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ABSTRACT

In this paper, the collocation approach to Moho estimate is presented.
This method is applied to the inversion of  gravity data that can be com-
plemented by Moho depth information coming from e.g. seismic infor-
mation. In this context, a two layers model is considered and discussed in
order to give a general theoretical framework for the inversion method. A
body with two inner constant density layers and an inner separation sur-
face between is considered and a uniqueness theorem is proved for the es-
timability of  the separation surface given the gravity outside the body
itself. Based on this result, a discussion is given on the estimation of  the
Moho depths based on terrestrial gravity observations. The observation
equation is presented and its local planar approximation is derived. The
application of  the collocation method to the estimate of  Moho depths is then
studied and discussed in relationship to the planar observation equation.
Also, numerical tests are presented. To this aim, the collocation inversion
algorithm is implemented and tested on simulated data to prove its effec-
tiveness. The results show that the proposed method is reliable provided that
proper data reductions for model discrepancies are taken into account.

1. Introduction
The transition layer between the upper mantle and

the lower part of  the crust is defined as the Mohorovicic
discontinuity (Moho) and ideally considered as a surface
[Turcotte and Schubert 1982]. On a global scale, this sur-
face has sharp variations, ranging from over 60 km to less
than 5 km depth. The density variation occurring across
the Moho between the upper mantle and the lower crust
is generally set at 0.5 g/cm3, based on the assumption
that the upper mantle density is 3.4 g/cm3 and the lower
crust density is 2.9 g/cm3 [Anderson 1989]. The Moho
transition layer causes seismic wave refraction and re-
flection and the related gravity signal as measured on the
Earth surface can have a standard deviation ranging from
50 to 100 mGal. Moho depths can be estimated using
both seismic and gravimetric inversion methods [Parker
1972, Lebedev et al. 2013]. Seismic methods can give
more accurate estimates that are not however homoge-
neously distributed over the Earth. On the contrary, grav-

ity is quite homogeneously distributed over the entire
Earth and only relatively small areas are un-surveyed
[Pavlis and Rapp 1990]. Furthermore, satellite dedicated
gravity missions [Reigber et al. 1999, Albertella et al. 2002,
Tapley et al. 2004] have made available a large amount of
data that can be profitably used in combination with
ground based gravity data [Shin et al. 2007]. Recently, an
approach based on the integration of  gravity and seismic
information has been proposed by Eshagh et al. [2011].
They devised a method based on a stochastic combina-
tion of  seismic and gravity Moho models. In this paper,
the gravity estimation of  the Moho based on the collo-
cation method is presented [Krarup 1969, Moritz 1989,
Barzaghi et al. 1992] which also allows integration of
gravity and seismic information available in the investi-
gated area. The basic idea of  this method is to propa-
gate the covariance structure of  the Moho depth to the
covariance of  the observed gravity. Given gravity ob-
servations and Moho depth information (e.g. from seis-
mics), the Moho collocation estimate can be obtained
as a linear combination of  these data. Also, collocation
allows the computation of  the variance of  the estima-
tion error that can be used as an indication of  the esti-
mated depth precision. This approach is here devised
for a two layers model and a uniqueness theorem is
proved as a theoretical background for the proper ap-
plication of  the method (see Appendix). In this context,
the collocation inversion method for the two layers
model is presented and the impact of  model discrep-
ancies on the Moho estimate is discussed. Computation
problems are addressed too. The method effectiveness
is then tested using simulated gravity data.

2. The observation equation for the gravity effect of
a two layers body

In the following the two layers body is considered.
This is defined as a body with an inner volume and an
external layer: the two parts have different densities and

Article history
Received June 14, 2013; accepted November 15, 2013.
Subject classification:
Moho, Gravity collocation, Gravimetric inverse problem.



are separated by a unique surface. Particularly, we con-
sider a spherical two layers body. We also assume that
this spherical body has a radius R = 6380 km and that
the surface separating the external layer from the inner
volume is at a depth ranging from 5 to 60 km. In a very
simplified way, this can be assumed to be the reference
model for the Earth and the Moho. Given this model, a
new method is developed to obtain a Moho estimate
on regional areas, e.g. areas having a 6° × 6° extension.
Furthermore, the method and the equations are given
in planar approximation. 

