SUI PERIODI DI OSCILLAZIONE LIBERA DEL VERBANO

PIETRO CALOI

1. — In un lavoro precedente, dedicato alle sesse del lago Maggiore (¹), osservavamo che la forma della curva normale relativa al lago era così complicata da rendere « ardua se non impossibile » l'applicazione di uno dei metodi proposti da Chrystal. Ho voluto egualmente cimentarmi in questo senso, anche perché, la complessità del lago fa sì che i valori calcolati per i periodi delle sesse relative siano sensibilmente diversi a seconda del metodo usato, specie per quanto si riferisce alle oscillazioni di minor nodalità.

Fig. 1

Fra quelli proposti da Chrystal, ho ritenuto che il solo metodo che schematizza la curva normale in tratti rettilinei raccordati fosse applicabile, con qualche speranza di successo.

Nella seconda parte di un mio lavoro sulle sesse del Garda (²) ho riassunto la relativa teoria, rettificando una sua inesattezza. Pertanto, mi limito qui a riportare le equazioni che danno gli spostamenti orizzontale e verticale

$$\xi w = \left\{ A J_1(w) + B Y_1(w) \right\} \sin n(t-\tau)$$

$$\zeta = \frac{h}{2a} \left\{ A J_0(w) + B Y_0(w) \right\} \sin n(t-\tau) ,$$
[1]

dove *a*, *h* sono costanti legate dalla relazione $h(x) = h(1 - \frac{x}{a})$, relativa al fondo del lago (supposto a tratti rettilinei), *A* e *B* costanti the risultano dall'integrazione dell'equazione di Chrystal, *J*_i (*w*), *Y*_i (*w*) -i=0,1 – funzioni di Bessel e Neumann dell'argomento

 $w = 2n a | \overline{1 - x/a} | \overline{gh} , \qquad [2]$ \cdots endo $n = \frac{2\pi}{T} (\Gamma = \text{periodo}).$

La curva normale del Verbano, quale fu da noi determinata con una fitta rete di 77 sezioni su una carta batimetrica al 50000, è riprodotta nella fig. 1.

La schematizzazione che ne ho fatto è del tipo rappresentato nella fig. 2. Poniamo

$$O_{1}A_{1} = a_{1} \quad O_{2}A_{2} = a_{1} \quad O_{1}M = h_{1} \quad O_{3}Q = q \quad M A_{2} = 2$$

$$O_{1}A_{2} = a_{2} \quad O_{1}O_{3} = r_{2} \quad O_{1}O_{2} = r_{1} \quad O_{3}N_{2} = h_{3} \quad N_{1}A_{3} = 3$$

$$O_{2}A_{2} = a_{2} \quad O_{2}N_{1} = h_{2} \quad O_{2}P = p \quad A_{1}M = 1 \quad N_{2}A_{3} = 4.$$

Riferiamo la curva normale così schematizzata a tre sistemi di assi cartesiani ortogonali. L'origine del primo sistema sia in O_1 : l'asse x_1 diretto positivamente verso A_2 . l'asse y_1 positivamente verso M. Questo primo sistema rappresenta la parte di curva normale fra N_2 e N_1 . Sia O_2 l'origine del secondo sistema cartesiano. Le coordinate di O_2 rispetto al primo sistema sono $(+r_1, 0)$: x_2 è inteso positivo da O_3

Fig. 2

PIETRO CALOI

verso O_2 , y_2 positivo da O_2 verso N_1 . Il terzo sistema ha origine in O_3 , x_3 essendo positivo contato verso O_1 , y_3 positivo da O_3 verso N_2 .

Le coordinate di O_3 rispetto al primo sistema sono (- r_2 , o). Ecco le equazioni delle rette 1 e 2, riferite al primo sistema:

$$h_1(x) = h_1\left(1 - \frac{x}{a_1}\right), \ h_2(x) = h_1\left(1 + \frac{x}{a_1}\right).$$
 [3]

L'analoga della 3 riferita al secondo sistema

$$h_{s}(x) = h_{s}\left(1 - \frac{x}{a_{s}}\right)$$
[4]

e quella della 4 riferita al terzo sistema

$$h_4(x) = h_2\left(1 + \frac{x}{a_4}\right)$$
 [5]

