SESSE DEL LAGO D'ORTA

GUIDO PANNOCCHIA

In questo lavoro si determinano le sesse riguardanti l'intero lago d'Orta con due differenti metodi; quello di Defant e quello di Hidaka rinviando a data posteriore e la determinazione di sesse riguardanti parti di lago e la individuazione e confronto sperimentali delle sesse determinate teoricamente. Per la parte bibliografica inerente al lavoro e per i chiarimenti sui metodi usati si fa riferimento all'analogo lavoro sul lago di Garda di P. Caloi (¹) limitandoci qui alle indicazioni essenziali.

a) Dati generici relativi al lago d'Orta.

Secondo P. Landini (°): superficie totale 18 km°: latitudine nord 45° 49°: longitudine ovest di Roma 4° 3°: lunghezza secondo la linea mediana 13,4 km; larghezza massima 2,5 km; larghezza media 1400 m; profondità massima 143 m; questa si trova a 147 m sul livello del mare.

b) Sesse uni-bi e tri-nodale col metodo di Defant.

(I dati numerici usati sono stati rilevati da una carta geografica dell'Istituto De Agostini al 50.000).

Con la formula di Merian:

$$T = \frac{2l}{\sqrt{gh_0}}$$
[1]

dove *l* indica la lunghezza del lago (*l*=13.300 m) e h_a la profondità media ($h_a=69,39$ m) si determina in prima approximazione il periodo per la sessa uninodale; esso risulta $T = 16^{m},99 \simeq 17^{m}$.

Successivamente, praticate un certo numero di sezioni verticali (32 nel nostro caso) normali alla linea di valle (linea congiungente i punti di massima profondità), determinate di esse le larghezze alla superficie del lago e le aree, determinate le aree parziali del lago concprese in superficie tra una sezione e la successiva, con la seconda delle seguenti formule di Defant:

Fig. 1

$$\begin{cases} 2 \ \Delta \eta_0 = \frac{4\pi^2}{g} \frac{2\xi_0 \Delta x}{T^2} 2\xi_0 \Delta x \\ 2\xi_0 = -\frac{1}{S(x)} \int_0^x 2\eta_0 \ b(x) \ dx \ , \end{cases}$$
[2]

dove i simboli hanno i seguenti significati: $2\eta_0$ ampiezza del moto in senso verticale, cui si attribuisce inizialmente un valore arbitrario, ad esempio 100; ξ_0 ampiezza del moto in senso orizzontale; S(x) area della sezione verticale in considerazione, b(x) larghezza di detta sezione alla superficie del lago; Δx intervallo fra una sezione e la successiva (nel nostro caso ogni 500 m, tranne in alcuni tratti di lago meno regolari, dove Δx vale 250 m); x valutato lungo la linea

