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ABSTRACT

To simulate the dynamics of  earthquakes, a mechanical prototype was
constructed that was inspired by the Burridge-Knopoff  model and equipped
with accurate instrumental devices. The data obtained by the prototype
appeared to be consistent with seismic data from the San Andreas Fault,
California, USA, which were analyzed using two different methodologies:
seismology and modern developments of  chaos theory. Perspectives for
future work are also presented.

1. Introduction
Modeling the dynamics of  failure would uncover

important aspects of  seismology and earthquake prediction
if  it can account of  all of  the variables. However, given the
complexity of  the systems involved, earthquake prediction
is difficult, even when performed in well-monitored areas
such as the San Andreas Fault (SAF; California, USA).
Nevertheless, this subject should not be ignored, and new
perspectives should be tested. Although simplified, the
predicted data might be analogous to those of  the actual
faults. In this context, simple models with dynamics that are
qualitatively similar to those of  active faults need to be
developed. Such models can allow for the identification of
specific signatures that are observed prior to major
earthquakes, and if  these can be cautiously applied, this
might limit the human loss.

In the 1960s, Burridge and Knopoff  (BK) introduced the
mechanical block-spring model [Burridge and Knopoff  1967]
to simulate interactions between two surfaces of  a fault. This
was the first step in earthquake modeling. Their model was
based on the principle of  'elastic rebound', which considers a
differential shift between the two sides of  an active fault in an
expanded time scale, elastic deformation in geological
materials, and an increase in stress. When the accumulated
stress exceeds the limit of  the forces that oppose failure (mainly
friction), the links between both sides break, which triggers a
rapid release of  the stress. This then reshapes the deformed
material, and causes an earthquake. From the viewpoint of
classical physics, seismic phenomena appear as a discontinuity
in the junction of  two elastic half-spaces that are subjected to

constant deformation. This model, which is supported by the
electrodynamic theory proposed by Volterra [1907] and
modified by Love [1944], is the basis of  seismic source theory,
which accurately describes the surface displacement field
that is associated with an earthquake, although it fails when
applied to the prediction of  seismic cycles. 

The BK model is illustrated in Figure 1, and it consists of
a set of  blocks that are linked by springs and placed onto an
unpolished surface. Each block of  the 'train' is connected
through another spring to a sliding surface that moves slowly
at a constant speed. When the forces on the blocks are less
than the maximum force of  static friction, the blocks remain
at rest. However, the springs that attach the blocks to the
sliding surface accumulate stress, which increases the
amount of  force applied to each block. Once the block
overcomes the solid friction force, it slips, which unburdens
the spring that connects the block to the sliding surface and
loads the springs that couple the block to contiguous blocks,
triggering their movement. Each rebound is equivalent to an
earthquake. A small-amplitude rebound that occurs with
only one of  the blocks is correlated to a minor earthquake.
However, a rebound that drags the other blocks and causes
an avalanche of  rebounds is considered to be a major
earthquake. The system that is used to model seismic faults
can be represented by the superposition of  two processes that
run on different time scales. Specifically, the accumulation of
stresses is a slow and continuous process, whereas the release
of  the stress is a discontinuous and fast process. These
processes sum up earthquake dynamics.

Indeed, since the introduction of  the BK model,
earthquakes have been primarily studied using numerical
calculations. Such simulations can successfully describe
many properties of  earthquakes accurately. For a review of
this topic, the reader is referred to Carlson et al. [1994].
Nevertheless, only a handful of  experimental approaches have
been performed [e.g., Feder and Feder 1991], and two different
types of  solutions have been found. When the Coulomb
friction law is applied and the system is assumed to be
symmetric, periodic behavior is obtained. In contrast, when
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laws other than that of  Coulomb are applied or symmetry is
not considered in the model, the solutions are in agreement
with the existence of  a rebound distribution, and they obey a
power law. This power law is such as that observed in the
distribution of  earthquake magnitudes, which corresponds to
the Gutenberg–Richter law [Gutenberg and Richter 1956].