Vengono inoltre le relazioni

$$a_1 = r_1 \frac{h_1}{h_1 - h_2}$$
; $a_3 = r_2 \frac{h_1}{h_1 - h_3}$

Poniamo, ricordando la [2],

$$w_{1} = \frac{2na_{1}}{|gh_{1}|} / 1 - \frac{x}{a_{1}} ; a_{1} = \frac{2a_{1}}{|gh_{1}|} ; \beta_{1} = \frac{2a_{1}}{|gh_{1}|} / 1 - \frac{r_{1}}{a_{1}}$$

$$w_{2} = \frac{2na_{2}}{|gh_{2}|} / 1 - \frac{x}{a_{2}} ; a_{3} = \frac{2a_{2}}{|gh_{2}|} ; \beta_{2} = \frac{2a_{2}}{|gh_{2}|} / 1 - \frac{p}{a_{2}}$$

$$w_{3} = \frac{2na_{3}}{|gh_{1}|} / 1 + \frac{x}{a_{2}} ; a_{3} = \frac{2a_{2}}{|gh_{1}|} ; \beta_{3} = \frac{2a_{3}}{|gh_{1}|} / 1 - \frac{r_{2}}{a_{2}}$$

$$w_{4} = \frac{2na_{4}}{|gh_{3}|} / 1 + \frac{x}{a_{4}} ; a_{4} = \frac{2a_{4}}{|gh_{3}|} ; \beta_{5} = \frac{2a_{4}}{|gh_{3}|} / 1 - \frac{q}{a_{2}}$$
[6]

Per le [1] avremo

$$\begin{aligned} \xi_{1}w_{1} &= \begin{cases} A_{1}J_{1}(w_{1}) + B_{1}Y_{1}(w_{1}) & \int \sin n(t-\tau) \\ \zeta_{1} &= \frac{h_{1}}{2a_{1}} \end{cases} & A_{1}J_{0}(w_{1}) + B_{1}Y_{0}(w_{1}) & \int \sin n(t-\tau) \end{aligned}$$

$$\begin{aligned} \xi_{2}w_{2} &= \begin{cases} A_{2}J_{1}(w_{2}) + B_{2}Y_{1}(w_{2}) & \int \sin n(t-\tau) \end{cases} \end{aligned}$$

$$\begin{aligned} &= \begin{cases} T \end{bmatrix} \end{aligned}$$

378

SUI PERIODI DI OSCILLAZIONE LIBERA DEL VERBANO

dove le prime due, la 5^a e la 6^a sono riferite al primo sistema, mentre la 3^a e la 4^a sono riferite al secondo sistema e le ultime due al terzo sistema.

Nelle [7] sono da determinare le nove costanti $A_1, B_1, A_2, B_2,...$ B_1, n , valendoci delle condizioni ai limiti. Consideriamo delle prime otto il rapporto Ai/Bi. Le condizioni ai limiti sono: agli estremi $P \in Q$ del lago dev'essere $\bar{z}=0$:

$$x_2 = p$$
, $\xi_2 = 0$; $x_3 = -q$, $\xi_4 = 0$. [8]

Inoltre, per

$$x_1 = 0$$
; $\xi_1 = \xi_2$, $\xi_2 = \xi_3$. [9]

Per il punto 0..

$$x_1 = +r_1$$
, $x_2 = 0$; $\xi_1 = \xi_2$, $\zeta_1 = \zeta_2$. [10]

Per il punto 03

$$x_1 = -r_2$$
, $x_p = 0$; $\xi_3 = \xi_4$, $\zeta_3 = \zeta_4$. [11]

Dalle [7], ricordando le [6] e per le [8], si ha

$$A_{2}J_{4}(n\beta_{2}) + B_{2}Y_{4}(n\beta_{2}) = 0 \quad , \quad B_{2}/A_{2} = -\frac{J_{4}(n\beta_{2})}{Y_{4}(n\beta_{2})} , \quad [12]$$

oppure

$$B_4/A_4 = -\frac{J_4(n\beta_4)}{T_1(n\beta_4)}$$
[13]

