Contributo alla conoscenza delle caratteristiche sismiche dell'Iran settentrionale

F. PERONACI

ricevuto il 5 novembre 1959

In una precedente nota abbiamo accennato alle carateristiche sismiche dell'Altipiano Iraniano con particolare riguardo alla sua sismicità, ed iniziato lo studio del forte terremoto del 13 dicembre 1957 del quale abbiamo determinato le coordinate ipocentrali e il tempo origine. Nel presente lavoro ci siamo preoccupati di determinare la natura fisica del movimento tellurico all'ipocentro, e abbiamo iniziato lo studio di un altro terremoto avvenuto nello stesso anno a Nord di Teheran nel massiccio del Demavend.

NATURA FISICA DELLA SCOSSA ALL'IPOCENTRO DEL TERREMOTO DEL 13 DICEMBRE 1957.

Ricordiamo che la possibilità di indagare sulla natura fisica della causa che ha prodotto un movimento sismico, è legata all'esame degli impulsi iniziali registrari in un certo numero di stazioni distribuite secondo tutte le possibili direzioni intorno all'epicentro; partendo da questi dati sono state sviluppate varie teorie che hanno fornito risultati del massimo interesse circa il tipo di forza che origina un terremoto.

Notevole a tale riguardo è la teoria sviluppata da Byerly per terremoti superficiali basata sulla ipotesi di una Terra omogenea, e quindi che implica la sostituzione della traiettoria curvilinea del raggio sismico con la rettilinea, e successivamente estesa da Di Filippo ai terremoti profondi. Il metodo è molto noto per cui ci limiteremo a riportare i risultati da noi ottenuti applicandolo ai due terremoti su accennati. Partiti dalle coordinate ipocentrali da noi ricavate analiticamente per il terremoto del 13 Dicembre 1957

 $\varphi = 34^{\circ} \ 36' \ 53'' \quad N \ \pm \ 0^{\circ} \ 0' \ 47''$ $\lambda = 47^{\circ} \ 48' \ 43'' \quad E \ \pm \ 0^{\circ} \ 0' \ 52''$ $h = 7 \ \pm \ 5,3 \ \mathrm{km}$

abbiamo determinato la distanza epicentrale Δ e l'azimut α rispetto all'epicentro, di ognuna delle 65 stazioni a nostra disposizione, elementi necessari per passare alla rappresentazione cartografica, che nel nostro caso è la stereografica polare con epicentro coincidente con l'ipocentro, polo di proiezione l'antiepicentro, e piano di proiezione il piano equatoriale corrispondente.

Successivamente abbiamo calcolato la distanza epicentrale Δ' corrispondente al tragitto rettilineo del raggio sismico, dato che ll modello di Terra a cui si applica il metodo è supposto omogeneo, e siamo pervenuti (Tabella I) agli elementi che consentono di riportare in proiezione stereografica le posizioni delle varie stazioni rispetto all'epicentro. Come è noto, per il calcolo di Δ' è necessario applicare la relazione di Benndorf.

$$\cos e = \frac{V_o}{v_n}$$

ove V_o è la velocità all'ipocentro, v_n la velocità apparente del raggio sismico in corrispondenza della distanza epicentrale relativa alla stazione considerata. A questo riguardo le v_n sono state determinate dalle dromocrone di Jeffreys per terremoti con ipocentri superficiali mentre per V_o si è assunto ll valore di 7,77 Km/sec. dato che i calcoll sono stati riferiti alla Terra privata della crosta terrestre e gll mpulsi studiati si riferiscono alle onde P.