SESSE DEL LAGO D'ORIA

 $v_n(x)$ Zv(x)Sezioni b (x) b(x) S(x) $v_n(x)$ 0 Λx S(x)(*)x parziale (a _____ area $m^3 - 10^6$ m^{-10^3} 10⁺ cm 10^8 cm^2 m m tot, del 10^8 cm^2 lago) 0 0 D. n 0 0 7.622375 32.50325.00 0.01795 5 500 850 0.89675 1 45.00775.00 •) 1000 2,02000 1452.50 29.512500 0.04280 \mathbf{n} 40,755000 65.001425.00 0.078703 1500 3,13500 1300 33 3.99000 58.254000 67.50 2100.00 0.11597 .4 26001460 33 72.505 25001.050001375 55.687500 2825.00 0.15601n 62.503450.00 0.19053 67.510000 6 30004.30000 1570)) 1950 92.501375.00 3500 9.05000 176,475000 0.241617 'n 2275100,00 1000 10,77500 245.131250 5375.000.29681)) 8 9 425013.53750 2375321.515625 51.005915.00 0.326662.562.50108.975000 6540.00 0.36118 39 101500 16.62500 2160 60.00 16.15000 2242.50 362.163750 7140.00 0.39431D 11 4750 52.000.42303 19 5000 14.35000 2125 301,937509 7660.00 0 2062.50 362.484375 45.008110.00 0.44188 17.57500 13 5250)) 1.4 5500 18.82500 2000 376.500000 50.00 8610.00 0.17549 n 48.759097.50 0.5024215 5750 17.17500 1825 313.443750 'n 10,8015.45000 1587.50 215,268750 9497.50 0.5245116 6000 5) 230.950060 72.5010222.500.56154 5 17 6500 14,90000 1550 184,593750 77.50 10997.50 0.60734 13.12500 18 7000 137533 11.37500 153.562500 66.2511660.00 0.61393 19 75001350 n 7750 9.10000 1215 113.295000 27.5011935.00 0.65912 2.520 21 8000 9,85000 1087.50 107.118750 30,00 12235.00 0.67569)) 58.75 12822.50 22 8500 13.60000 1215 169.320000 0.708135 159.250000 66.2513185.00 0.7447223 9000 11.37500 1400 1) 67.25 11157.50 0.78186 15.36000 210.375000 24 9500 1375Э 25229.731256 70.00 14857.50 0.8205210000 15.57500 1475 n 26 15.22500 72.5015582.50 10560 1110219,210000 0.86055 \mathbf{n} 271370 183.580000 70.0016282.500.8992111000 13.4000013 67.50 0.9364928 11500 5.65000 980 55.370000 16957.50 1) 6.959272912000 1.20000805 33.810000 11.2517370.00 $\mathbf{\hat{n}}$ 17770.00 0.98136 10.00 2.76250 675 18.646875 30 1250011 0.18000 0.99655 3113000 ± 120 20.160000 27.5018045.00 11 1.00000 3 0 6.2518107.50 32 133000

TABELLA N. 1

(*) Le S(x) nej calcoli con il met, di Hidaka vengono espresse in m² 10².

di valle; avendo scelto per il lago in esame conae origine delle x l'estremo sud del lago, si calcola il $2\overline{z}_0$ in quanto è:

$$q = \int_{0}^{x_{1}} 2\eta_{0} b(x_{1}) dx = 2\eta_{0} \int_{0}^{y_{1}} b(x_{1}) dx = 2\eta_{0} v(x_{1})$$

(dove $v(x_1)$ rappresenta l'area parziale del lago) la quantità d'acqua che transita attraverso la prima sezione per provocare lo spostamento

GUIDO PANNOCCHIA

assegnato $2\eta_{0}$; questa divisa per $S(x_{1})$ dà $2\xi_{0}$. Con la prima delle [2] si determina il $2\Delta\eta_{0}$ (variazione dello spostamento nel passaggio dalla sezione 0 alla prima sezione); si prosegue poi di sezione in sezione usando di volta in volta il nuovo $2\eta_{0}$ che via via si determina. (Nel passaggio da una sezione alla successiva per un numero abbastanza elevato di sezioni si ritiene che l'entità dello spostamento non varii o quanto meno abbia un andamento lineare).

In corrispondenza dell'ultima sezione (di area nulla) se il periodo T trovato con la formula di Merian ed usato è esatto la q (quantità d'acqua transitante) devrebbe essere nulla. Non avvenendo ciò per q>0 il T va diminuito; si procede in modo analogo con il nuovo T; se con questo q<0 il valore di T cercato è compreso fra i due. Si è ottenuto per la uninodale il valore di $T=14^{m},6$.

Si procede in modo del tutto analogo per la binodale e trinodale; si sono trovati i valori $T=9^{m},2$ per la binodale; $T=5^{m},8$ per la trinodale.

Nella precedente tabella n. 1 si riportano i principali dati usati con ambedue i metodi nominati; nelle tabelle n. 2, 3 e 4 quelli relativi ai calcoli con il metodo di Defant.