Recent developments in 'chaos theory' have been
observed in the BK model. For instance, Hahner et al. [1998],
Vieira [1999], Rubeis et al. [1996], Hallgass et al. [1997],
Cartwrifht et al. [1997], and Field et al. [1995] obtained results
that are consistent with observations such as Omori's law
[Shcherbakov et. al. 2004]. Among these approaches, the
concept of  'self-organized criticality' [Bak et al. 1987], which
is derived from statistical physics, has contributed
significantly. These models attempt to describe the behavior
of  thermodynamic systems that evolve spontaneously into
critical states of  equilibrium that are subjected to fluctuations
that are characterized by statistics that follow fractal
relations, which is also known as self-organized criticality
behavior. Accordingly, seismic phenomena are the result of
relaxation processes induced by small perturbations in the
Earth crust that have obtained a ‘metastable’ equilibrium.
The recognition of  self-organized criticality behavior in
seismic models has been tested using numerical simulations
[Vilotte et al. 1994, Hahner and Drossinos 1998, Vieira 1999,
Rubeis et al. 1996, Hallgass et al. 1997] and in electronic
circuits called 'cellular automata' [Cartwrifht et al. 1997, Field
et al. 1995]. In all cases, the modulations originated in the
equations of  motion governing mechanical systems that
consist of  chains of  blocks and springs, all of  which are
inspired by the BK model. Evidence of  chaotic behavior has
been detected in seismic models; thus, based on these
observations, it can be concluded that actual 'seismic faults'
show the same type of  behavior.

In the present study, we obtained a novel view of  seismic
phenomena by assessing the subject in two different ways.
As described in Section 2, a homemade 'earthquake machine'
(EQM) was developed and evaluated, and the seismicity of
the SAF was analyzed, as presented in Section 3. The results
of  both approaches are discussed in Section 4, and some final
remarks are provided in Section 5.

2. The earthquake machine
For the experimental portion of  the present study, the

EQM shown in Figure 2 was designed. The mechanical
prototype consisted of  a rubber conveyor carpet that was
actuated by a stepping motor with an electronic speed
controller, on which several blocks connected by springs
were placed. However, in this case, only one block was
used. When the machine was operated for a period of  time,
cycles of  stress accumulation and release were
accompanied by slow movement of  the block in relation to
the carpet. We equipped the springs of  the EQM with a set
of  force sensors that were connected to a data-acquisition
system, which was linked to a computer. The data recorded
by the prototype consisted of  temporal changes in the
electrical voltage, which were converted to mechanical
stress in the springs (although the knowledge of  the 'true'
mechanical stress is totally irrelevant for this analysis),
which was measured by sensors that corresponded to the
sequence of  stress accumulation and drops in the springs.
Figure 3a shows an extract from the temporal series that
was used in the present study.

Data processing was performed according to two
distinct methodologies. The first analysis treated the data
according to the techniques used in seismology with field
measurements (real data). To this end, an event was
considered to occur when a drop in stress was observed.
The magnitude of  the event was calculated from the value
of  the stress drop. Following this approach, a given stress
drop was related to a respective magnitude. In the second
methodology, we used the series recorded in the context of
chaos theory to investigate the behavior of  the prototype. 

The first analysis of  the data produced by the machine
was designed according to the methodology used in
seismology. Stress drops were identified in the series, and
their values were calculated. Considering that vi is the
measured stress at a given instant (ti ), stress drops were
calculated as: Dvi = vi − vi+1. The values of  the stress drops
were positive, and the relationship between the stress drop
and the magnitude was obtained according to the method
of  Kanamori and Anderson [1975], who applied a rectangular
model of  faulting: 
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Figure 1. Diagram of  the Burridge–Knopoff  mechanical model. The system is composed of  equal masses (m) that are connected to the system by
horizontal springs of  strength kc and vertical springs of  strength kp. The mass is subjected to the force of  friction F(x), which only depends on the velocity
of  the block (V).
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(1)

where C is an empirical constant, the value of  which was
selected to normalize the magnitude of  the EQM events
to those of  real earthquakes. In this sense, to determine C,
we considered that the average stress drop        should
correspond to an earthquake with a magnitude of  3.7. As a
result,                             According to this procedure,
magnitudes that corresponded to stress drops greater than
the numerical noise level that was introduced by the
acquisition system were calculated.