Tabella I

Stazione	impulso iniziale	⊿ (km)	a (gradi)	v_n (km/sec)	cos e	$\tan \frac{1}{2} \Delta'$
1 Goris 2 Nachichevan	+++	532 533	346,1 336,9	7,81 7,81	0,99488 99488	0,102 0,102
3 Kirovadan	II	671	349.5	7,87	98729	0,161
4 Stepanovan	+	752	337.4	7,90	98354	0,184
5 Bogdanova	1 1	798	334,1	7,91	98230	0,191
6 Tiflis	+	814	342,0	7,92	98106	0,197
7 Akhalkanati	_	824	333,9	7,92	98106	0,197
8 Abas-Tunian	+	886	332,1	7,93	97882	0,204
9 Zugdidi	+	939	328,3	7,94	97858	0,210
10 Aschkabad	-	993	68,7	7,95	97735	0,216
11 Erevan	+	1079	345,7	7,96	97613	0,222
12 Ksara	-	1094	269,9	7,97	97494	0,228
13 Piatigorsk	+	1107	339,8	8,04	96641	0,266
14 Boriom	1+	1194	342,0	8,10	95925	0,295
15 Sochi	+	1200	326,9	8,10	95925	0,295
16 Feodosia	+	1549	320,7	8,43	92170	0,421

Tabella I

940-i	impulso iniziale	mit stieden	NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,	Marie offe	integrities	1.
Stazione	ndh	Δ	a	v_n	cos e	tang $\frac{1}{2}\Delta$
mod to continu	<u> </u>	(km)	(gradi)	(km/sec)		ingo it is
17 Sinferopoli	+	1622	318,2	8,47	91735	0,434
18 Elwan	+	1630	255,9	8,47	91735	0,434
19 Samarcanda		1777	66,8	8,64	89930	0,486
20 Istanbul	+	1789	299,1	8,72	89105	0,509
21 Quetta	-	1866	99,1	8,74	88901	0,515
22 Stalinabad	-	1915	71,1	8,92	87107	0,564
23 Kuliab	<u>-</u>	1994	73,1	8,95	86816	0,572
24 Teskhend 25 Kirninev		$\frac{2012}{2085}$	62,5	9,02	86141	0,589
26 Karaki	_	2140	316,2 114,8	9,02 9,63	86141 80685	$0,589 \\ 0,732$
27 Bucarest	1 1	2149	308,0	9,65	80518	0,736
28 Warsak		2170	90,1	9,67	80351	0,741
29 Atene	+	2183	286.2	9.68	80269	0.743
30 Jasi	+	2189	315,8	9,68	80269	0,743
31 Namangan	-	2198	64,3	9,70	80103	0,747
32 Andizhan	-	2252	65,7	10,99	70700	1,000
33 Laore	-	2495	93,2	11,21	69313	1,040
34 Sverdlosk	+	2633	17,7	11,44	67919	1,081
35 Scalnate Pleso	+	2774	314,2	11,68	66521	1,122
36 Derha Dun	-	2833	92,3	11,80	65847	1,143
37 Varsavia	+	2877	320,8	11,82	65736	1,146
38 Bratislava	+	2940	310,8	12,06	64427	1,187
39 Vienna	+	2998 3022	309,8	12,19 12,20	$63741 \\ 63688$	1,201 1,210
40 Bombay 41 Roma	+	3165	118,8 295,3	12,20	63068	1,210
42 Trieste	1	3170	301.2	12,32	63017	1,233
43 Praga	1	3209	312,7	12,33	63017	1,233
44 Pavia	+	3400	302,1	12,61	61617	1,278
45 Strasburgo	+	3625	307,4	12,68	61277	1,289
46 Copenaghen	+ +	3670	336,2	12,75	60941	1,330
47 Clermont	1 + 1	3940	303,3	13,05	59540	1,349
48 Algeri	+	4010	286,8	13,21	58819	1,375
49 Kiruna	+	4085	343,4	13,21	58819	1,375
50 Kew	++	4210	307,2	13,23	58730	1,378
51 Tamarraset	+	4292	276,3	13,25	58641	1,381
52 Duram	+	4500	310,4	13,50	57555	1,421
53 Astrida	+	4542	208,3	13,53	57386	1,427
54 Lwiro	+	4544	206,2 292,9	13,53 13,54	57386 57385	1,427 1,427
55 Toledo	+	$4565 \\ 4695$	289,2	13,55	57343	1,427
56 Malaga 57 Irkutsk	I	4829	48,1	13,50	56715	1,428
58 Kiaka	+ + + + + + + + + + + + + + + + + + + +	4968	51,0	13,70	56632	1,455
59 Kabansk	1	4976	48,6	13,72	56632	1,455
60 Tananarive	_	5970	179,8	15,20	51118	1,681
61 Uglegorsk	+	7463	45,2	17,90	43408	2,093
62 Iuzno. S.	+	7613	47,1	18,04	43071	2,094
63 College	+	8877	6,7	20,74	37463	2,475
64 Brébeuf	++++++	9346	322,9	21,98	35350	2,646
65 Ottawa	+	9464	323,9	21,99	35334	2,647

