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ABSTRACT

The velocity at which a propagating earthquake advances on the fault
surface is of  pivotal importance in the contest of  the source dynamics and
in the modeling of  the ground motions generation. The rupture speed (vr )
is one of  the results provided by spontaneous dynamic models of  ruptures,
in that it is a part of  the solution and it is not imposed a priori, like in
non spontaneous models or in kinematic models. Since vr is numerically
retrieved from the spatial distribution of  the rupture times (tr ), a well–
constrained value of  vr in a given fault node is important. In this paper
we focus on the numerical determination of  vr. By comparing different
numerical schemes to compute vr from tr we show that, in general, central
finite differences schemes are more accurate than forward or backward
schemes, regardless the order of  accuracy. Overall, the most efficient and
accurate algorithm is the five–points stencil method at the second–order
of  accuracy. These conclusions hold for homogeneous and heterogeneous
configurations and for different constitutive models, such as the slip–
weakening law and the rate– and state–friction governing equations. It is
also shown how the determination of  tr can affect vr; numerical results in-
dicate that if  the fault slip velocity threshold (vl ) used to define tr is too
high (vl≥ 0.1 m/s) the details of  the rupture are missed, for instance the
jump of  the rupture front eventually occurring for 2–D supershear rup-
tures. On the other hand, for vl ≤ 0.01 m/s the results appear to be sta-
ble and independent on the choice of  vl. Finally, it is confirmed that in
the special case of  the linear slip–weakening friction law the computa-
tion of  vr from the threshold criterion on the fault slip velocity and from
the achievement of  the maximum yield stress are equivalent.

1. Introduction

1.1. Scientific rationale
One of  the most important physical observables

of  an earthquake rupture is represented by the rupture
speed, which quantifies how fast a rupture front is prop-
agating on a fault surface. It is well known that the vari-
ations in the rupture speed (and thus the earthquake
acceleration) control the radiation of  the seismic waves
in the surrounding medium, which in turn are respon-

sible of  most damage from an engineering point of
view [Madariaga 1983]. Many studies [Bizzarri and Spu-
dich 2008, Dunham and Bhat 2008, Bizzarri et al. 2010]
clarified that there are systematic differences, in terms of
amplitude of  the motion and of  the frequency content,
between ruptures which propagate at a speed lower than
the S wave speed, vS (i.e., subshear events) and ruptures
which accelerate above vS (i.e., supershear earthquakes).

Numerical models of  earthquakes are powerful
tools to investigate the behavior of  faulting in realistic
ambient conditions and provide the opportunity to sim-
ulate different shaking scenarios, in the framework of  a
deterministic approach. Spontaneous dynamic models
simulate, as a part of  the solution, the expansion
through time of  the broken region of  a fault structure,
because the rupture speed is not prior imposed — as in
non spontaneous models — but it is completely con-
trolled by the adopted fault governing model and by
the initial conditions. Indeed, spontaneous dynamic
models provide the spatial distribution of  the rupture
times (tr), which namely define the location of  the rup-
ture front during the dynamic propagation of  the rup-
tures. The rupture speed vr has then to be retrieved
numerically from tr. This poses a relevant numerical
problem, which is the main focus of  the present study. 

In seismology, determination of  vr is very impor-
tant. From a purely theoretical point of  view pure
mode II, 2–D singular cracks are known to possess only
limited values of  allowable rupture speeds, namely
from 0 to the Rayleigh wave speed (vR) and from vS up
to the limiting speed of  mode II (which is the P wave
speed, vP). In this case they then predict [Freund 1979,
Broberg 1989, 1999] the existence of  a so–called forbid-
den zone (between vR and vS). Recently, Bizzarri and
Das [2012] show that in 3–D, non singular ruptures this
forbidden zone disappears and that the rupture can ad-
vance with rupture speeds continuously distributed be-
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tween 0 and vP. This result of  course requires a very ac-
curate estimate of  vr.

Moreover, a well–constrained value of  vr is impor-
tant not only in spontaneous dynamic rupture models
(as such considered by Bizzarri and Das [2012] and in
the present study), but also in the case of  kinematic
models of  earthquakes. Indeed, in these models the an-
alytical evolution of  the fault slip velocity is a priori
specified and this requires the exact determination of
the rupture times (see for instance Ide and Takeo
[1997], among many others). 

