased, and it is clear that there are significant and rapid
lateral variations in the peak accelerations.
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Figure 3. A real example of a dense array. The array consists of  over 5,000 sensors in a 7 × 10 km area. It was deployed by NodalSeismic Inc. on behalf
of  Signal Hill Oil Co. and was designed for active source imaging of  the Signal Hill oil field. The upper panels show the location of  the stations. The lower
left panel shows a time-slice of  the S-wave wave field due to a magnitude 2.5 earthquake located approximately 5 km to the west of  the array (red is
positive and the numbers refer to the frame and time of  the slice). The lower right panel shows the variations in peak acceleration due to this earthquake.
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Low-cost sensors
The technology change that has produced low-cost

sensors is MEMS. The accelerometer version of  these
‘sensor-on-a-chip’ devices uses capacitance variations
induced by motions and were developed in 1960’s. Their
development as low-cost devices was driven by their wide-
spread use in air-bag systems, disk-drive protection devices
and computer game controls. They are now commonly
included in smart phones and mobile computers.

MEM accelerometers vary from very low-cost low-
resolution high-noise devices to sensors that have performance
that is comparable to expensive force-feedback sensors
[Holland 2003]. Sensors with 70 mgal sensitivity at 1 Hz are
available for US$100. Cell phones are typically equipped with
sensors that are about ¼ of  this sensitivity. In the CSN, the
initial deployment of  Phidget sensors (www.phidgets.com)
have a sensitivity of  70 mgal with a 16-bit digitizer and a
dynamic range of  ± 2g. The packaged sensor is shown in
Figure 4, along with its noise curve. For comparison, the
response of  a smart phone sensor is also shown.

Communications with the sensors
Communications with the sensors is generally over the

Internet. This reduces costs but does introduce some security
and robustness issues. To connect the sensors to the network,
there are a number of  options, but for most sites a host
computer is used. The sensor package connects to the host
via a USB port, and a client program analyzes the samples
and communicates with the central server. The client
program has minimal impact on the performance of  the

host, but it does require the host be functioning all the time
to provide real time monitoring. The advantage of  using a
host computer is that network connectivity problems are
solved by others. This allows the client installation program
and process to be fairly simple.

Ideally, the sensors would not use a host computer, but
would rather directly connect to the Internet. We have
successfully ported the client software to a small single board
computers (SBC) but this does not solve the Internet
connectivity problem. The SBC’s, whether using wired or
wireless connections, need to negotiate a variety of  protocols
that often require passwords. This makes volunteer (i.e. non-
expert) installation problematic. Using the cell-phone
infrastructure would obviate a number of  these problems,
but with the current price structure for this type of
communication, this is not practical. It may be suitable in
countries outside of  the USA. Some form of  the SBC-based
sensor will likely become the preferred configuration as
always-on desktop computers become less popular.

Software design
The CSN software is divided into client and server

components. At the moment, the server part is also
subdivided into real-time and archiving sub-systems,
although our longer-term plan is to join these. 

Client software
The purpose of  the client software is to retrieve the

sampled data from the sensor system, perform a limited set
of  processing on the data, and send the results (and

COMMUNITY SEISMIC NETWORK

Figure 4. Low-cost MEM sensor used in the CSN. The sensor used is a Phidget 1056. The response of  this sensor and that of  a typical smart phone are
compared to a standard high-quality force-balance accelerometer in the right panel. The response for various sized earthquakes at two distances is shown
for reference, which is adapted from Clinton and Heaton [2002].



possibly the data) to the central server. In the current
implementation, the data samples are decimated to a data
rate of  50 samples per second (sps) and placed in a ring
buffer. A detector algorithm that uses a variation of  the
standard ratio of  short-term-average over long-term average
[Earle and Shearer 1994] is used to pick events. The
adjustable parameters in the detector are the lengths of  the
short- and long-term averages and the threshold of
detection. We plan to dynamically adjust these parameters
through machine learning, which will be discussed later.
Time for the hosted sensors is determined by a local
Network Time Protocol (NTP) server [Mills 1990, Frassetto
et al. 2003]. We tested the local clocks on the host computers,
which were supposed to sync to an NTP server and to
generally available NTP servers, but found that neither were
sufficiently accurate. We are currently running our own NTP
server and this has stabilized most of  the clocks, but we still
occasionally have 1-10 second jumps that appear to be
introduced by some older operating systems.

When the client has detected an event, it measures the
peak amplitude in the next second and sends this information
along with the time of  the detection to the server. We believe
that it is important that this initial information be sent as
quickly as possible in order to precede a possible (maybe
likely) failure of  the network infrastructure. The client
continues to look for the peak amplitude and send updates as
the event proceeds.

