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ABSTRACT

Observational studies from rock fractures to earthquakes indicate that
fractures and many large earthquakes are preceded by accelerating seismic
release rates (accelerated seismic deformation). This is characterized by
cumulative Benioff  strain that follows a power law time-to-failure relation
of  the form C(t) = K + A(Tf – t)m, where Tf is the failure time of  the large
event, and m is of  the order of  0.2-0.4. More recent theoretical studies have
been related to the behavior of  seismicity prior to large earthquakes, to the
excitation in proximity of  a spinodal instability. These have show that the
power-law activation associated with the spinodal instability is essentially
identical to the power-law acceleration of  Benioff  strain observed prior to
earthquakes with m = 0.25-0.3. In the present study, we provide an
estimate of  the generic local distribution of  cracks, following the
Wackentrapp-Hergarten-Neugebauer model for mode I propagation and
concentration of  microcracks in brittle solids due to remote stress. This is
a coupled system that combines the equilibrium equation for the stress
tensor with an evolution equation for the crack density integral. This
inverse type result is obtained through the equilibrium equations for a solid
body. We test models for the local distribution of  cracks, with estimation
of  the stress tensor in terms of  the crack density integral, through the Nash-
Moser iterative method. Here, via the evolution equation, these estimates
imply that the crack density integral grows according to a (Tf – t)0.3-law, in
agreement with observations.

1. Introduction
The failure of  a solid due to microcrack concentration

and propagation has been studied in various disciplines,
including material sciences [Scherbakov and Turcotte 2003],
rock mechanics [Turcotte et al. 2003], solid earth geophysics
[Main 1999], and seismology. 

It is well accepted that there is a wide range of  problems
in geophysics where it is necessary to understand how rock
deforms, from earthquake prediction to the driving forces of
plate tectonics [Main 1999]. The rock physics approach to
understanding these geophysical processes is based on the

premise that the macroscale behavior of  rock is governed by
microscale interactions. Rock deforms elastically and
plastically under an applied stress, by fracturing, brittle flow,
and frictional sliding on a fault. The magnitude and direction
of  the applied stress, the rate and duration of  the loading,
the ambient pressure and temperature, the presence of
fluids, and the previous deformation history, all define the
overall mechanical response [Main 1999, Scherbakov and
Turcotte 2003]. 

Fracturing phenomena have attracted the interest of  the
scientific community, and particularly those concerning
inhomogeneous materials. The main reason is that such
phenomena are promising candidates as earthquake
precursors [Vallianatos and Tzanis 2003a,b, Vallianatos et al.
2004, Varotsos et al. 1993, Vallianatos and Triantis 2008]. 

Over the past decade it has been credibly argued that
rupture in heterogeneous media is a critical phenomenon
[Cowie et al. 1995, Sammis and Sornette 2002], while a
mounting body of  evidence indicates that the earthquake
generation process can be viewed as a critical phenomenon
that culminates in a large event that corresponds to some
critical point (CP) [Sornette and Sammis 1995, Rundle et al.
2000]. According to the CP earthquake hypothesis, a failure
in the crust can be thought of  as a scaling up process, in
which a failure on one scale of  a fault network is part of  the
damage accumulation over a larger scale, which leads to
long-range stress-stress correlation and an increase
(acceleration) in the seismic release rates prior to large
earthquakes [Vallianatos and Tzanis 2003b]. The culminating
large event will only occur when the network is in a critical
state, balancing on the verge of  disorder, and characterized
by both extreme susceptibility to external factors and strong
correlation between its different parts. 

Such a process can be described by a power-law time-to-
failure relation of  any quantity estimated from the
earthquake magnitude. This scaling law has been justified in
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the laboratory in terms of  run-away crack propagation and
empirical expressions for accelerating (tertiary) creep
preceding failure [Bufe and Varnes 1993, Vallianatos and
Triantis 2008]. However, it can also result naturally from the
many-body interactions between small cracks that form
before an impending rupture [Sornette and Sammis 1995,
Bowman et al. 1998]. 

Previous studies have determined that the cumulative
Benioff  strain [Vallianatos and Tzanis 2003b] is particularly
useful when smaller events are also of  interest and
magnitude scaling is desirable, while the cumulative moment
is dominated by larger earthquakes and the event count does
not allow for magnitude scaling. Earlier studies empirically
determined that typically the cumulative Benioff  strain
critical exponent is m ~0.3. There are also two theoretical
predictions for the value of  the critical exponent. Using a
model seismogenic crust governed by a particular damaged
rheology, Ben-Zion and Lyachovsky [2002] derived a non-
singular power-law relation for cumulative Benioff  strain that
is proportional to (tc – t)0.3, i.e. m = 0.3. Rundle et al. [2000]
adopted a very different approach, by relating the behavior
of  seismicity prior to a large earthquake to the excitation in
the proximity of  a spinodal instability. They showed that the
power-law activation associated with the spinodal instability
is essentially identical to the power-law acceleration of
Benioff  strain observed prior to an earthquake, and that m
= 0.25. 