Nella fig. 1 sono state riportate in proiezione stereografica la posizione delle 65 stazioni e il primo impulso è stato rappresentato con una freccia verso l'ipocentro se dilatazione e con una freccia diretta in senso contrario se compressione.

Esaminando la distribuzione ottenuta è facile tracciare con buona approssimazione i due cerchi normali previsti dalla teoria, passanti per

Fig. 1

l'epicentro e che separano le compressioni dalle dilatazioni. Le due rette tangenti ai cerchi e passanti per l'epicentro ci forniscono le tracce dei due possibili piani di frattura, ne è possibile come è noto, desumere dalla teoria quale dei due piani sia quello effettivo.

Il terremoto è quindi dovuto ad una frattura avvenuta secondo uno dei due piani formanti con il nord geografico gli angoli di 126° e 216° rispettivamente. Per quanto riguarda l'angolo che i piani formano rispetto al raggio terrestre per l'epicentro è sufficiente (fig. 2) tracciare un cerchio corrispondente alla sezione meridiana, riportare sulla traccia del piano equatoriale a partire dal centro i diametri dei due cerchi e unire l'estremo dei due segmenti con il centro di proiezione. Le corde che uniscono l'epicentro con i due punti di intersezione F ed F' rappresentano le traccie dei due possibili piani di frattura e ci consentono di misurare gli angoli che i piani stessi formano con il raggio terrestre per l'epicentro. Dalla figura si sono ottenuti gli angoli di 66° e di 16° .

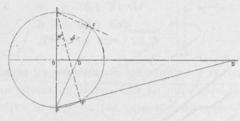


Fig. 2

Resta ora da decidere quale dei due piani possibili sia effettivamente il piano di frattura. Come è noto, a questo riguardo è necessario l'ausilio o di fatti precedentemente accertati o la conoscenza della geologia e della tettonica della zona ove è avvenuto il terremoto.

Nella fig. 3 abbiamo riportato schematicamente la carta della regione nord-occidentale dell'Iran dal punto di vista dell'orogenesi, secondo le indicazioni contenute nel trattato « L'evolution de la lithosphère » di Termier; abbiamo inoltre riportata su essa la posizione dell'epicentro. In base a tale carta si nota che le catene di monti che recingono la parte meridionale dello scudo iraniano (di origine prepaleozoica) sono per la massima parte formate da una successiva copertura di Altaidi che pur elaborate in epoche precedenti, si sono sovrapposte alla fine del secondario se non nel terziario. La catena dell'Alwand che è compresa tra Hamadan e Kermanshah è invece formata in prevalenza da rocce metamorfiche del paleozoico e quindi depositate in epoca precedente alla co-

pertura delle Altaidi. L'epicentro cade nella zona di separazione tra le due formazioni e se si adotta per piano di frattura quello che forma con il meridiano un angolo di 126° si nota che tale piano risulta praticamente parallelo non solo alla linea di demarcazione tra le due formazioni ma anche all'andamento delle catene montuose di origine recente che recingono il Golfo Persico.

Riteniamo quindi ragionevole pensare che la natura fisica della scossa che ha determinato il grande terremoto del 13 Dicembre 1957 sia uno scorrimento tra due formazioni geologicamente di epoche di-

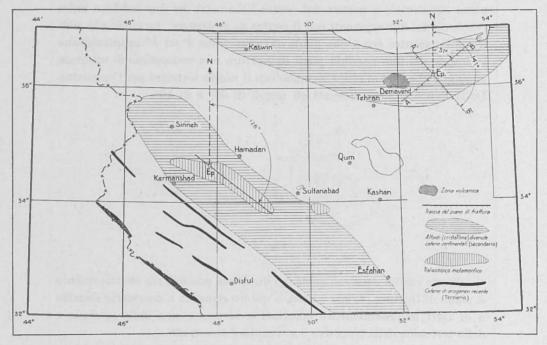


Fig. 3

verse, e che il piano di frattura sia quello che forma con il meridiano per l'epicentro un angolo di cnca 126°, e con il raggio terrestre passante per l'epicentro un angolo di 66° circa. Se si tiene presente il fatto che la zona è già stata sede anche negli anni precedenti di altri movimenti tellurici, l'ipotesi di una orogenesi ancora in atto non è da escludersi.