The clients will send their raw data to the server when
they are requested to do so. For some sensors, the
parameters are set such that all of  the data are sent every few
minutes, forming a continuous stream of  data. These data
streams are very important for research on the detection and
processing algorithms and for scientific research on the
earthquakes themselves. In other cases, when bandwidth is
an issue, the sensors will send a time window of  the data
when requested by the server. The request is communicated
as part of  the ‘call-home’ procedure.

When initially downloaded, the client software performs
the installation task and requests certain information from
the volunteer such as location as determined by a Google
map, floor of  the building, building type, and contact
information. An identification key is also obtained from the
server to authenticate future data exchange.

The final task for the client is to contact the server at
regular intervals (e.g. hourly) to report its state of  health
and request any software or parameter updates. With this
‘call-home’ or ‘heartbeat’ mechanism, the entire client
code can be changed, and various parameters updated.
This is also the mechanism whereby the server can request
that the client send the raw waveform data for a particular
time segment. This task also fills the important role of
letting the server know which sensors are functioning at
any given time.

Server software
The role of  the server is to receive detection and

parametric data from the sensors and to process it to produce
a map of  the peak ground motion, along with other related
products. This information will then be broadcast to the
general public and emergency responders. To handle the very
impulsive load generated by earthquakes, the server needs to
be able to dynamically add computational and I/O resources.
It also needs to be robust with respect to failure by the very
event that it is attempting to report on, which means it
probably needs to be located outside the region of  concern.

To achieve the dynamic and robust qualities, it was
decided to use distributed cloud computing [Armbrust et al.
2010, Mell and Grace 2011] for the server. In our initial
configuration, we are using the Google cloud, with the
Google App Engine as a development platform. The
robustness is achieved through the global distribution of
redundant ground servers, and the dynamic loading is
through the structure of  the database of  the Google App
Engine. The database is highly denormalized (i.e. one table
instead of  several separate tables) which is a change for most
seismic software. Tutorials on the Google database (Big
Table) and programming the App Engine can be found at
http://labs.google.com/papers/. In theory the cloud will
automatically handle the redundant storage of  data, so we
only need to deal with one system (i.e. no backup system). In
measurements provided by Google engineers, but otherwise
undocumented, the redundant storage will occur very
rapidly. One other features of  the cloud is the ability to create
additional networks anywhere in the world by simply
replicating the particular instance. The downside of  the
cloud is that some aspects of  the environment change with
time as is to be expected with an evolving system.

In standard (sparse) network software the picks are
normally associated with events with a fairly complex code
that is often termed an ‘associator’. With the CSN, the
density of  the network allows us to use a simpler system
based on ‘geo-cells’ (latitude–longitude boxes). The system
simply counts the numbers of  detections within the geo-cells
within time slices, and when that number exceeds a
threshold number, the geo-cell declares an event. When a
sufficient number of  geo-cells detect an event, a map of  the
ground motion for the whole region is produced. Thresholds
are determined in order to maximize the detection
probability, while minimizing the number of  false alarms.
Since this map is not dependent on the location of  the event,
only that its effects are within the area of  interest, there is no
need to initially do the association and location steps. The
geo-cells can be used in a telescoping multi-scale approach
to determine how widespread the shaking it is. The size of
the geo-cells and time slices are tunable parameters of  the
network. In the initial Pasadena test the geo-cells are the size
of  a few blocks, and the time slice is the transit time of  a
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P-wave across the cell. The threshold count is also a
parameter that is likely to vary laterally across the network.

The system can respond very quickly, and the goal is
produce the map within seconds of  the shaking, so it has the
potential of  reaching emergency responders before the
network connectivity fails. However, even if  this is not the
case, the use of  the cloud environment should allow the
information to be sent to outside responders. A schematic of
the server implementation is shown in Figure 5.

The server also requests and receives the waveform
data, which is archived. Presently a conventional land-based
server handles this, because cloud-based storage is too
expensive. However, it is expected that this will evolve so that
the waveform archive is also maintained in the cloud.