c) Sesse uni-bi e tri-nodali con il metodo di Hidaka (¹). Nell'equazione di Chrystal:

$$\sigma(v)\frac{d^2u}{dv^2} + \frac{4\pi^2}{T^2g}u = 0 \qquad [3]$$

i simboli hanno i seguenti significati: v area superficiale della parte di lago compresa tra una estremità di esso ed una generica sezione: $0 \le v \le a$ essendo a l'area totale; $\sigma(v)$, prodotto dell'area di una generica sezione per la sua larghezza in superficie, per cui $\sigma(o) = \sigma(a) = 0$; T periodo di una sessa; u funzione di v avente con l'ampiezza della sessa la relazione

$$\xi = -\frac{du}{dv}, \qquad [4]$$

con le condizioni ai limiti u(o) = u(a) = 0. Posto $z = \frac{v}{a} e \sigma(z) = h \gamma(z)$, la [3] diventa:

$$\frac{d^2u}{dz^2} + \frac{\lambda}{\gamma(z)} u = 0 \quad \text{con} \quad \lambda = \frac{4\pi^2 a^2}{T^2 g h}$$
 [5]

e le condizioni ai limiti: u(o)=0, u(1)=0.

\mathbf{N}^{0}	αΔχ	$q = (2 \eta_i + 2 \Lambda_{\eta_i}) v(x)$	$2\xi_{\rm i} = -\frac{q}{S_{\rm i}(x)}$	2 Δηι	$2\eta_{i}+2\Delta\eta_{i}$
	10 - 4	10 ¹⁹ cm ³	10 ³ cm	cm ·	cm
		-			
0					100
1	26.221	32,5	-3.624	- 9.50	90.50
2		73.2	3.621	9.50	81.00
3	1)	125.8	4.013	-10.52	70.48
4		173.1	- 1.316	11.10	59.08
5))	216.2	- 5.338	14.00	45.08
- 6))	244,1	5.684	14.90	30.18
7))	272.3	-3.009	7.89	22.29
õ	"	294.6	- 2,731	7.17	15.12
9	13.111	302.8	-2.237	2.93	12.19
10		310.4	-1.367	- 2.15	9.74
11		316.2	- 1.958	- 2.57	7.17
12	1)	319,9	-2.229	- 2.92	4.25
13	1)	321.8	- 1,831	2,40	1.85
14	3)	322.7	-1,714	2.25	- 0.40
15))	322.5	-1.878	2.16	- 2.86
16))	321.4	2,080	2.73	- 5.59
17	26.221	317.4	2,130	- 5.58	11.17
18	ж	308.7	- 2.299	6.03	-17.20
19	11	297,3	-2.614	- 6.85	- 24.05
20	13.111	290.7	- 3.191	- 4.19	- 22,24
21	1)	282.2	2.865	- 3,76	-32.00
22	26,221	263.4	-1.937	5.08	37.08
23	3)	238,8	2.099	5.50	- 42.58
24	0	210.2	-1.371	- 3,60	46.18
25		177.9	-1,142	- 2.99	- 49.17
26))	142.3	-0.935	2.45	51.62
27	D	106.2	-0.792	2.08	- 53.70
28	29	70.0	-1.239	- 3.25	- 56.95
29	11	46.5	-1,107	- 2,90	- 59.85
30))	22,6	- 0.818	- 2.14	61.99
31))	5.6	- 1.167	- 3.06	- 65.05
32		1.5	-	-	

TABELLA N. 2 (*) :
$$T = 14^{m}, 6 = 876^{*}$$
 $\alpha = \frac{4\pi^{*}}{\sigma T^{*}}$

Sessa uninodale:

 $T = 14^{m}, 6:$

l'ultima colonna dà l'andamento delle ampiezze:

il nodo cade tra la sez. 13 e 14 e a calcoli fatti alla distanza di 5155 m dall'estremo sud del lago. Lil valore di T usato si può ritenere sufficientemente approssimato, scartando

il q di poco dallo zero]. (*) Si riportano le tabelle dei calcoli solo per il valore di T che si è ritenuto

sufficientemente approssimato.