Per $x_1 = 0$ è $\frac{w_1}{w_0} = \frac{a_1}{a_0}$; per $x_1 = +r_1$, $x_2 = 0$ si ha $w_1/w_2 = \beta_1/a_0$;

per $x_1 = -r_2$, $x_3 = 0$ è ancora $w_3/w_4 = \beta_3/\beta_4$. Per cui, ricordando le [9], [10] e [11] e posto

$$\begin{array}{l}
P_{1}(\beta_{2},\alpha_{2}) = Y_{1}(n\beta_{2}) J_{1}(n\alpha_{2}) - J_{4}(n\beta_{2})Y_{1}(n\alpha_{2}) \\
P_{0}(\beta_{2},\alpha_{2}) = Y_{1}(n\beta_{2}) J_{0}(n\alpha_{2}) - J_{4}(n\beta_{2})Y_{0}(n\alpha_{2}) \\
P_{1}(\beta_{1},\alpha_{4}) = Y_{1}(n\beta_{4}) J_{1}(n\alpha_{4}) - J_{4}(n\beta_{4})Y_{1}(n\alpha_{4}) \\
P_{0}(\beta_{1},\alpha_{4}) = Y_{1}(n\beta_{3}) J_{0}(n\alpha_{4}) - J_{4}(n\beta_{4})Y_{0}(n\alpha_{4}) ,
\end{array}$$
[14]

si ha

$$\begin{bmatrix} A_{1}J_{4}(n\alpha_{1}) + B_{1}Y_{1}(n\alpha_{1}) = \frac{\sigma_{4}}{\sigma_{2}} \begin{bmatrix} A_{2}J_{4}(n\alpha_{2}) + B_{2}Y_{1}(n\alpha_{2}) \end{bmatrix} \\ A_{1}J_{5}(n\alpha_{4}) + B_{1}Y_{0}(n\alpha_{4}) = -\frac{\sigma_{4}}{\sigma_{2}} \begin{bmatrix} A_{3}J_{6}(n\alpha_{2}) - B_{3}Y_{0}(n\alpha_{2}) \end{bmatrix} \\ A_{1}J_{4}(n\beta_{1}) + B_{1}Y_{1}(n\beta_{1}) = \frac{\beta_{1}}{\sigma_{2}} \frac{A_{2}}{Y_{1}(n\beta_{2})} P_{4}(\beta_{2},\alpha_{2}) \\ A_{4}J_{6}(n\beta_{4}) + B_{1}Y_{0}(n\beta_{4}) = \frac{\sigma_{4}}{\sigma_{2}} \frac{h_{2}}{h_{1}} \frac{A_{2}}{Y_{1}(n\beta_{2})} P_{6}(\beta_{2},\alpha_{2}) \\ A_{3}J_{6}(n\beta_{3}) + B_{3}Y_{0}(n\beta_{0}) = \frac{\beta_{3}}{\sigma_{4}} \frac{A_{4}}{h_{1}} \frac{A_{4}}{Y_{1}(n\beta_{4})} P_{6}(\beta_{4},\alpha_{4}) \\ A_{3}J_{6}(n\beta_{3}) + B_{3}Y_{0}(n\beta_{0}) = \frac{\sigma_{3}}{\sigma_{4}} \frac{h_{3}}{h_{1}} \frac{A_{4}}{Y_{1}(n\beta_{4})} P_{6}(\beta_{4},\alpha_{4}). \end{bmatrix}$$

Il determinante dei coefficienti delle incognite A_1 , B_1 , A_2 , A_3 , B_5 . A_4 uguagliato a zero, dà l'equazione dei periodi:

...

380

SUI PERIODI DI OSCILLAZIONE LIBERA DEL VERBANO

La [16] vale nell'ipotesi che gli estremi del lago siano smussati. In realtà, in A_0 , A_3 il lago termina ad angolo acuto. Considerando questo come un caso limite della precedente rappresentazione, posiamo porre $p=a_2$, $q=a_1$. Nelle [4], [5] avremo pertanto

$$\beta_2 = 0 \quad , \quad \beta_4 = 0$$

E' inoltre

$$\lim_{\beta_2 \to 0} \frac{J_{+}(n\beta_2)}{Y_{+}(n\beta_2)} = 0 \quad ; \quad \lim_{\beta_4 \to 0} \frac{J_{+}(n\beta_4)}{Y_{+}(n\beta_4)} = 0 \quad ;$$

per cui dalle [14]