Finally, it is worth mentioning that the knowledge
of  the rupture speed from numerical models is very rel-
evant because recently it has been developed an analy-
sis on possible spatial correlations existing between the
various dynamic variables, such as rupture speed, total
developed slip, fracture energy density, peak fault slip
velocity and stress drop [Guatteri et al. 2004, Song et al.
2009, Schmedes et al. 2010, Song and Sommerville
2010, Bizzarri 2010b, 2012a]. These correlations are ex-
tremely important, because they could be inserted as
constraints in kinematic modeling of  faults, on which
current practice in seismic engineering relies.

1.2. Methodological approach
In this paper we consider the simplified problem

of  a single, isolated, vertical, planar, strike–slip fault,
embedded in a perfectly elastic medium. The fault

geometry is the same as that used Bizzarri and Spu-
dich ([2008]; see their Figure 3). The elastodynamic
problem is solved numerically, as described in details
in Bizzarri and Cocco [2005], and the parameters
adopted in the present study are tabulated in Table 1.
We hypothesize that the fault obeys the linear slip–
weakening constitutive law [Ida 1972], which postu-
lates that the shear traction on the fault drops from its
maximum, yield level xu down to the residual value
xf, over a characteristic slip distance d0 (see Equation
25 in Bizzarri [2011]). There is no need to overempha-
size that this kind of  friction model can be merely re-
garded as one possibility to describe the non singular
stress decay during a seismic failure, and that more
elaborated governing equations can be employed (see
the discussion in Bizzarri [2009, 2011]). Indeed, in Sec-
tion 4 we will consider the Ruina–Dieterich law
(Ruina [1983]; see also Equation 35 in Bizzarri [2011])
in order to generalize the conclusions obtained in the
slip–weakening case. Moreover, we disregard here the
effects on the dynamic rupture propagation of  the
variations of  the effective normal stress, due for in-
stance to the thermal pressurization of  pore fluids,
which has been already discussed elsewhere [Bizzarri
and Cocco 2006a, 2006b]. The idealized geometry and
the simplified friction law adopted here do not affect
the results presented and discussed in the present
study, in that they can be exactly extended to other,
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Parameter Value

Medium and discretization parameters

Lamé’ s constants, m = G 35.9 GPa

S wave velocity, vS 3.464 km/s

Rayleigh velocity, vR 3.184 km/s

P wave velocity, vP 6 km/s

Eshelby velocity, vE = vS 4.899 km/s

Fault length, Lf 16 km

Fault width, Wf 11.6 km

Spatial grid size, Dx 5 m (a)

Time step, Dt 1.2 × 10−4 s (b)

Coordinates of  the hypocenter, H ≡ (x1
H, x3

H) (8,7) km

Fault constitutive parameters

Magnitude of  the effective normal stress, vn
eff 120 MPa

Magnitude of  the initial shear stress (pre–stress), x0 73.8 MPa

Static friction coefficient, nu 0.677 ( ↔ xu = 81.24 MPa )

Dynamic friction coefficient, nf 0.46 ( ↔ xf = 55.20 MPa )

Characteristic slip–weakening distance, d0 0.4 m

Table 1. Parameters adopted in the present paper. (a) The spatial discretization ensures a good resolution of  the breakdown zone length (Xb).
On average we have: <Nc> = <Xb>/Dx = 100. (b) For the adopted parameters the Courant–Friedrichs–Lewy ratio, ~CFL vSDt/Dx, equals
0.083 and a conservative estimate [e.g., Archuleta and Frazier 1978] of  the critical frequency for spatial grid dispersion, facc

(s) = vS/(6Dx),
equals 115 Hz. As required by explicit time stepping schemes we satisfy the condition Dt ≤ Dx/(2 vP).
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more complicated configurations. In Sections 2 and 3
we will consider faults with homogeneous properties,
while in Section 4 we will discuss the case of  hetero-
geneous rheology. 

Once the fault starts to propagate from the im-
posed hypocenter H (the nucleation strategy is thor-
oughly described in Bizzarri [2010a]), it spreads
bilaterally over the fault releasing energy and emitting
seismic radiation. In each node (x1, x3) of  the fault plane
we define the rupture time tr(x1, x3) as the first instant
when the L2–norm of  the fault slip velocity in that
point, v(x1, x3), exceeds a threshold value vl. We will dis-
cuss the choice of  the value of  vl and its effects of  the
computation of  the rupture speed in Section 3.