GUIDO PANNOCCHIA

L'integrazione della [5] fatta col metodo delle variazioni di Ritz conduce alla relazione

$$\sum_{i=0}^{m} \left[\frac{(i+1)(j+1)}{i+j+1} - \frac{(i+2)(j+1) + (i+1)(j+2)}{i+j+2} + \frac{(i+2)(j+2)}{i+j+3} - \lambda I_{i+j} \right] A_i = 0$$

$$(j=0 \ 1 \ 2 - m)$$

dove:

$$I_{i+j} = \int_{0}^{1} \frac{z^{2}(1-z)^{2} - z^{i+j}}{\gamma(z)} dz \qquad [7]$$

che può essere calcolato numericamente se $\gamma(z)$ è nota, cioè se $\sigma(z)$ è una funzione semplice di z. La carva normale ottenuta usando per ascisse le v e per ordinate le $\sigma(v)$ (fig. 1), nel caso in esame ha andamento irregolare: la $\sigma(z)$ non è quindi funzione semplice di z. Come per il lago di Garda è quindi necessaria l'integrazione numerica dell'integrale [7] (tabella n. 5). Serivendo le [6] dettagliatamente nel caso m=2, si ottengono le tre equazioni:

$$\begin{pmatrix} \left(\frac{1}{3} - I_{a}\lambda\right)A_{a} + \left(\frac{1}{6} - I_{i}\lambda\right)A_{i} + \left(\frac{1}{10} - I_{a}\lambda\right)A_{a} = 0 \\ \left(\frac{1}{6} - I_{i}\lambda\right)A_{a} + \left(\frac{2}{15} - I_{a}\lambda\right)A_{i} + \left(\frac{1}{10} - I_{a}\lambda\right)A_{a} = 0 \\ \left(\frac{1}{10} - I_{a}\lambda\right)A_{a} + \left(\frac{1}{10} - I_{a}\lambda\right)A_{i} + \left(\frac{3}{35} - I_{i}\lambda\right)A_{a} = 0 \end{cases}$$
 [8]

da cui eliminando le 4 si ha la:

$$\begin{vmatrix} \frac{1}{3} - I_0 \lambda & \frac{1}{6} - I_1 \lambda & \frac{1}{10} - I_2 \lambda \\ -\frac{1}{6} - I_1 \lambda & \frac{2}{15} - I_2 \lambda & \frac{1}{10} - I_2 \lambda \\ -\frac{1}{10} - I_2 \lambda & \frac{1}{10} - I_2 \lambda & \frac{3}{35} - I_4 \lambda \end{vmatrix} = 0$$
 [9]

equazione di terzo grado in λ la cui soluzione dà, per mezzo della seconda delle [5], il periodo della sessa cercato. In essa è

$$I_{n} = \int_{0}^{1} \frac{z^{2}(1-z)^{2}z^{n}}{\gamma(z)} dz \qquad (n=0,1,2,3).$$
 [7']