$$\begin{split} &\lim_{\beta_2=0} \frac{P_4(\beta_2, \alpha_2)}{Y_1(n\beta_2)} = J_4(n\alpha_2) \quad ; \quad \lim_{\beta_2=0} \frac{P_6(\beta_2, \alpha_2)}{Y_1(n\beta_2)} = J_6(n\alpha_2) \quad , \\ &\lim_{\beta_4=0} \frac{P_4(\beta_4, \alpha_4)}{Y_1(n\beta_4)} = J_4(n\alpha_4) \quad ; \quad \lim_{\beta_4=0} \frac{P_6(\beta_4, \alpha_4)}{Y_1(n\beta_4)} = J_6(n\alpha_4) \quad . \end{split}$$

La [16], osservando che

$$\frac{\boldsymbol{\beta}_4}{\boldsymbol{\alpha}_2} = \frac{\boldsymbol{\alpha}_1}{\boldsymbol{\alpha}_2} \frac{\boldsymbol{h}_2}{\boldsymbol{h}_1} \quad ; \quad \frac{\boldsymbol{\beta}_2}{\boldsymbol{\alpha}_4} = \frac{\boldsymbol{\alpha}_2}{\boldsymbol{\alpha}_4} \frac{\boldsymbol{h}_2}{\boldsymbol{h}_1}$$

diviene allora, moltiplicando la 5^a e la 6^a riga per $\frac{a_{i}}{a}$,

$$\frac{a_{1}^{3}\beta_{1}\beta_{2}}{a_{2}^{3}\alpha_{2}^{*}\alpha_{4}} \begin{vmatrix} J_{1}(n\alpha_{1}) & Y_{1}(n\alpha_{1}) & 0 & -J_{1}(n\alpha_{3}) & -Y_{1}(n\alpha_{3}) & 0 \\ J_{0}(n\alpha_{1}) & Y_{0}(n\alpha_{1}) & 0 & J_{0}(n\alpha_{2}) & Y_{0}(n\alpha_{2}) & 0 \\ J_{0}(n\beta_{1}) & Y_{1}(n\beta_{1}) & J_{1}(n\alpha_{2}) & 0 & 0 & 0 \\ J_{0}(n\beta_{1}) & Y_{0}(n\beta_{1}) & J_{0}(n\alpha_{2}) & 0 & 0 & 0 \\ 0 & 0 & 0 & J_{1}(n\beta_{3}) & Y_{1}(n\beta_{3}) & J_{1}(n\alpha_{4}) \\ 0 & 0 & 0 & J_{0}(n\beta_{2}) & Y_{0}(n\beta_{3}) & J_{0}(n\alpha_{4}) \\ 0 & 0 & 0 & J_{0}(n\beta_{2}) & Y_{0}(n\beta_{3}) & J_{0}(n\alpha_{4}) \\ \end{bmatrix} = 0$$

2. — Passiamo alla soluzione della [17].

Dai dati relativi alla curva normale, per i quali rimando al lavoro citato (1), si ottiene, nel caso della schematizzazione prescelta. $h_2 = 16.0 \times 10^8 \text{ m}^3$, $a_4 = 1.3025 \times 10^8 \text{ m}^2$, $h_3 = 44.8 \times 10^8 \text{ m}^3$ $\alpha_3 = 71^{\circ}$, 175 $r_1 = \cdot 256 \times 10^8 \text{ m}^2$ $\alpha_1 = 164^{s}$, 2935 $\beta_3 = 41$, 977 $a_1 = \cdot 2920 \times 10^{\circ} \text{ m}^{\circ}$ $\beta_1 = 57 \cdot 688$ $r_2 = :0825 \times 10^5 \text{ m}^2$ $\alpha_1 = 1242$, 6 $a_{2} = -481 \times 10^{2} \text{ m}^{2}$ $h_1 = 128.8 \times 10^8 \text{ m}^2$ $\alpha_2 = 772 \cdot 645$, $a_3 = \cdot 1265 \times 10^{\circ} \text{ m}^2$ $\frac{3}{1} = .07466$ α., $\frac{a_1}{2} = 2.3083$ $a_{\rm B}$ $\frac{\beta_3}{\beta_3} = .03378$ a,