Previous studies have developed and reviewed
techniques to identify regions of  accelerating seismicity and
to attempt the prediction of  the time and magnitude of  the
next large earthquake, sometimes with remarkable success
[Bufe and Varnes 1993, Bufe 2004, Sornette and Sammis
1995, Brehm and Brail 1998, 1999, Bowman et al. 1998,
Papazachos and Papazachos 2001]. We note, however, that
until recently, the CP model has been largely conceptual and
based on an analogy with phase transitions, and it has drawn
support from theoretical simulations that involve simple
models, such as cellular automata. There have been no
effective physical models to describe the observations and
the evolution of  the earthquake cycle. 

To study the physics of  seismicity in a similar way to the
fracture of  a solid, numerous approaches have appeared that
have dealt with the propagation of  cracks, and furthermore,
with static [Taguchi 1989] and dynamic [Wackertapp et al.
2000, Mignan et al. 2007] distributions of  microcrack
concentration. 

In the dynamic distributions of  microcrack
concentration, it is assumed that the space-and-time-
dependent microcrack concentration is governed by the
applied microscopic external stress field. These have been
studied according to the deviation of  microcrack
distributions from random ones during the deformation of  a
solid, and particularly how the microcrack concentration

increases, and then the cracks coalesce and localize, and
finally the solid fails [Scherbakov and Turcotte 2003]. 

In the present study, based on the approach presented by
Wackertapp et al. [2000], we formulate the time dependence
of  accelerated deformation based on first principles. In
Wackertapp et al. [2000] they propose a model for the
propagation and concentration of  microcracks in brittle solids.
First, they derive the equations for the time evolution of  an
integral quantity related to the crack density. Apart from a
factor that characterizes the material, the rate of  growth of
the crack density integral is determined by the stress tensor.
Therefore, we apply partial differential equation techniques in
an elastic equilibrium system. In this way, we estimate locally
the stress tensor in terms of  the elastic tensor or the crack
density integral, provided the latter shows a local variation that
we can determine to recover the observed laws. 

2. First principles and methodology 
To set up the notation, we have to review some standard

concepts for the formulation of  an elastic equilibrium
system. From the mathematical physics point of  view, we
will focus our attention on an open domain W0 in space that
contains the origin and is equipped with the Euclidean
metric denoted by (· , ·). The latter description is equivalent
with an earth that contains the earthquake zone. The elastic
constant tensor field is a rank 4 tensor field, where D defines
at each point in W0 a positive definite quadratic form on the
space of  rank-2, symmetric tensors [Landau and Lifshitz
1936]. Furthermore, if  u_ is the deformation vector field, then
we have the strain tensor field S :

where i, j = 1, 2, 3. Then through the elastic constant tensor
D and Hook’s law, we introduce the stress tensor field v:

where we use the summation convention. The equilibrium
equations for the elastic medium are then expressed for k =
1,2,3 as:

with the forces exerted on the boundary of  the region W0

giving rise to Dirichlet boundary conditions in the form of
the prescribed deformation of  its boundary. We extend in
three dimensional space the studies of  Wackertapp et al.
[2000] that derived a system of  an ordinary differential
equation coupled to the elliptic system of  elasticity,
introducing the crack density integral:
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where the �c-factor has the dimension of  inverse force, and t
is the crack density as a function of  the crack length l, where
the crack orientation is described by the pair of  angles j_ =
=(j1, j2). We refer to this as the Wackertapp, Hergarten and
Neugebauer (WHN) model [Wackertapp et al. 2000].
Furthermore, in this WHN model, the strain tensor is split
into two components, one of  which accounts for the
contribution of  the cracks through the tensor field C, which
depends on the fourth-order moment of  the crack density
integral, as:

where dX is the elementary solid angle, and where we
integrate over the space of  all directions in 3-space, denoted
as D. We conclude that the elastic tensor is modified as:

(2)

(3)

According to the WHN model, using I(i_), the strain in
the domain W is given by:

In addition, the cumulative strain stored in the domain
M is expressed by:

where we have introduced the tension field as a function of
the direction field n_:

Applying the triangle inequality, we conclude that:

We proceed now to introduce the following assumption
on the local distribution of  cracks in a spatial region M for
exponents `, e and positive constants c01, c02 > 0:

(4)

where vol(M) is the volume of  the domain M. This introduces
the bounds on the local variation of  the tensor field C,
implying smooth limits in the physical variation of  the crack
population properties. For the index i = i1i2i3 we set:

and

thus taking into account the radial distribution of  the cracks.
We proceed now to determine the exponents `, e, to

obtain the condition under which the observed law holds.
This is accomplished through examination of  the elasticity
equation and the crack or strain propagation equation.
Specifically, we divide our domain into regions where
inequalities of  type of  Equation (4) hold, and then we
estimate the variation of  the strain tensor through the
stored energy inside this domain. Moreover, this estimate
completes the elasticity system as a ‘div-curl’ system that
allows for the estimation of  the local variation of  the strain
in terms of  the local concentration of  cracks. The standard
Nash-Moser technique was modified by Pliakis [2011]: it is
combined with the local harmonic approximation method,
which provides local weights for the derivation of  the
estimates. Therefore, the local variation of  the stress tensor
is given by this elliptic system. In the Appendix we recall the
standard identities and the standard arguments that allow
us to derive the necessary estimates. Additionally, standard
arguments provide the existence of  a solution under a
smoothly varying crack density integral. Wackertapp et al.
[2000] provided numerical evidence for the behavior of  the
tension field x(n_). We proceed now to formulate the bounds
of  the physical quantities involved in our analysis. For this,
we use the typical Nash-Moser iteration used by Pliakis and
Minardi [2009] and Pliakis [2011] for domains defined by
polynomials. 