Data archive
The waveform and other parametric data are sent to a

standard archive shortly after they are received and
processed. The waveform data are entered into an archive
wave pool and the metadata into a database. They are then
available to scientists working on the CSN project for further

analysis. Due to privacy concerns of  the sensor-hosting
entities, these waveform data are not generally available,
however, the waveforms for detected events will be made
available to the scientific community. One challenge of  the
archive is the mobility of  the sensors and the ‘naming’ of
stations. With the use of  mobile devices as the sensing
platform, we need to be able to handle rapidly changing
station coordinates, which also has implications for the
naming of  stations. In traditional networks, the stations are
re-named when they are moved, but that is not practical
where the stations are frequently on the move, such as the
case with cell phones with MEMS sensors that are discussed
below. At the moment, the station location is kept as an
attribute of  a particular waveform and not the station (i.e.
the database is denormalized), but the station name is kept
fixed. This approximates the station location, by its position
at the start of  the waveform. Keeping consistent names for
stations in a network where the sensors move around (and
disappear) is a challenge that we have not completely solved.
The solution may be to abandon names and use the
coordinates as the station tag.

COMMUNITY SEISMIC NETWORK

Figure 5. A schematic of the client/server interaction. The functionality of  the server is shown. The event detection  is done by geo-cells as described
in the text.  The heartbeat is database of  regular check-ins by the sensors. The datastore is the cloud database. The advantage of  a ‘cloud-based’ server is
robustness and extensible load capability.



Security issues
There are a number of  security and privacy issues that

are not normally encountered in a closed seismic network.
The first is ensuring that the host computers are not
compromised by entities spoofing as the server. To minimize
this issue, all communications in the CSN system are
initiated by the clients themselves and only with a trusted
host. This means that software updates and request for the
waveforms wait until the client makes a regular state-of-
health contact. To minimize spoofing the server with bogus
earthquakes, the server only accepts information from clients
that have a key, which is assigned at the time of  registration
(software installation) of  client.

Privacy issues
The privacy of  information on the sensor host is

increasingly becoming a major issue. It is relatively
straightforward to keep the contact information separate from
the seismic database and in a secure place available only to the
administrators of  the network, but the precise location
information is a necessary part of  the meta data for the seismic
system. To minimize the broadcast of  this information, public
displays of  the network show only sensor locations at the
resolution of  a geo-cell (about one block in area), and within a
geo-cell only the number of  sensors is shown, not the
individual locations. This still gives an overall impression of  the
distribution of  the network, but doesn’t give precise locations.
Note that we chose this procedure after experimenting with
adding a small random component to the displayed locations,
which seemed to confuse people more than it helped. The geo-
cell display concept is further enhanced for mobile devices such

that only geo-cells that have two or more mobile devices will
be displayed, which should make tracking of  people through
their sensors practically impossible.

To minimize the issues of  distributing the real time
waveform (with locations), we plan to only make available
extracts of  the data for felt earthquakes, and only after a
delay. This appears to be an unfortunate consequence of  an
open network in a privacy-concerned environment.

Prototype network
A prototype of  the CSN network is currently being

installed in the vicinity of  Pasadena, California, USA. The
purpose of  this network is to demonstrate the viability of  the
community-hosted sensors and the open network design of
the CSN. To date, approximately 100 sensors have been
distributed. A map of  the distribution and the current size of
the network is at http://map.communityseismicnetwork.org.
The sensing, detecting and archiving aspects of  the network
have been implement and are being tested. In Figure 6, one
of  the few events recorded by the CSN is shown. The event
is a magnitude 4.1 at a distance of  38 km from the center of
the network. The data show the general noise level on the
sensors that can be expected on this type of  network. The
timing error that is evident on one of  the stations is due to
the problems mentioned above. The sensors did not detect
the April 4, 2010, 7.2 El Mayor Cucapah earthquake in Baja,
Mexico some 300 km away.

Future directions
The prototype CSN network represents a small part

of  the envisioned scope of  the planned CSN network. The
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Figure 6. Sample recording from CSN. The earthquake is a Ml 4.1 near Newhall, CA, USA, approximately 38 km from the center of  the CSN network.
The east component of  data is shown. The left panel shows the data in distance from the earthquake, while the right panel shows a blowup of  the region
denoted by arrows. The traces in the left panel are self-normalized, while those in the right panel have a single scale factor. The data are band-passed at
1-10 Hz. The amplitude variations in the right panel are the main effect that the CSN is trying to measure. There is clearly one station in the right panel
that has a timing error of  about one second.
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future plan is to expand over the entire urban Los Angeles
region, and eventually other urban areas that are subject
to significant seismic hazard. In terms of  developing the
network software and sensors, we are working on tuning
the network parameters with machine learning, detecting
the state of  health of  buildings, and adding the sensors in
cell-phones.