SESSE DEL LAGO D'ORTA

N° $a \land x$ $q = (2 \eta_i \div x)$ $2 \xi_i = -\frac{q}{S(x)}$ $2 \land \eta_i$ $2 \eta_i \div 2 \land \eta_i$ 10 · :: cm cm 0 1 6.601 32.5 - 3.621 - 23.93 76.07 2 > 66.7 3.302 - 21.81 51.26 3 > 102.0 - 3.251 - 21.19 32.77 4 > 121.1 - 3.110 - 20.54 12.23 5 > 133.0 - 3.284 - 21.69 - 9.16 6 > 127.1 - 2.956 - 19.52 - 28.98 7 > 100.3 - 1.103 - 7.32 - 36.30 8 > 64.0 - 0.594 - 3.92					gT^{*}	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nº	αΑχ	$q = (2 \eta_i + 2 \lambda_{ii}) r(x)$	$2\xi_i = -\frac{q}{S(x)}$	2 Δη ₁	$2 \eta_i \div 2 \Delta \eta_i$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 - 3	10 ¹⁰ cm ⁵	10 ³ cm	cm	em
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0					100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	6.601	32.5	-3.621	-23.93	76.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2))	66.7	3.302	-21.81	51.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3))	102.0	- 3.251	-21.19	32.77
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4))	124.1	3.110	20.54	12.23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5))	133.0	- 3.284	21.69	- 9.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	**	127.1	- 2.956	19.52	-28.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7))	100.3	- 1.108	- 7.32	-36.30
9 3.302 42.3 -0.312 -1.03 -41.25	8))	61.0	- 0.594	3.92	-10.22
10 16.5 -0.009 -0.33 -11.58	9	3.302	12.3	- 0.312	1.03	- 11.25
10.0 0.099 0.099	10	30	16.5	0.099	- 0.33	
11 » $- 8.4 + 0.052 + 0.17 - 41.41$	11	1)	- 8.4	+ 0.052	+ 0.17	-41.41
12 \rightarrow 29,9 + 0.208 + 0.69 40.72	12))	29,9	+ 0.208	+ 0.69	40.72
13 » $18.2 + 0.271 + 0.9039.82$	13	1)	- 18.2	+ 0.271	+ 0.90	- 39.82
11 -68.1 $+0.362$ $+1.19$ -38.63	11		68.1	+ 0.362	+ 1.19	- 38.63
15 0 - $86.9 + 0.506 + 1.67 - 36.96$	15))	86.9	± 0.506	+ 1.67	- 36.96
16 » -101.7 $+0.658$ $+2.17$ -34.79	16	1)	-101.7	± 0.658	+ 2.17	34.79
17 6.601 -126.9 $+0.852$ $+5.63$ -29.16	17	6.604	- 126.9	+ 0.852	+ 5.63	-29,16
18 » -119.5 $+1.111$ $+7.36$ $-21,80$	18))	-149.5	÷ 1.114	+ 7.36	-21,80
19 \mathfrak{p} - 163.9 + 1.441 + 9.52 - 12.28	19	1)	-163.9	+1.40	+ 9.52	-12.28
20 3.302 - 167.3 + 1.838 + 6.07 - 6.21	20	3.302		+ 1.838	6.07	- 6.21
21 \rightarrow -169.2 \div 1,718 \div 5.67 - 0.54	21	0	-169.2	$\pm 1,718$	+ 5.67	0.54
22 6.601 - 169.5 + 1.246 + 8.23 7.69	22	6.601	- 169.5	+ 1.246	+ 8.23	7.69
23 » $-161.4 + 1.445 + 9.51 + 17.23$	23))	161.4	+ 1.445	+ 9.54	17.23
21 » -152.8 $+0.999$ $+6.60$ 23.83	24))	- 152.8	+ 0.999	+ 6.60	23.83
$25 \qquad \qquad$	25))	- 136.1	+ 0.871	+ 5.77	29.60
$26 \mid \circ $	26	1)		± 0.753	+ 1.97	34.57
27 \sim - 90.1 \div 0.675 \div 4.46 39.03	27	1)	- 90.1	+0.675	+ 4.16	39.03
28 » 61.1 ± 1.135 ± 7.50 46.53	28))	64.1	+1.135	+ 7.50	46.53
20 » -41.9 $+1.069$ $+7.06$ 53.59	29))	- 11.9	± 1.069	+ 7.06	53.59
30 » 23.5 ± 0.851 ± 5.62 59.21	30	1}	23,5	+ 0.851	+ 5.62	59.21
31 n -7.2 $+1.500$ $+9.91$ 69.12	- 31	1)	- 7,2	+1.500	+ 9.91	69,12
32 2.9	32		2.9			

TABELLA N. 3 : $T=9^{m}.2$ $\alpha = \frac{4\pi^{2}}{2}$

Sessa binodale: $T = 9^m$, 2:

l'ultima colonna da l'andamento della ampiezza:

i nodi cadono tra la sez. 4. 5 e tra 21-22 e a calcoli fatti alle distanze rispettivamente: 2280 m e 8032 m dall'estremo sud del lago.

[il valore di T usato si può ritenere sufficientemente approssimato scartando il q di poco dallo zero]

Nella tabella n. 5 si riportano i dati numerici per l'integrazione della [7'] di sezione in sezione avendo posto $\gamma(z) = \sigma(z)$ cioè h = 1. I valori ottenuti per I, (i=0,1,2,3,4) consentono la soluzione della [9].