Once the rupture times are known, the definition
of  the rupture tip C at time t is straightforward:

(1)

which has the following numerical counterpart:

(2)

where the symbol     denotes the discrete equivalent of
a generic quantity q, the doublet (i,k) identifies a fault
node (    = iDx and    = (k−1)Dx, being Dx the spatial
grid size) and m defines the time       = m Dt, being Dt the
time step.

From tr one can also compute, in each node of  the
fault, the rupture speed vr simply as the inverse of  the
slowness [e.g., Bizzarri and Spudich 2008]:

(3)

In order to explicitly know at which rate the rup-
ture tip C is enlarging in a given direction, we introduce
the rupture speed vector vr, defined as it follows [see
also Pulido and Dalguer 2009, Hok and Fukuyama
2011]:

(4)
where

(5)

where are the unit vectors along the strike and
depth directions, respectively. The angle Umathemati-
cally defines the direction of  enlargement of  the rup-
ture front C. In particular, when U = 0, we are in the
pure mode II (i.e., inplane) direction; U = r/2 corre-
sponds to the pure mode III (i.e., antiplane) direction.
(Note that in Equations 4 and 5 we have omitted the

explicit dependence of  variables on the spatial coordi-
nates x1 and x3 for brevity of  notations.).

In this study we will explore the different possible
computations of  vr from Equation (3) in order to pro-
vide a clear indication of  the most accurate and stable
computational method of  the rupture speed. We will
also discuss the determination of  the tr, which affects,
by definition, the calculation of  vr.

2. Computation of the rupture speed

2.1. Numerical schemes
In Figure 1 it is imaged the fault slip at t = 1.92 s re-

sulting from a numerical experiments; the white por-
tion of  the fault represents the unbroken area and the
rupture front C is also indicated as the black line
marked with label “0.00”. This is the curve which sep-
arates the fault nodes that are slipping and releasing en-
ergy from those that are still at rest at this time. 

The calculation of  the rupture speed vr requires the
numerical computation of  the spatial derivatives ap-
pearing in Equation (3). In full of  generality, we can write 
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Figure 1. Distribution of  the fault slip developed by a 3–D synthetic
earthquake at time t = 1.92 s. The adopted parameters are listed in
Table 1. Due to the symmetry with respect to the hypocenter H,
we report only one half  of  the total fault length Lf.
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(6)

and
(7)

( Just for an example, for the central finite difference
scheme at second order of  accuracy we have: lstart =
− 1, lend = 1, c−1 = − 1/2, c0 = 0 and c1 = 1/2, so that

In order to see how much the values of  vr is af-
fected by the choice of  the numerical algorithms we
test several finite differences schemes, at different or-
ders of  accuracy and of  different type, either forward or
central. We also consider a modification of  the central
scheme at second order of  accuracy, which comes from
the so–called five–points stencil [e.g., Lapidus and Pin-
der 1999]:

(8)

and

(9)

A compendious summary of  the considered ap-
proximations is reported in Table 2. These numerical
schemes, as well as the coefficient reported in Table 2,

are well–known standard approaches to estimate deriv-
atives and they have been introduced in a quite vast body
of  literature. However, a systematic comparison of  these
schemes in the computation of  the rupture speed in the
source dynamic community is presently missed.

2.2. Numerical results: example of  a 3–D homogeneous
rupture 

To compare the results obtained by adopting the
different numerical approaches described in Section 2.1,
instead of  comparing the spatial distribution of  the re-
sulting rupture speed over the whole fault plane, we se-
lect four profiles, which are at the hypocentral depth
and aligned along the strike direction (x1), at the strike
coordinate of  the imposed hypocenter and aligned
along the dept (x3) and along two mixed–mode direc-
tions, having azimuth angles of  45° and 30° with re-
spect to x1. The two former profiles represent the
situations where the propagation is basically mode II
and mode III, respectively. The two latter profiles are
important, in that both the two non null components
of  slip, slip velocity and traction coexist (recall that the
geometry of  the problem is truly 3–D). The first and
fourth profiles are indicated by black and red dashed
lines, respectively, in Figure 2a of  Bizzarri and Das
[2012]. The results are presented in Figures 2 to 5, re-
spectively. We exclude the values of  vr computed
within the initialization patch, where the nucleation
strategy is imposed (see Section 1.2 and Bizzarri
[2010a] for further details).