IL TERREMOTO DEL 2 LUGLIO 1957.

Alle ore 00 42^m c. del 2 luglio 1957 sulla regione montana a Nord di Teheran si è verificato un violento terremoto avvertito almeno di II°-III°

anche nella capitale, l'area macrosismica molto estesa ha interessato qualche centinaio di villaggi molti dei quali hanno subito danni ingenti. La magnitudo del terremoto stesso ha raggiunto il valore di 7,4 e quindi il movimento tellurico è da classificarsi tra i più intensi avvenuti in Iran in questo ultimo cinquantennio. Numerose anche in questo caso sono state le repliche, tutte di minore entità, come si può riscontrare dall'esame dei bollettini dell'U.R.S.S.

La determinazione dei dati microsismici relativi alla posizione dell'ipocentro e il tempo origine è stata da noi eseguita utilizzando le registrazioni delle 20 stazioni riportate nella Tabella II, le cui distanze dall'epicentro sono comprese tra 800 e 2800 Km e distribuite nel modo più uniforme possibile intorno all'epicentro stesso. Il metodo applicato è quello seguito per la determinazione dei dati ipocentrali del terremoto di Farsinaj per cui rimando direttamente alla pubblicazione a riguardo.

Siamo partiti dai seguenti dati provvisori:

$$\varphi = 36,1 \text{ Nord}$$
 $\lambda = 52,5 \text{ Est}$
 $H = 00 42^{\text{m}} 26,5^{\text{s}}$

ottenuti modificando leggermente la longitudine e il tempo origine calcolati per via provvisoria da Mosca, che ha impiegato per la determinazione approssimativa le stazioni più prossime all'epicentro. Per quanto riguarda la profondità abbiamo assunto $h=33~{\rm Km}$ dato che in base alle registrazioni, il terremoto ha le caratteristiche di un terremoto a profondità normale.

La prima approssimazione ci ha fornito le seguenti correzioni da apportare ai dati di partenza.

$$\delta \, \varphi_o = \, + \, \, 0^{\rm o}, 1173323 \qquad \qquad \delta \, \lambda_o = \, + \, \, 0^{\rm o}, \, 218567 \\ \delta \, h_o = \, + \, \, 0 \, \, , 13299 \qquad \qquad \delta \, t_o = \, + \, \, 0^{\rm s}, 74533$$

ove l'unità di misura per δ h_o è pari a 0,01 del raggio della Terra privata della erosta terrestre (63,4 Km).

Con queste correzioni le coordinate più probabili dell'epicentro, e il tempo origine divengono

$$\varphi_o = 36^{\circ} 07',04 \text{ N}$$
 $\lambda_o = 52^{\circ} 43', 11 \text{ E}$
 $h = 41,4 \text{ Km}.$
 $H = 00^{\circ} 43^{\circ} 27^{\circ},2$