Con i valori ottenuti per I_i la [9] può scriversi:

911.579218 λ^3 - 17.102171 λ^2 + 0.0804109 λ - 0.0000952381 = 0 [10]

				gT^2	
Nº	α Δ x 10 - ^a	$\begin{vmatrix} q = (2\eta_i + \frac{1}{2} \Delta \eta_i) v(\mathbf{x}) \\ + \frac{1}{2} \Delta \eta_i v(\mathbf{x}) \\ 10^{10} \text{ cm}^3 \end{vmatrix}$	$2\xi_{i} = -\frac{q}{S(x)}$ 10^{2} cm	Δηi em	2 η + 2 Δηι cm
					100
1 I	16 615	39.5	3 621	60 21	30.70
-)	10.015	50.1	2 105	- 11 15	1.66
	"	10.3		26 14	27.80
Ĩ		30.5	0.761	- 12.69	- 40.49
5	"	11	-0.027	- 0.45	40 94
6		24.5	+ 0.570	+ 9.47	31.47
7		-53.6	± 0.592	-+ 9.84	-21.63
8		- 75.2	+ 0.698	+ 11.60	-10.03
9	8.308	- 80.6	+ 0.595	+ 1.94	5.09
10))	83.8	+ 0.504	+ 1.19	- 0.90
11	.))	-84.3	+ 0.522	+ 1.34	+ 3.44
12))	-82.5	+ 0.575	+ 4.78	+ 8.22
13	3)	78.8	+ 0.448	+ 3.72	+ 11.91
14))	-72.8	+ 0.387	+ 3.22	+ 15.16
15	*)	65.4	+ 0.381	+ 3.16	+ 18.32
16	»	-58.1	÷ 0,376	+ 3.12	+ 21.11
17	16.615	-42.6	+ 0.286	+ 4.75	+ 26.19
18))	22.3	+ 0,166	+ 2,76	+ 28,95
19))	- 3.1	+ 0.027	+ 0.45	+ 29.40
20	8.308	5.0	-0.055	- 0.46	+ 28,94
21))	13.7	-0.139	- 1.15	+ 27,79
22	16,615	30,0	-0,220	3,65	+ 24.14
23	3)	46.0	-0,404	- 6,71	+ 17.43
24	1)	57.7	-0.377	- 6.26	+ 11.17
25	33	65.5	0.421	- 6.99	+ 4,18
26	33	68.5	-0.450	- 7,48	- 3.30
27))	66.2		8.21	-11,51
28	31	58.4	1.034	17.18	28,69
29	33	46.6	1.110	-18.44	47.13
30))	27.8	1,006	-16,71	63.84
31))	10.2	2.125	- 35.31	- 99.15
32		4.0			

TABELLA N. 4 : $T = 5^m 8$ $\alpha = \frac{4\pi^2}{4\pi^2}$

Sessa trinodale:

 $T = 5^{m}, 8;$

l'ultima colonna da l'andamento delle ampiezze;

i nodi cadono tra le sezioni 1, 2; tra 10, 11 e tra 25, 26 e a calcoli fatti rispettivamente alle distanze 975 m, 4567 m, 10275 m dall'estremo sud del lago.

[il valore di T usato si può ritenere sufficientemente approssimato, scartando il q di poco dallo zero].

Questa equazione si risolve con il metodo di Newton usando come primo valore approssimato di λ quello che si ottiene dalla seconda delle [5] (h=1) usando per il periodo dell'uninodale il valore trovato con il metodo di Defant. Si ottiene così per λ il valore $\lambda_i = 0.0018216$ a cui corrisponde per il periodo dell'uninodale il valore più attendibile

$$T_1 = 14^{\rm m}.2$$

Riducendo poi la [10] ad una equazione di secondo grado in λ , per mezzo ad esempio della regola di Ruffini, si ottengono in ultimo gli altri due valori di λ :

$$\lambda_2 = 0.0046773$$
 $\lambda_3 = 0.01226$

che danno gli altri due valori

$$T_a = 8^m, 85$$
 $T_a = 5^m, 5$

per la binodale e trinodale rispettivamente.

Determinazione della posizione delle linee nodali.