First of  all, we observe that it is not true that an
increase of  the order of  accuracy always produces
more stable results; indeed, the level of  fluctuations
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i
Type

of
the scheme

Order
of

accuracy

Coefficients of different terms, cl

– 4 – 3 – 2 – 1 0 1 2 3 4

1 forward 1 0 0 0 0 – 1 1 0 0 0

2 forward 2 0 0 0 0 – 3/2 2 – 1/2 0 0

3 central 2 0 0 0 – 1/2 0 1/2 0 0 0

4 forward 3 0 0 0 0 – 11/6 3 – 3/2 1/3 0

5 forward 4 0 0 0 0 – 25/12 4 – 3 4/3 – 1/4

6 central 4 0 0 1/12 – 2/3 0 2/3 – 1/12 0 0

7 central 8 1/280 – 4/105 1/5 – 4/5 0 4/5 – 1/5 4/105 – 1/280

8
central,
from 5–

points stencil
2 n/a; see Equations (8) and (9)

Table 2. Different numerical schemes used to discretize Equation (1). The various multiplier coefficients {cl } of  Equations (6) and (7) are also
reported. For each type of  approximation the first and the last non null coefficients determine lstart and lend of  Equation (6), respectively.
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Figure 2. Comparison between different numerical computations of  the rupture speed, as described in the main text (see Section 2.1). The
profile is taken at the hypocentral depth and parallel to the strike direction (therefore the propagation is basically mode II). Blue and red curves
refer to forward and central schemes, respectively. The legends report the type of  the schemes, as listed in Table 2. For a better comparison,
each plot reports numerical schemes having the same level of  accuracy. Values of  vR and vS are also reported as purple and green lines, re-
spectively. The parameters are those listed in Table 1.

Figure 3. The same as in Figure 2, but now for a profile along the x3–direction (i.e., the propagation is basically mode III).



strongly depend on the type of  the adopted numerical
approach. In other words, high–order methods tend to
have larger oscillations. Interestingly, the central
schemes produce less fluctuations with respect to the
forward schemes (compare red and blue curves in Fig-
ures 2 to 5). We can also conclude that the five–points
stencil (Equations 8 and 9; black curves in Figures 2 to
5) gives the best results in absolute terms; it is even bet-
ter than the central schemes at fourth–order. Com-
pared to the central scheme having the same order of
accuracy (the second), we can also note that the five–
points stencil is more stable, especially in the cases of
mode III propagation (Figure 3) and mixed–modes (Fig-
ure 4 and 5). Indeed, it is able to fit the overall trend,
but oscillations are smaller than in the other cases. 

By looking at Figure 2 and 5 it emerges that, con-
trarily to 2–D singular cracks, for 3–D non singular rup-
tures (for which the stress release is not abrupt, but it is
accomplished over a process zone of  finite width), the
so–called forbidden zone of  rupture speeds disappears.
Indeed, as already discussed in more details by Bizzarri
and Das [2012], in 3–D all the values of  rupture speed
in between 0 and to the limiting speed of  P wave speed
are admissible.

The results discussed above do not depend on the
specific spatio–temporal discretization, but only on the

ratio between Dx and Dt. This ratio basically describe
the numbers of  the discrete levels of  vr (clearly visible
as horizontal ensembles of  dots in Figure 6). Remark-
ably, the previous results hold also for 2–D geometries;
in Figure 6 we report the results pertaining to a 2–D,
pure mode II rupture, which develops on a fault still
obeying the linear slip–weakening friction law. The so-
lution of  the elastodynamic problem is performed by
using the finite difference scheme described in Bizzarri
et al. [2001] and references cited therein; the parame-
ters are the same as for the 3–D case (see Table 1); the
only exception is the spatio–temporal discretization
(now Dx = 1 m and Dt = 2.5 × 10−5 s). Note that in this
case the values of  Dx and Dt are different with respect to
the 3–D simulation. Nevertheless, also in this case the
forward schemes give more oscillating estimates of  the
rupture speed, compared to the predictions of  the cen-
tral schemes. Overall, the second–order accurate cen-
tral difference approach produce the smaller oscillations
(note that in the case of  a 2–D rupture we are able to
compute only the schemes 1 to 7 of  Table 2).   

In conclusion, the five–points stencil method at the
second–order of  accuracy appears to be to most effi-
cient (for a purely computational point of  view) and ac-
curate (in terms of  oscillations) method to compute the
rupture speed from the rupture times. 
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Figure 4. The same as in Figure 2, but now for a mixed–mode profile, having an azimuth angle of  45° with respect to the x1–direction. 
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Figure 5. The same as in Figure 2, but now for a mixed–mode profile, having an azimuth angle of  30° with respect to the x1–direction. 