Tabella II

		Δ	Tempo di		Tempo	$\frac{\partial f}{\partial A n}$	<u>ðf</u>	$T_n - \begin{bmatrix} t_o + \\ + f(\varphi_o, \lambda_o, h_o) \end{bmatrix}$
	Stazione	(gradi)	Registraz.	Tragitto per h = 33 km	Tragitto di origine		∂ h (sec.)	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Erevan Tiflis Bakuriani Borjom Piatigorst Quetta Ksara Oburdam Gerusalem. Korog Warsak Karaki Mirzad Laore Istanbul Dhera-Dun Atene Bombay Poona	07° 20′,50 08 17,50 09 03,15 09 10,60 10 50,00 13 25,43 13 47,85 13 57,71 14 56,75 15 21,63 15 35,33 16 44,35 17 15,22 18 40,70 19 00,20 22 04,91 23 02,33 24 47,42 25 45,38 25 48,31	00h 44m18s, 4 44 26, 6 44 38, 9 44 41, 3 45 01, 1 45 35, 0 45 43 45 40, 4 46 01, 0 45 57, 7 46 06 46 19 46 24, 6 46 40 46 46 47 18, 0 47 31 47 47, 1 47 57 47 59, 0	01m47s,6 02 00,8 02 11,4 02 13,0 02 31,3 03 10,6 03 15,4 03 17,6 03 30,4 03 35,8 03 38,8 03 53,4 03 59,9 04 17,5 04 21,5 04 53,7 05 03,2 05 20,3 05 29,8	00h 42m 30s, 8 42 25, 8 42 27, 5 42 28, 3 42 29, 9 42 24, 4 42 27, 6 42 22, 8 42 30, 6 42 21, 9 42 27, 2 42 25, 6 42 24, 7 42 22, 5 42 24, 5 42 24, 3 42 27, 2 42 26, 8 42 27, 7 42 29, 2	+ 14s,0 + 13,9 + 13,8 + 13,6 + 13,1 + 13,1 + 13,1 + 12,9 + 12,8 + 12,8 + 12,5 + 12,5 + 10,6 + 10,6 + 9,9 + 9,7 + 9,4 + 9,4 + 9,4 + 9,4	1s,2 1,6 1,9 1,9 2,4 3,0 3,1 3,1 3,3 3,4 3,5 3,7 3,8 4,7 5,0 5,7 5,9 6,0 6,1 6,1	$\begin{array}{c} + \ 4^{5}, 3 \\ -0, 7 \\ +1, 0 \\ +1, 8 \\ +3, 4 \\ -2, 1 \\ +1, 1 \\ -3, 7 \\ +4, 1 \\ -4, 6 \\ +0, 7 \\ -0, 9 \\ -1, 8 \\ -4, 0 \\ -2, 0 \\ -2, 2 \\ +0, 7 \\ +0, 3 \\ +1, 2 \\ +2, 7 \end{array}$
20	Belgrado	25 46 ,51	47 00 ,0	Media	42 26 ,5	Т 0,4	0,1	

Siamo passati quindi alla seconda approssimazione i cui risultati sono stati i seguenti:

$$\delta \varphi_o = + 0^{\circ},0534367$$
 $\delta \lambda_o = + 0^{\circ},0095157$ $\delta h_o = -0, 235679$ $\delta t_o = -0^{\circ},851355$

Quindi in base a questa approssimazione la profondità ipocentrale passa da 41,4 Km a 26,4 Km con un errore standard di \pm 15 km ca. Questo ultimo, risultato da noi ritenuto non soddisfacente ci ha consigliata

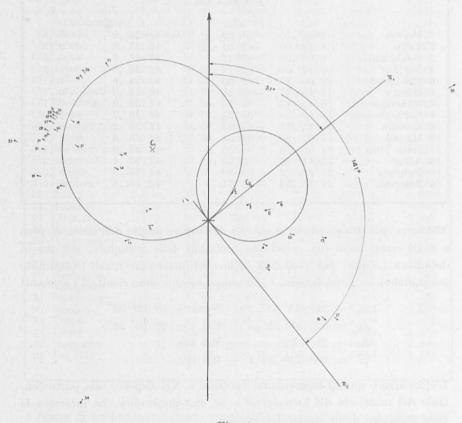


Fig. 4

l'esecuzione di una ulteriore approssimazione compiuta impiegando solo 14 stazioni, e cioè eliminando dai calcoli el stazioni di Poona, Ksara, Warsak, Laore, Is tanbul, Korog, che comportavano scarti superiori al secondo rispetto al tempo origine provvisorio.