Specifically, we have the following result from following
the arguments in Pliakis [2011]:

Let M0 be a domain in space and M an arbitrary
subdomain with a smooth boundary. Then we denote by Mt

the points in M at distance at least t > 0 from the boundary.
Then the stress field inside M at every moment shows the
following estimates of  its maximum and minimum values:

The latter implies that in a stressed region of  the earth
we can define a subdomain in which the stress field can be
bounded with upper and lower bounds scaled to the volume
and the tensor field C that depends on the crack density
integral. To define the evolution of  the system, we proceed
now to study the dynamics of  crack concentration.
Wackertapp et al. [2000] suggested that the crack density
integral varies according to the cumulative strain stored in
the region due to the presence of  cracks:
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and therefore the growth of  the cumulative strain is scaled as
in the expression:

(5)

Furthermore using the above estimates we see that:

To derive a similar expression with the observed
accelerated deformation law, after substituting C and
integrating, Equation (5) should then be written as:

This latter equation is in perfect agreement with that
proposed by Main [1999] to scale crack growth. In the case
when (1+4e)/(1+3e) ~ –2 i.e. e ~ -3/10 we get that:

3. Conclusions and perspectives
The present approach leads to an estimate of  the

temporal growth of  the cumulative strain that is governed
by an integrodifferential equation, provided the crack density
has a specific local variation expressed also in the form:

This condition suggests that as the crack density
increases, then their variation averaged in all possible
directions vanishes: these tend to align in a specific direction
(which is reasonable, because as cracks condense and align,
they merge to produce a fracture). The cumulative strain
tensor follows a (Tf – t)1/3 law. The WHN model [Wackertapp
et al. 2000] comprises the development of  cracks in the
elastic constants of  the material (as brittle solids), and
accordingly, the evolution of  cracks is determined by a
simple equation where the rate of  increase of  cracks is
proportional to the existing cracks. However, the constant
of  proportionality depends on the elastic constants of  the
material. This leads to a nonlinear system of  equations. This
latter approach is consistent with the evolution process in an
earthquake zone, where microfracturing increases during the
preparation of  a main event, which leads to an increase in
moderate earthquake events [Papazachos and Papazachos

2001, Vallianatos and Tzanis 2003b]. This is also in agreement
with the stress accumulation model proposed by King and
Bowman [2003], where the accelerating energy release is due
to a decrease in the size of  a stress shadow that was left by
one or more previous events. 

To obtain this precise rate, we determine the
dependence of  the stress tensor on the crack density integral.
This is derived from the elastic equilibrium equations of  the
medium, provided the crack density integral satisfies a
particular form of  local estimates, the precise form of  which
is set by the requirement that they reproduce the observed
law. We apply the Moser iteration scheme for the elliptic
system of  elasticity, incorporating the local estimates of  the
crack density integral through weighted inequalities that was
originated by Pliakis and Minardi [2009] and Pliakis [2011].
Finally, the differential equation describing the microcrack
density evolution leads to the 1/3-law. Furthermore, we
expand the WHN approach to a new three-dimensional
formulation.
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Appendix
The estimates indicated in the main text will be achieved

here with the Moser iteration technique [Gilbarg and
Trudinger 1978], with the ‘tricks’ presented by Pliakis and
Minardi [2009], Pliakis [2011], and Papakostas and Pliakis
[2011]. We summarize them here. The building blocks are:

1. The Sobolev inequality [Gilbarg and Trudinger 1978]
in R3; q = 3p/(3 – p), p < 3 reads as for f ! C0

∞ (R3):

2. Generalized Hardy inequality [Pliakis 2002] for a

polynomial function in P: Rn
$ R – here n = 3 we have that

for f ! C0
∞ (Rn\{P = 0}):

Applying Gauss theorem, we see that for an arbitrary
smooth cut-off  | and a smooth (p + 1)-symmetric tensor
field U: 

where i = i1… ip,:

and the magnitude of  a (p + 1)-tensor:

Choosing a smooth cut-off  {: | = |U|k – 1�, we are led
for U= v to the following inequality for p< 2, q= 3p/(3 – p)

Introducing Hook’s law:

and using the harmonic approximation method for the norm
of  C, D:

This brief  description of  the mathematical method

allows us to produce the local weights that are necessary for
the estimates. Then using localization in conjunction with
Hardy inequality for the terms curl(C); curl(v) as well as
Equation (4), after iteration, we derive the basic estimates of
the stress tensor. The full treatment is given in Pliakis [2011]
and Papakostas and Pliakis [2011].
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