Figure 6. The same as in Figure 2, but now for a 2–D, purely mode II rupture. Due to the 2–D nature of  the rupture we are able to compute
only the schemes 1 to 7 of  Table 2. The nearly vertical clouds of  points appearing at about 2 km from the imposed hypocenter are numeri-
cal noise, due to the jump of  the rupture front occurring in 2–D. 



3. Effect of minimum detectable slip velocity on rup-
ture time estimates

3.1. The importance of  vl
In addition to the need to accurately compute the

rupture speed from the rupture time array tr (discussed
in Section 2.2), an accurate estimate of  vr strongly relies
on the accuracy of  the determination of  tr. As stated in
Section 2.1 and in agreement with other studies [e.g.,
Day et al. 2005, Rubin and Ampuero 2005, Bizzarri and
Spudich 2008], tr is defined in each node of  the fault sur-
face as the time level at which the fault slip velocity at
that node first exceeds a threshold value (vl). To quan-
titatively evaluate the effects of  the choice of  vl in the
determination of  tr we perform several numerical ex-
periments by varying the value of  the threshold veloc-
ity and keeping the other parameters unchanged. We
perform the simulations in 2–D, with the same param-
eters as in Table 1.

In Figure 7a we report the resulting values of  the
ruptures times, as depending on the choice of  vl. In gen-
eral, we observe a dependence of  tr on vl especially in
the correspondence of  the bifurcation of  the rupture
tip, i.e., when the rupture jumps to the supershear
regime. Indeed, in 2–D the rupture speed does not
cross the so–called forbidden zone (i.e., the interval be-
tween the Rayleigh wave speed and the S wave speed)
and correspondingly the rupture front exhibits a jump
[e.g., Bizzarri et al. 2001 and references cited therein].
The “mother” front remains sub–Rayleigh, while the
“daughter” front accelerates from vS up to the com-
pressional wave speed, which represents the limiting
speed for this rupture mode [Burridge 1973, Das and
Aki 1977, Rosakis et al. 1999, among others]. 

From Figure 7a it is clear that for vl = 0.1 m/s (green
circles) the separation of  the two rupture fronts are quite
different with respect to the prediction at lower vl. In par-
ticular, for vl = 0.5 m/s (purple symbols) we can not see
the bifurcation, as the rupture front appears to be a con-
tinuous line. Correspondingly, if  one looks at the result-
ing rupture speed (see Figure 7b), it is possible to see that
the forbidden region disappears for vl ≥ 0.1 m/s. This is
physically reasonable, because it indicates that when the
threshold velocity is too high some details of  the daugh-
ter rupture are not captured by the criterion used to de-
fine tr. We are aware of  the fact that 0.5 m/s is a relatively
high value to detect the rupture front; we have consid-
ered it just to complete the exploration of  the parameter
space. Moreover, that value is not improper; in Figure 8
we plot the time evolution of  the fault slip velocity for
the 2–D numerical experiment in different locations of
the fault. We can clearly see from that figure that even in
the first stages of  the rupture, when it is still subshear,

the peaks of  v significantly exceed 0.5 m/s. This becomes
even more true as long as the rupture propagates; after
birth of  the supershear rupture front the peaks are even
larger, as already known since Bizzarri et al. [2001]. In
spite of  the relative infrequency of  large values of  fault
slip velocity (namely greater than 1 m/s) obtained in
kinematic modeling of  faults, it should be noted that
large v is routinely found in dynamic models of  fault, not
only when the fault is very unstable (due for instance to
the incorporation of  the thermal pressurization of  pore
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Figure 7. Sensitivity of  the determination of  the rupture times tr
from the choice of  the threshold velocity vl. The simulations pertain
to 2–D ruptures having the parameters of   Table 1, but different val-
ues of  vl, as listed in the legends. (a) Distribution of  tr as a function
of  the distance from the imposed hypocenter, with an inset report-
ing a zoom in the correspondence of  the rupture tip bifurcation. At
a given rupture time, the fault nodes at distances larger than the lo-
cation of  the symbols are not rupturing (unbroken parts). (b) Re-
sulting rupture speeds, compute by adopting the central scheme at
second order of  accuracy (which has been proved to be the best
computational approach). Note that for vl ≥ 0.1 m/s the bifurcation
(jump) of  the rupture front is not well resolved and correspondingly
the forbidden region is penetrated (values of  vR and vS are also re-
ported dashed horizontal lines). The results are independent on the
choice of  the threshold velocity for vl ≤ 0.01 m/s.
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fluids; e.g., Bizzarri and Cocco [2006b] or of  the me-
chanical lubrication; e.g., Bizzarri [2012b]), but also in
presence of  spatial heterogeneities (e.g., Bizzarri et al.
[2010]; their Animation S3).