La tabella III riporta i dati necessari per quest'ultima approssimazione che ha condotto alle seguenti correzioni:

$$\delta \varphi_o = + 0^{\circ},0082715$$
 $\delta \lambda_o = + 0^{\circ},0366099$ $\delta h_o = -0,079396$ $\delta t_o = -0^{\circ},289722$

Tabella III

	Δ	Tem	$T_n-[t_o+]$	
Stazione	(gradi)	tragitto h = 26,4 km	origine	$+f(\varphi_{\epsilon},\lambda_{o},h_{o})$
1 Erevan 2 Tifllis 3 Bakuriani 4 Borjom 5 Piatigotsk 6 Quetta 7 Oburdam 8 Gerusalemme 9 Karaki 10 Mirzad 11 Dera Dun 12 Atene 13 Bombay 14 Belgrado	7° 38′,75 8 19,00 9 06,00 9 13,60 10,50,17 13 19,57 13 44,43 15 10,50 16 42,38 17 02,25 21 55,55 23 11,55 24 45,42 25 53,33	01 52 ,4 02 01 ,8 02 12 ,7 02 14 ,4 02 36 ,5 03 10 ,0 03 15 ,4 03 34 ,3 03 53 ,8 03 58 ,0 04 53 ,1 05 05 ,6 05 20 ,7 05 31 ,4	00h 42m26s, 0 42 24, 8 42 26, 2 42 26, 9 42 24, 6 42 25, 0 42 25, 0 42 26, 7 42 25, 2 42 26, 6 42 24, 9 42 25, 4 42 26, 6 42 24, 9 42 26, 6	$\begin{array}{c} -0 ,8 \\ -0 ,9 \\ +0 ,5 \\ +1 ,2 \\ -1 ,1 \\ -0 ,7 \\ -0 ,7 \\ -0 ,5 \\ +0 ,9 \\ -0 ,8 \\ -0 ,3 \\ +0 ,6 \\ +0 ,9 \end{array}$

Abbiamo quindi proceduto al calcolo dell'errore medio dell'unità di peso e degli errori medi dei valori più probabili delle incognite, per cui in definitiva i valori più probabili delle coordinate epicentrali (coordinate geografiche), della profondità e del tempo origine sono risultati i seguenti

$$\varphi_0 = 36^{\circ} 11' 11'', 2 \quad \text{Nord } \pm 0^{\circ} 00' 53'' \\
\lambda_0 = 52^{\circ} 46' 22'', 3 \quad \text{Est } \pm 0^{\circ} 01' 28'' \\
h_0 = 21, 4 \text{ km} \quad \pm 6, 5 \text{ km} \\
H = 00^{\text{h}} 42^{\text{m}} 54^{\text{s}}, 4 \pm 0, 5 \text{ sec.}$$

L'epicentro è quindi leggermente spostato a NE rispetto alla parte centrale del massiccio del Demavend e ad una profondità che interessa la zona inferiore dello strato del granito.

Anche per questo terremoto abbiamo voluto eseguire un tentativo per determinare la natura fisica della causa che ha originato il movimento sismico; a questo riguardo abbiamo impiegato gli impulsi iniziali delle registrazioni delle stazioni riportate nella Tabella IV, nella quale sono contenuti i dati necessari per la rappresentazione cartografica in proiezione stereografica polare con epicentro coincidente con l'ipocentro