I nodi si avranno in corrispondenza di

$$\frac{du}{dz} = 0,$$

essendo

$$u = \sum_{i=0}^{m} z(1-z)z^{i}A_{i}.$$

Nel case m=2, esplicitando

$$u = A_0 z (1-z) \left(1 + \frac{A_1}{A_0} z + \frac{A_2}{A_0} z^2 \right)$$

e per i nodi

$$\frac{du}{dz} = 4 \frac{A_2}{A_0} z^3 + 3 \left(\frac{A_1}{A_0} - \frac{A_2}{A_0} \right) z^2 + 2 \left(1 - \frac{A_1}{A_0} \right) z - 1 = 0 \quad [11]$$

equazione cubica in z la cui soluzione dà la posizione $z = \frac{v}{a}$ dei nodi,

I rapporti $\frac{A_i}{A_o}$ e $\frac{A_2}{A_o}$ vonno determinati da due delle equazioni [8] usando per l'uni-bi e tri-nodale rispettivamente i tre valori trovati di λ . L'equazione cubica in z si risolve quindi col metodo di Newton, usando per primo valore approssimato di z quello che si deduce dal metodo di Defant. Essendo $0 \le z \le 1$ per l'uninodale l'unica radice di [11] utile sarà quella compresa fra 9 ed 1; per la binodale le due comprese fra 0 ed 1; per la trinodale tutte e tre.

GUIDE PANNOCCHIA

	1	M			1		
v	d-	$z^{2} (1-z)^{2} dz$	M z	$M z^2$	$M z^{"}$	$M z^1$	N
$z = \overline{a}$	<i>u</i> -	σ(z)					11.
		10-2	10	10-2	10-~	10-~	
1							
0	0	0	0	0	0	0	0
0.01795	0.01795	73.237669	1.314616	0.0235825	0.000423	0,0000076	1
0.04280	0.02485	141.230949	6,044685	0.258735	0.011074	0.000474	2
0,07870	0.03590	463.075210	36,144020	2.868288	0,225734	0.017766	3
0,11597	0.03727	672,177369	77.987200	9,044148	1,048850	0.121635	a l
0.15601	0.04004	1246.551710	194.474532	30,339822	4,733316	0,738441	5
0,19053	0.03452	1216.106890	231.762005	41.161652	8.111120	1,603289	6
0.21161	0.05108	971.844200	234,807277	56,733319	13,707314	3,311923	7
0,29684	0.05523	981.576280	291,371103	86,189434	25,673524	7.620813	ü
0.32666	0.02982	148,715850	146,577520	47.881122	15,610847	5,109251	- 9
0,36118	0.03152	449.336070	162.291202	58,614992	21,170563	7,616208	10
0,39131	0.03313	521,781130	205.743517	81,126530	31.989002	12.613553	11
0,42303	0.02872	561.077770	237.352730	100.407111	42.475220	17.968254	12
0,14788	0.02485	119.205012	187,753541	81,090848	37.662609	16,868288	13
0,47549	0.02761	156.133324	216,886834	103,127638	49,036161	23.316231	14
0.50242	0.02693	536.952557	269.775704	135,510787	68.098402	34.214019	15
0,52451	0.02209	560.201008	293.831031	154.117460	80.836149	42.399409	16
0.56454	0.01003	1047-187790	591.348760	333.839596	188.465805	106.396348	17
0,60734	0.04280	1318.637056	800.861030	486,395103	295.407202	179.412670	18
0.61393	0.03659	1252.631903	806.607261	519.398807	331.456171	215.366638	19
0.65912	0.01519	676.822805	446.107447	291.038220	193.806172	127.741670	20
0.67569	0.01657	712.796960	501,900480	339,129152	229.146177	154.831788	21
0.70813	0.02211	818,414519	579.513873	410.392321	290.611116	205.790410	22
0.74472	0.03659	830,137930	618.443730	460.567519	342.993843	255.434431	23
0.78186	0.03714	513,542690	101.518490	313.931214	245.450259	191.907721	24
0.82052	0.03866	361.956624	299.451209	245.708139	201.608112	165.423742	25
0.86055	0.04003	262,941098	226,273962	194.719978	167.566277	141.199101	26
0,89921	0.03866	172,978139	155,543672	139.866191 i	125,769347	113.093107	27
0,93649	0.03728	238,142251	223,017839	208.853819	195.589511	183.167541	28
0.95927	0.02278	102.883930	98.693170	94.673689	90.817630	87.118634	29
0.98136	0.02209	39.567280	38,829750	38,105912	37.395617	36.698575	30
0.99655	0.01519	0.904170	0.901051	0.897942	0.894814	0.891757	31
1,00000	0,00345	0	0	0	0	0	32
		19109-019146	0503 169511	5075 3131605	3310 702414	9311 0937915	
		10102.940140	95 93162541	50 753434605	33 10702414	23 410237216	
		101,02910140	00.00402041		00-1010-114	20110201240	
		In	I ₁	I_2	I _a	1,	
	1						1