On the other hand, for small values of  vl the results
are quite similar. In particular, for vl ≤ 0.01 m/s the rup-
ture times are indistinguishable and independent on the
choice of  the threshold velocity (Figure 7a). Remarkably,
the same holds also for the rupture speeds (Figure 7b).
This is not surprising, because the slip velocity histories in
the case of  the slip–weakening friction law are character-
ized by an abrupt onset (i.e., a fast accelerating phase).

As an overall conclusion, we have found that the
value of  vl = 0.01 m/s to define the occurrence of  a
rupture in a given node of  the fault is optimal. The re-
sults presented here pertain to 2–D ruptures, but the
same conclusion holds also in the case of  3–D ruptures. 

3.2. Comparison between two criteria to identify the
rupture front

As well–known [Bizzarri et al. 2001, among others],
the slip–weakening friction gives a more abrupt fault
slip acceleration in the early stages of  the rupture com-
pared to the more elaborated rate– and state–depen-
dent friction laws [e.g., Ruina 1983]. In particular,
within the framework of  the linear slip–weakening con-
stitutive model the fault slip velocity quickly increases
from zero to non zero values at the rupture onset. This
is intimately due to the sliding logic; when the traction
first reaches the upper yield stress xu the slip com-
mences. The fact that the fault slip velocity v becomes
non zero simultaneously when the traction reaches xu
is peculiar of  the slip–weakening constitutive models;

with the rate– and state–dependent friction laws v is
non null also before the rupture onset. This is impor-
tant, because for the slip–weakening law we have an
exact estimate of  the occurrence of  the rupture (and
thus an exact determination of  tr) against which we can
compare the estimates arising from the threshold crite-
rion in terms of  v. To quantitatively compare the rup-
ture times defined from the vl criterion (with vl = 0.01
m/s) and those defined when x first reaches xu we
compute the misfit m:

(10)

The spatial distribution of  m is reported in Figure
9 from which it is possible to see that the difference be-
tween the rupture times defined in the two different
ways are in general very small (at maximum we have a
difference of  0.20 %). The differences are mainly con-
centrated near the boundary discriminating between
the sub– and the supershear regime (black line in Figure
6) and in the neighboring of  the imposed hypocenter
(where the nucleation is imposed and the linear slip–
weakening law is not yet operating; see Bizzarri
[2010a]). From the inspection of  Figure 9 one also has
that tr

(from xu) ≤ tr
(from vl) (because of  m ≥ 0); this is phys-

ically reasonable, because in general first x reaches xu
and subsequently v exceeds vl. 

4. Results for heterogeneous configurations and dif-
ferent friction laws

In the previous sections (2.2 and 3) we have con-
sidered the simplest case of  a fault having homoge-
neous properties. Indeed, we know that real earthquake
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are heterogeneous in terms of  dynamic parameters
and frictional properties. A relevant body of  literature
deals with the numerical simulation of  the dynamic
propagation of  ruptures on heterogeneous fault sur-
faces [far of  being exhaustive, Tinti et al. 2005, Laval-
lée et al. 2006, Bizzarri et al. 2010, Andrews and Barall
2011], so that it is very important to quantify the relia-
bility of  the rupture speed computed in these situa-
tions. To illustrate how the different numerical schemes
described in Section 2.1 perform, we select a hetero-
geneous configuration in which the initial shear stress
is still aligned in the strike direction, but it is now het-
erogeneous. In particular, we assume that its magni-
tude x0 decays a k–1 at high wavenumbers k, namely it
has a power spectral density described by Equation (21)
in Bizzarri [2010b]. The spatial distribution of  the x0 is
reported in Figure 10a of  Bizzarri [2010b] and the cor-
responding vr is in Figure 10d of  the same paper.