Stazioni	Primo impulso	⊿ (gradi)	a (gradi)	v _n (km/sec)	cos e	$ ang rac{1}{2} \Delta'$
1 Tiflis	e —	8º 19	314025	0.00	07107	0.045
2 Piatigorsk	i	10 50	40 06	8,00	97125	0,245
3 Samarcanda	i —	11 49	68 19	8,10	95925	0,295
4 Quetta	i +	13 20	112 43	8,22	94525	0,345
5 Ksara	i —	14 01	265 17	8,46	91843	0,431
6 Koros	i	15 09	79 04	8,48	91627	0,437
7 Gerusalemme	i —	15 10	281 46	8,58	90559	0,368
8 Karaki	i +	16 42	128 40	8,59	90454	0,471
9 Mirzad	i —	17 02	75 57	8,80	88295	0,532
10 Laore	ei +	18 31	98 09	8,90	87303	0,559
11 Helwan	i +	18 39		9,02	86141	0,589
12 Iasi	i —	21 28	256 29	9,02	86141	0,589
13 Dera Dun		21 28 21 55	307 41	10,07	77159	0,824
14 Bucarest	i + i -	21 35	98 14	10,09	77006	0,828
15 Atene			300 41	10,08	77083	0,826
16 Bombay		23 11	283 13	11,40	68157	1,073
17 Poona		24 45	129 04	11,44	67919	1,080
18 Bratislavua	e +	25 39	127 35	11,78	65959	1,140
19 Reggio C.	ei	28 30	306 02	12,40	62611	1,244
20 Trieste	i —	29 11	285 07	12,42	62560	1,247
	i +	30 25	300 18	12,47	62309	1,256
	i —	25 53	299 30	11,80	65847	1,143
22 Roma	i +	31 29	293 52	12,61	61618	1,279
23 Bologna	i +	32 04	297 55	12,70	61181	1,293
24 Firenze	i +	32 08	296 34	12,70	61181	1,293
25 Uppsala	i +	32 25	327 46	12,75	60941	1,309
26 Copenaghen	i +	33 20	318 19	12,88	60326	1,322
27 Coira	i +	33 25	302 10	12,89	60279	1,324
28 Pavia	i +	33 37	299 10	12,90	60232	1,325
29 Mestetten	i +	33 54	304 33	12,92	60139	1,329
30 Stoccarda	i +	33 48	305 38	12,91	60185	1,327
31 Strasburgo	i +	34 43	305 08	12,93	60092	1,330
32 Basilea	i +	34 47	303 19	12,93	60092	1,330
33 Toledo	i +	44 11	292 31	13,87	56020	1,479
34 Lwiro	i +	44 19	214 55	13,87	56020	1,479
35 Matzuiro	i +	66 25	61 10	17,34	44809	1,996
36 De Bilt	i +	36 43	320 53	13,21	58819	1,374

e piano di proiezione al piano equatoriale corrispondente. Applicando il procedimento già eseguito per il terremoto precedente, e illustrato dalla fig. 4, abbiamo potuto stabilire che il movimento sismico è stato originato da una frattura; i due possibili piani di frattura previsti dalla teoria formano con il Nord geografico gli angoli di 51° e di 141° circa, mentre gli angoli di inclinazione dei piani stessi, rispetto al raggio terrestre passante per l'epicentro sono rispettivamente $\beta_1 = 38$ °, $\beta_2 = 52$ °.

RIASSUNTO

Proseguendo nello studio delle caratteristiche sismiche del massiccio iraniano, si determinano i dati ipocentrali e l'ora origine del terremoto del 2 luglio 1957 avvenuto a N di Teheran. Si è quindi indagato sulla natura del movimento sismico giungendo alla conclusione che trattasi di una frattura; di essa sono stati calcolati gli elementi caratteristici. Analogo studio condotto per il terremoto di Farsinaj del 13 Dicembre 1957, ha mostrato che anche per esso trattasi di una frattura.

ABSTRACT

Following up the study of the seismic features of the Iranian massif, the hypocentral data and time of the origin of the earthquake which took place north of Teheran on July 2 1957, were worked out. Then the nature of this seismic movement was inquired into, reaching the conclusion that a fracture was involved. Salient features of this fracture were worked out. A similar study carried our in the case of Farsinaj earthquake of December 13 1957, demonstrated that it was also due to a fratucre.

BIBLIOGRAFIA

- PERONACI F., Sicmicità dell'Iran, « Annuali di Geofisica », XI, 1, (1958).
- BYERLY P., The nature of the first motion in the Chilean earthquake of November 11, 1922, «America, Journ. Science», XVI, 93, (1928).
- Byerly, P., The earthquake of July 6, 1934. Amplitudes and first motion «Bull. Seis. Soc. Amer. », 28, (1938).
- DI FILIPPO, D., Sulla rappresentazione in superficie della natura dinamica di una scossa all'ipocentro, « Annali di Geofisica », III, 2, (1950).
- Caloi, P., Peronaci, F., Il terremoto del Turkestan, « Annali di Geofisica », I, 2, (1948).
- TERMIER, H.-TERMIER, G., L'évolution de la lithosphère, Paris 1957.
- Furon, R., Géologie du Plateau Iranien, Mémoire du Muséum National d'Histoire Naturelle, Paris, 1941.