PIETRO CALOI

L'equazione dei periodi diviene pertanto $D(n) \equiv$

$J_1(164,29n)$) $Y_1(164)$.29n) ()	$-J_{1}(71.17)$	$5n$) $Y_1(71.175n)$) 0	
$J_{y}(164,29n)$) $Y_0(164)$.29n) 0	$J_{y}(71.175)$	$5n) Y_{n}(71,175n)$) 0	
$J_1(57,688n)$	i) $Y_1(57, 6)$	588n) J _n (772,6	(15 <i>n</i>) 0	0	0	_0
$J_{n}(57.688n)$) $Y_{u}(57,6)$	$588n) J_1(772.6)$	(15 <i>n</i>) 0	0	0	
0	0	0	$J_1(41.97)$	$7n) Y_1(41.977n)$	$J_1(1242.6n)$	
0	0	0	$J_{v}(41.97$	$7n) Y_{u}(41.977n)$) $J_{u}(1242.6n)$	
					[18]	

La risoluzione della [18] è stata proposta all'Istituto per le Applicazioni del Calcolo, tanto benemerito per l'ausilio validissimo che fornisce alla ricerca scientifica.

Furono desunti per le prime sei radici positive di D(n) i seguenti valori

$n_1 = 0.00231,$	$n_4 = 0.00682$
$n_2 = 0.00352$	$n_b = 0.00778$
$n_{3} = 0.00505$	$n_{\rm b} = 0.00963$.

cui corrispondono, a meno di 5°, i periodi

$T_1 = 45^{\text{m}}, 35$	$T_3 = 20^{\rm m}, 75$	$T_{-} = 13^{m}, 5$
$T_2 = 29^m, 75$	$T_4 = 15^n, 35$	$T_{\rm c} = 10^{\rm m}, 85$

per le prime sei sesse del Verbano.

3. — Nel lavoro precedente sulle sesse del lago Maggiore si sono ottenuti i seguenti valori per le sesse uni-bi- e trinodali:

			T_{\pm}	T_{2}	T_{z}
col	metodo	Defant	$48^{m}, 7$	$37^{m}, 4$	23 ^m ,4
))))	Hidaka	47 ^m ,4	33 ^m ,7	21 ^m ,0

L'accordo tra i valori ottenuti con i tre metodi, soddisfacente per la sessa uninodale, cessa di esserlo per la binodale, mentre è buonissimo per la trinodale. Queste diversità, particolarmente sensibili per la binodale, vanno attribuite alle notevoli variazioni che il bacino del lago presenta in larghezza e nell'andamento della linea di valle; variazioni che lo discostano sensibilmente dalle ipotesi su cui poggiano le varie teorie. Comunque, è interessante osservare che, prescindendo dalla binodale, i periodi delle sesse uninodale e trinodale calcolati con tre metodi differiscono molto poco e la differenza è particolarmente piccola per la trinodale, per la quale i valori ottenuti con i metodi di Hidaka e di Chrystal praticamente coincidono.

382

E' noto che, qualunque sia il metodo usato, i valori calcolati per i periodi delle sesse di maggiore nodalità differiscono sempre meno col crescere della nodalità. Pertanto i valori dei periodi delle sesso a quattro, cinque e sei nodi calcolati in questo lavoro, possono ritenersi molto prossimi a quelli reali.

Ancora non è stato possibile ottenere buone registrazioni delle sesse del Verbano. Comunque dai valori finora osservati, sembra che i periodi forniti dal metodo di Hidaka siano i più attendibili.

Roma — Istituto Nazionale di Geofisica — aprile 1948.

RLASSUNTO

Partendo dalle basi della teoria di Chrystal, si sviluppa un metodo analitico per la determinazione dei periodi di oscillazione libera delle acque del Lago Maggiore. Risolta l'equazione dei periodi costituita da un determinante di sesto ordine —, si sono calcolati i valori dei periodi corrispondenti alle oscillazioni libere di uno, due, tre. ... sei nodi.

BIBLIOGRAFIA

CALOI P., DE PANFILIS M., GIORGI M., PERONAGI F., Le sesse del Lago Maggiore, « Annali di Geofisica », I, 2 (1948).
 (7) CALOI P., Le sesse del Lago di Garda, Parte II « Ann. di Geof. » I. 2 (1948).