In Figure 10 we compare the computations of  vr
with the different numerical schemes considered in this
work (see Section 2.1) along the mode II profile. These
results basically confirm and reinforce what we have

previously found in homogeneous conditions (see Sec-
tion 2.2); in general higher orders of  accuracy do not
correspond to small fluctuations in the resulting values
of  the rupture speeds and the five–points stencil aver-
age (black line in Figure 10) gives more stable estimates
(small oscillations) of  vr. The parameters adopted in this
heterogeneous model are listed in Table 1 of  Bizzarri
[2010b]; it is apparent that it is characterized by different
values of  Dx and Dt (greater than those used in homo-
geneous conditions; see Table 1 of  the present paper),
different elastic constant (Lamè constants, P and S wave
speeds), a different Courant–Friedrichs–Lewy ratio, dif-
ferent values of  the frictional levels and different char-
acteristic slip–weakening distances. We have deliberately
chosen a rather different configuration in order show
that the conclusions reached in the present study do not
depend on the specific configuration we use.

As thoroughly discussed by Bizzarri [2011], there is
no a general consensus on the most appropriate con-
stitutive model to be applied to describe the traction
evolution during an earthquake failure. In addition to
the linear slip–weakening law considered so far, we also
consider the Ruina–Dieterich friction law [e.g., Ruina
1983], in which the dependence of  the fault traction is
on the slip velocity and on one state variable, account-
ing for the memory of  the whole history of  the seis-
mogenic fault. This governing model (see Equation 35
in Bizzarri [2011]) is inherently different with respect to
the linear slip–weakening law, but has received a lot of
attention in the modeling of  the seismic source processes
(again, far of  being exhaustive, Bizzarri and Cocco
[2005], Lapusta and Liu [2009]). We have then consid-
ered this model to test the different numerical schemes
for the computation of  vr. The considered model has
the same heterogeneous initial shear stress as the pre-
vious model; the parameters are listed in Table 1 of  Biz-
zarri [2010b] and the resulting spatial distribution of  the
rupture speed is imaged in Figure 10c of  that paper. It
is clear that the heterogeneities cause a very compli-
cated evolution of  the rupture, which is now charac-
terized by some accelerations and further decelerations
of  the rupture front, which in turn has a very complex
shape (compared to the homogeneous configuration).
Figure 11 reports the results of  the resulting rupture
speed computed with the different numerical schemes.
It is apparent that now the absolute level of  fluctuations
is even larger than in the previous heterogeneous case
(Figure 10), where the rupture is governed by the linear
slip–weakening law. This difference can be easily ex-
plained by considering the different global rupture be-
haviors in the two cases; in the simulation with the
Ruina–Dieterich law the rupture heals in many patches
of  the fault surface, while in the slip–weakening case, it
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Figure 9. Misfit between the rupture times defined from the vl cri-
terion and those defined when x first reaches xu. The quantity m re-
ported in the figure is defined in Equation (10). The simulation
pertains to a 3–D rupture with the parameters are tabulated in Table
1. The transition between sub– and supershear regime is indicated
with the black line.
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Figure 10. The same as in Figure 2, but now for a heterogeneous configuration, which is described in details in Section 4. 

Figure 11. The same as in Figure 10, but now for a heterogeneous configuration obeying to the Ruina–Dieterich friction law (see Section 4
of  the main text for further details). 
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does not heal. A direct comparison of  these behaviors
comes from Figures 10c and 10d of  Bizzarri [2010b],
where it is plotted the spatial distribution of  the rup-
ture speed over the whole fault plane. Finally, we men-
tion that in extreme cases of  heterogeneities in frictional
properties, to better constrain the resulting rupture
speed we should improve the spatial and temporal dis-
cretization of  the model. 

The results presented in Figure 11 confirm that
central schemes perform better than forward schemes
(at a given order of  accuracy). We note that at high or-
ders of  accuracy (4 and 8) the oscillations of  the cen-
tral schemes are greater than in the previous case
(compare Figures 10 and 11), but they are generally
lower than those emerging in forward schemes. More-
over, we also confirm here that an increase of  the order
of  the accuracy does not improve the results. Also in
this case the five–points stencil method can be regarded
as the best candidate to compute the rupture speed.    