Machine learning
The sensors for the CSN are installed by the volunteers

themselves and as a result it is expected they will be placed
in a wide variety of  noise and vibrational environments. The
sensors themselves have some self-configuration ability for
orientation. They can detect the vertical component
because they can sense the acceleration of  gravity and do a
software rotation to align it with the z-component.
Currently, the horizontals are not oriented, other than they
are in the horizontal plane and are perpendicular to each
other. In the future, if  an onboard magnetic compass is
available (as it is with the Phidget sensor), it can be used for
determining the compass directions of  the accelerometer
horizontal axes.

The network will use machine learning in order to
optimize the detection parameters. This will be implemented
when the network has densified. The algorithm for setting
the thresholds or sensitivity of  picking takes into account the
detection history for a particular sensor. It adjusts the
threshold up or down to bring the sensor in line with the
average for the whole network. This could even be made
time-of-day dependent as its performance characteristics
become more evident with time. Adjusting the parameters
of  the picking algorithm (such as the short and long-term
filters) will be more complex because these will depend on
the performance relative to the background noise and on the
history of  detecting earthquakes of  different sizes (hence
frequency content). A first approach towards using machine
learning to optimize detection performance in the CSN is
described in Faulkner et al. [2011]. In addition to tuning the
sensors themselves, machine learning can also be exploited
to optimize the network parameters such as the size of  the
geo-cells and the thresholds within each cell.

One planned feature of  the network is to incorporate
the ability of  the clients to initiate a test earthquake to
perform end-to-end test of  the system; something that is
not possible with most seismic networks. To accomplish
this, the details of  the event, including synthetic waveforms
will be downloaded into the clients the day before the
scheduled time as part of  their regular call-home
communications. Then at the scheduled time the synthetic
data will replace the real data stream, and the test
earthquake will be simulated. The entire system including
the detection functions on the clients and the capacity of
the server will be tested.

Networks in buildings
One of  the proposed applications of  the CSN is in

providing dense instrumentation of  buildings. This is to
measure the level of  acceleration that the individual floors
have experienced in an earthquake, and also to monitor the
state of  health of  the building by looking at the variations in
the modes of  the building before, during and after an
earthquake [Clinton et al. 2006]. This is a new area of
research that will require a dense array such as the CSN to
provide the necessary observations. We have installed such a
network in the Millikan Library (a ten story building at
Caltech) for structural monitoring. The sensors are capable
of  detecting the fundamental modes of  the building with
both forced vibrations and ambient noise. Communications
within buildings can be challenging for a variety of  technical
and practical reasons, so we are currently investigating using
the electrical wiring system as a communication network
(IP over power), but at the moment, noise appears to
significantly limit the range. If  this can be made to work, it
will greatly simplify the placement of  sensors, and their
communications in buildings.

Cellphones and mobile devices
Smartphones are ubiquitous in today’s society, and most

are equipped with a motion sensor. While the quality of  this
sensor is not as good as that of  the stationary sensors, its use
for gaming and other applications is demanding more
precision. The newest generation of  phones and mobile
devices allow programs to be run in the background, which
allows a modified version of  the client described above to
function on these devices.

The obvious problem with mobile devices is that they
routinely generate signals that are much larger than
earthquakes through regular activities. One straightforward
solution is to detect when the phone is at rest, and only use
data from the sensors when the phone is in this state. This is
the approach of  the iShake project [Dashti et al. 2011]. A
more challenging problem is to separate the human-
generated motion from the earthquake signals.We have
developed a prototype algorithm to make this separation and
discriminate between earthquake motion and acceleration
due to regular activities. The algorithm and its evaluation are
described in Faulkner et al. [2011]. A CSN app for Google
Android phones implementing these algorithms is available
as a free download through the Android Market store
(https://market.android.com/details?id=edu.caltech.android).

Examples from a dense network
During the first half  of  2011, NodalSeismic Inc.,

installed a dense seismic network in Long Beach for the
Signal Hill Oil Company. This network consisted of
approximately 5,000 autonomous sensors distributed over
a 7 × 10 km area. This network recorded a few small

COMMUNITY SEISMIC NETWORK



earthquakes that were within a few kilometers of  its center.
While the sensors on this network are the standard

seismic exploration velocity sensors, this deployment gives
some indication of  what might be observable with a dense
earthquake network such as CSN. Figure 3 shows the
distribution of  receivers and shows a snapshot of  the S-wave
as it crosses the network. The peak accelerations are also
shown. It is the variability that we see in this figure that
confirms the premise of  the CSN – that there is significant
lateral variability of  ground shaking and that it needs to be
measured on a fine scale. This network has also been an
excellent test bed for the picking algorithms and the geo-cell
concept for detecting events.
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