Figure 4a represents the distribution of  event numbers
(arranged in five magnitude classes). As shown in Figure 4a,
the Gutenberg–Richter law (log(N) = a + bM, where N is the
number of  seismic events with magnitudes in the range of
M±ΔM/2), fits the experimental data well. The values of  a
and b are presented in the plot and are compared to the
actual seismicity (Figure 4b) in Section 5.

In addition, the observations provided several clues
regarding the chaotic behavior of  the system. This
perspective was used in the second EQM data analysis.
Chaotic character in a dynamic system is usually identified by
representing the evolution of  the system in the phase space,
in which each point represents a state of  the system. If  the
path has fractal geometry, it is called a 'strange attractor', and
the system shows chaotic dynamics. However, these
representations are often impossible to produce when the
number of  coordinates that are required to represent a state
of  the system is greater than three. Therefore, instead of
representing the trajectories in the phase space, we can
calculate some of  its properties, such as the fractal dimension
(D), which can be determined for any number of  degrees of
freedom. In addition, the system dynamics must be rebuilt
in the phase space, and the scalar series of  measurements
must come from only one quantity. In such cases,
reconstruction of  the phase space [Goltz 1998] can be
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Figure 2. Top: Photograph of  the earthquake machine prototype. The left part contains the mechanical components, including the carpet and the block
that is connected to the spring. The right side of  the apparatus contains the control box, which consists of  a computer acquisition system, a force sensor,
and a motor control. Bottom: Schematic representation of  the earthquake machine prototype: (1) personal computer; (2) electronic interface; (3) force-
sensing; (4) spring; (5) block; (6) rotating carpet; (7) motor; (8) rotating drum.
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achieved through a technique called 'suspension', which
involves the introduction of  a parameter that designates the
'suspension order', which is also known as the 'embedding
dimension' (d). With this dimension, a time-delay
reconstruction of  the system phase space provides the
necessary number of  coordinates to unfold the dynamics
from overlaps upon itself  that are caused by projection.
Usually, to determine the fractal dimension (D) of  the
attractor, the embedding dimension is required to reconstruct
a space that is equivalent to the phase space of  the system.

In practice, obtaining the fractal dimension of  the
attractor made from the scalar time series is a process that
involves the successive construction of  growing phase
spaces (reconstitution dimension), and the calculation of
fractal dimensions that are associated with each of  the
phase spaces. The time series is derived from a chaotic
dynamic system; thus, if  the fractal dimension does not
increase after a certain order of  reconstitution, i.e., if  the
function D(d) becomes saturated, the fractal dimension is
the embedding dimension. The calculation of  the fractal
dimension that is associated with each reconstituted space
requires the use of  appropriate software. In this case, we
used the FD3 program [Serraille 1992], which was written

according to the algorithm known as 'box counting'.
The number of  parameters required to model the

dynamic system under study can be estimated using the
fractal embedding dimension [De Santis 1997, Kovalenko et
al. 2008]. In general, the value of  the reconstitution
dimension for which D is saturated gives an estimate of  the
minimum number of  variables that are required to model
the system, and 2D + 1 provides an estimate of  the
maximum value.

By combining well-known relations of  seismology with
an equation that quantitatively defines a fractal set [Turcotte
1997], we obtain the following theoretical relationship:

D = 2b,                                         (2)

which relates the fractal dimension (D) to the b-value of  the
Gutenberg–Richter law. Thus, from the Gutenberg–Richter
analysis of  the data, we found that D ≈ 1.74.