5. Conclusions
In this paper we have considered the problem of

the determination of  the rupture speed vr characteriz-
ing a fully dynamic, spontaneous earthquake. In spon-
taneous models the position, as well as the shape, of
the rupture front, separating the broken from the un-
broken portions of  a discontinuity interface, is a part
of  the solution and it is totally controlled by possible
geometric irregularities, rheological properties of  the
fault structure, heterogeneities, etc. The computation
of  the rupture speed is performed quite routinely by
the modellers of  the seismic source. However, a sys-
tematic, quantitative exploration of  the different nu-
merical method to retrieve it from the results of  a
numerical experiments is currently missed and this is
the primary goal that the present study aims to fill.   

We analyze the simplistic case of  a single fault,
governed by the linear slip–weakening friction and with
homogeneous and heterogeneous rheological proper-
ties (see Section 2.2 and 4, respectively), in order to pro-
vide some hints for the determination of  the rupture
times tr and for the computation vr. We also consider a
rate– and a sate–dependent friction law (the Ruina–Di-
eterich model; see Section 4) to generalize the conclu-
sions of  the present study. We consider a test case of  a
supershear event with both 2–D (pure mode II) and
truly 3–D (with mixed mode II and mode III, with rake
variation allowed) geometries.

The results clearly indicate that the way to define
tr is very important. In particular, if  the fault slip veloc-
ity threshold (vl) used to define tr is too high (vl ≥ 0.1
m/s) some details of  the rupture process are missed.
For an example, in the case of  a 2–D, pure mode II rup-

ture, for which it is expected to have a rupture jump
from sub–Raleigh to supershear speeds [Andrews 1976,
Bizzarri et al. 2001], the rupture front bifurcation is lost
and the jump of  the front is not properly captured (see
Figure 7a). This has relevant consequences when one
computed the resulting rupture speeds. On the other
hand, for vl ≤ 0.01 m/s the results appear to be stable
and, more importantly, independent on the choice of
vl. We recall that in the framework of  the linear slip–
weakening governing law we have an exact estimate of
the rupture time, which is formally defined as the in-
stant when the traction reaches the upper yield stress
and this exact estimate has been checked against those
resulting from the slip velocity criteria with different
threshold values. We can therefore regard the value of
vl = 0.01 m/s as the optimal candidate to the used also
with other constitutive models, such as the rate– and
state–dependent friction laws, for which the rupture
time can not be intrinsically determined by the gov-
erning model itself.  

The choice of  vl = 0.01 m/s, indicated as the pre-
ferred one from the present study, is in agreement with
previous papers on dynamic modeling of  faults [Day et
al. 2005, Bizzarri and Spudich 2008, Bizzarri et al. 2010,
Bizzarri 2011]. We also emphasize that in heteroge-
neous conditions some patches of  the fault can poten-
tially produce small stress drop, due to the frictional
heterogeneities, and therefore exhibit there relatively
small values of  fault slip velocity. At the same time we
can also expect rapid changes of  rupture times on small
scales, when the rupture accelerates or it slows down
due to the local stress inhomogeneities. As a conse-
quence high values of  vl can in principle produce some
bias in the determination of  tr and thus of  vr. (Inciden-
tally, it is worth to mention that the adoption of  vl =
0.1 m/s has been used in other previous papers [e.g.,
Belardinelli et al. 2003, Antonioli et al. 2006, Bizzarri
and Belardinelli 2008] to discriminate between aseismic
and seismic regimes of  a fault subjected to an external
stress perturbation and not to define the rupture front.)

Moreover, we show that, in general, central finite
differences schemes are more accurate than forward or
backward schemes, regardless the order of  accuracy.
Overall, the most efficient and accurate algorithm is
the five–points stencil method at the second–order of
accuracy, because it produces small oscillations. Re-
markably, these conclusions hold both for simplistic
homogeneous and for more realistic heterogeneous
configurations, and do not depend on the particular
choice of  the parameters of  the model (expressed in
terms of  properties of  the elastic medium in which the
fault plane is embedded, spatial and temporal dis-
cretization, constitutive parameters, ratio between the
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spatial grid size and the temporal step size). More im-
portantly, these results are general and hold not only
for the linear slip–weakening law, but also for different
constitutive model, such as the rate– and state–depen-
dent friction laws.

The time required by the different algorithms used
to compute the rupture time (post–processing time) is
in all cases negligible with respect to the total CPU time
required to solve the elastodynamic problem. We re-
mark that these conclusions hold for the finite differ-
ence, conventional grid method employed here
[Bizzarri and Cocco 2005], and a similar test would be
possible also for other numerical algorithms, such as
finite elements, spectral elements, discontinuous
Galerkin, etc. and this comparison in those cases would
be also beneficial.
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