TABELLA N. 5 (Dati numerici per l'equaz. [9])

I termini somme delle colonne sono in 10°2; per i calcoli torna comodo usarli come scritti alla riga sottostante.

Si sono ottenuti i seguenti risultati: per l'uninodale: z = 0,45758che comporta la distanza dall'origine dell'uninodo di 5337,82 m; per

la binodale:

$$z_1 = 0.16463$$
 $z_2 = 0.71272$

che comportano le distanze dall'origine dei due nodi di 2625 m e di 8560 m;

per la trinodale:

$z_1 = 0.08077$ $z_2 = 0.45175$ $z_3 = 0.6$	8723	$z_3 = 0$	$z_2 = 0.45173$	$z_1 = 0.08677$
---	------	-----------	-----------------	-----------------

che comportano le distanze dall'origine dei tre nodi di

Nella seguente tabella n. 6 si hanno i valori riassuntivi e comparativi dei dati ottenuti con i due metodi:

Tipo di sessa	Periodo della sessa espresso in minuti primi		Differenza Valori	Distanze dei nodi dallo estremo sud del lago in m		Differenze in m
	Metodo di Defant	Metodo di Hidaka	numerici)	Metodo di Defant	Metodo di Hidaka	(Valori (numerici)
Uninodale	14,6	14,2	0, 1	5455	5338	117
Binodale	9,2	8,85	0,35	2280 8032	$\begin{array}{r} 2625\\ 8560\end{array}$	$\begin{array}{c} 345\\ 528\end{array}$
Trinodale	5,8	5,5	0,3	$975 \\ 4567 \\ 10275$	$1610 \\ 5285 \\ 10515$	$635 \\ 718 \\ 240$

TABELLA N. 6

Distribuzione delle ampiezze.

La [4] essendo v = za si serive:

$$\xi = -a \frac{du}{dz} \qquad [4^{\circ}]$$

che nel caso m=2 dà:

$$\bar{z} = -a A_0 \left[4 \frac{A_2}{A_0} z^2 + 3 \left(\frac{A_1}{A_0} - \frac{A_2}{A_0} \right) z^2 + 2 \left(1 - \frac{A_1}{A_0} \right) z - 1 \right]$$

oppure

$$\frac{\xi}{aA_0} = -\left[4\frac{A_2}{A_0}z^2 + 3\left(\frac{A_1}{A_0} - \frac{A_2}{A_0}\right)z^2 + 2\left(1 - \frac{A_1}{A_0}\right)z - 1\right].$$
 [12]

GUIDO PANNOCCHIA

portare la tabella dei valori ottenuti e si riportano invece nelle figure 2 e 3 le curve andamento delle ampiezze in funzione di z ottenute con i due metodi. Il confronto nella tabella n. 6 e nelle figure 2 e 3 fra i due metodi dice che i risultati ottenuti sono sufficientemente in accordo e che presumibilmente rispondono alla realtà.

261

Roma - Istituto Nazionale di Geofisica dicembre 1947.

Fig. 3

SESSE DEL LAGO D'ORTA

RIASSUNTO

Nel presente lavoro si determinano con i metodi di Defant e di Hidaka i periodi delle sesse uni-bi e trinodale del lago d'Orta; si individua la posizione dei nodi e, da ultimo, si ottiene l'andamento delle ampiezze di oscillazione.

BIBLIOGRAFIA

(¹) CALOT P.: Le sesse del lago di Garda. Parte prima. Sesse che interessano l'intero lago. Annali Geofisica, I, 21-18 (1918).

(²) LANDINI P.: Il lago d'Orta, Appunti di geografia antropica, Boll, della R. Soc. Geografica Italiana, 451 (1923).