Interestingly, the reconstruction of  phase space
dimensions using reconstitution dimensions (d = 1, 2 and 3)
enables us to obtain D = 1.73 for d = 3, which is in close
agreement with the value that was obtained from the
above relationship. 
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Figure 3. (a) Extracts of  the time series obtained by monitoring the earthquake machine at a rate of  10 samples per second. (b) Time series reconstructed
from 20 years (1980-2000) of  SAF seismicity.

Figure 4. (a) Gutenberg–Richter distribution of  events recorded with the prototype during a series of  736 events. (b) Gutenberg–Richter distribution of
earthquakes recorded in California between 1980 and 2000 (10,256 events).
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3. Seismicity of the San Andreas Fault
In parallel to the previous data analysis, to compare the

time series obtained by the EQM to those observed in an
actual seismic region, we analyzed the instrumental
seismicity in a region near the SAF. We considered 10,256
events in the area over a period of  20 years (1980-2000). The
reconstruction of  the series was based on two assumptions.
The first assumption is that the stress balance is equal to zero
throughout the 20 years of  monitoring; i.e., in the study
region, the sum of  stress released is equal to the sum of  the
accumulated stress. The second assumption is that the
accumulation of  stress occurs at a constant rate. Based on
these two assumptions, using the times and magnitudes of
the events, the magnitudes were transformed into stress
drops, enabling calculation of  the temporal coefficient of
stress accumulation, which was achieved by summing the
stress drops. In combination with the timing of  various
events and corresponding stress drops, this coefficient
allowed us to reconstruct the time series shown in Figure 3b.
As can be seen from the presented series, the corresponding
chart is slightly different from the series that was obtained
by the EQM. In particular, the data derived from the EQM
were represented on a scale that covers the entire dataset,
and only the five largest stress drops from all of  the 10,256
events could be distinguished in the SAF data. The rest of  the
events can only be clearly observed on a smaller scale.
Moreover, magnification of  small segments of  the graph
were indistinct compared to the global representation; thus,
due to the fractal nature of  the seismic activity in the study
region, the pattern of  the series is preserved when viewed
on a scale that was compatible with the five orders of
magnitude upon which the data were distributed. This
finding was also observed in the data that were obtained
from the EQM; however, the effect is attenuated by the
reduced discrimination of  'seismic events' allowed by the
instrumentation. Indeed, an inspection of  the fractal
dimension of  the SAF seismicity revealed its complex nature,
which indicated that the multi-fractal behavior of  the SAF
data was relatively complex compared to the results of  the
EQM, as discussed in the next section.

4. Discussion
Interesting similarities were observed in the analysis of

the EQM and SAF seismicity. The value of  b was 0.87 for the
EQM and 0.65 for the SAF, which are comparable values.
Moreover, both systems show fractal behavior. The EQM
had a D factor of  1.73, whereas the seismicity of  the SAF
tended to show more complex behavior due to the
occurrence of  multi-fractals, which will require further study
in the future.

Although the characteristic spatial (centimeters for
EQM, and kilometers for the SAF) and temporal (seconds for
EQM, and decades for the SAF) units of  the EQM and the

SAF data are different, the results show that the dynamics of
both systems are similar. Although the EQM is simple, it
successfully captures earthquake dynamics and might
provide evidence to inform future studies.

5. Final remarks 
The present study, which is the first step towards a

deeper analysis of  seismic mechanisms in the context of
chaos theory, reveals several interesting results. As discussed
in Section 4, although simple in nature, the present prototype
provided trends that were similar to those of  the actual data
and it might uncover important aspects of  actual seismicity.
Various improvements, such as the consideration of  two
blocks and different carpets, will be applied in future studies,
to determine key seismic signatures that occur before major
earthquakes. The proposed prototype could improve our
understanding of  different seismic precursors, such as
seismo-electromagnetic phenomena [Silva et al. 2011].
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