Gravity observations are supposed to be known on
the surface of  the sphere representing the Earth. In addi-
tion, Moho depths can be given at scattered points. The
density of  the outer layer tC and the inner density tN are
assumed as known and independent from the radial com-
ponent. So, tC and tN depend only on the spherical co-
ordinate v, v= ({,m). This is a special case in the theorem
proved in the Appendix and thus it still holds that the
inner separation surface is unique. The potential gener-
ated from this body in a point P on the external surface is
expressed by V(P) = NN tN + NC tC , where NN and NC are
the Newtonian operator applied to the inner volume and
the outer layer respectively. If  we define a normal poten-
tial U(P) = NB tN = NN tN + NC tN (NB is the Newtonian
operator extended to the whole body), we can define the
anomalous potential T as T(P) = V(P) − U(P) = NC (tC −
tN) = NC (t), where we have put t = tC − tM . This defi-
nition implicitly poses the density of  the normal potential
equal to the mantle density. Other choices can be given
and are available in literature, for example by putting the
‘normal’ density equal to the Earth mean density. How-
ever, in our application the gravity anomaly is derived by
T and a different choice of  density just affects the mean dg
that in any case will not be used. Thus T(P) is given by
[Moritz 1990, Sjoberg 2009]

P is a point on the external surface, RP , vP are the ra-
dial and angular coordinates of  P: hypothesizing a spher-
ical body, RP = . rPQ = (]PQ
is the angle between OP and OQ, O being the center of
the sphere). The term is the depth of  the
separation surface between the two layers. The equa-
tion for gravity dg = −^T/^R is then

Since 

we can express dg in the following way

with QR and QR−H running over the outer sphere sur-
face and the inner separation surface. The planar ap-
proximation of  these equations can be obtained in a
reference system having the Z axis along the plumb
line in the midpoint O of  the investigated area and the
(X,Y) plane tangent to the outer sphere in O (see Fig-
ure 1). We define n' as the inner surface normal vec-
tor and n as the unit vector along the radial direction.
If  we name dS as the area element of  the inner sepa-
ration surface, we have dSn' · n. The
vector n can be further decomposed into ez + dex ,
being ez its component along the Z axis and dex the
component onto the (X,Y) plane. It follows that n' · n =
n' · eZ + n' · deX .

If  we assume to consider areas having maximum
width of  about 6°, dex , which is the tangent of  the angle
between n and ez , has a maximum value that is 1/20 of
ez . This implies that, at the first order, we can approx-
imate n' · n � n' · eZ , that is � dSn' · eZ.
The second term in the equation giving dg can be thus
simplified accordingly

This integral can be further simplified by assum-
ing � 1 (this is true with an error which is,
at maximum 1%). In this way, it follows that 

2 cosR RQ Q PQ
2h h ]+ -2R

( )R H v-

T P
Q

r
Q Q

G r
Q

dB

G d d
PQ

C N

N

PQ

C

C
Q

Sphere
Q

R H

R
2

t t

v hh
t t-

=
-

=

=
v-

^
^ ^

^ ^

^

h
h h

h h

h

# # #

# # #

,g R G d d R r
1

P
R

R

S H
Q PQ
2

2
2

d v vt v h h=-
v-

^ ^
^

h h
h

# # #

3

2

R r r r

r r r

r r

r R r R r

1

1 2

R PQ

Q

PQ

Q
Q PQ

PQ

Q

PQ

Q

PQ

Q

PQ

Q

PQ

Q

R PQ

Q

PQ

Q

PQ

Q

2 2
3

2 3 2

2 3

2 3 2

2 2

2

2

2 2

h h
h

h h h

h h

h h h

=- - =

=- - + =

= -

=- +

h

h

h

h

c `
c
c

c c

m j
m
m

m m

( )d R H 2v - =

( )d R H 2v -

,
,

R
G d r

R H

R
G dxdy x y r

R H x y

PQR H
S

R
PQR H

3

2

,

,

vt v
v

t

-
-

-
-

-

-

^
^^

^
^^

h
hh

h
hh

# #

# #

( )/R H R-

,

R
G d r

R H

G d d r
1

PQ
S

R
PQ

3

R H

R H2

,

,

vt v
v

p it p i

-
-

-

-

-

^
^^

^

h
hh

h

# #

# #

,g R G d r
R

R
G d r

R H

P
S

PQ

PQR H
S

2

3

R
d v vt v

vt v
v

= +

-
-

-

^ ^

^
^^

h h

h
hh

# #

# #

BARZAGHI AND BIAGI

2

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)



3

The same holds for the first integral. Hence

that is 

where .
This is a non-linear integral equation between

H(x,y) and dg. In order to get it in a form that is suitable
for applying collocation, we have to linearize it. To this
aim, we define (E[+] is the mean oper-
ator) and we set H(x,y) =                                     . More-
over, let assume that : note that in some
areas this is not true and the resulting approximation
could represent one possible limitation of  this approach
that must be carefully considered in its application. In
any case it is needed for getting dg(x,y) as a linear func-
tional of  f(x,y) as required for applying collocation:
more investigations on the approximation consequences
will be discussed in the tests of  Section 4. Therefore,
considering only the linear terms in f, we obtain 

If  we further consider the density contrast between
the crust and the upper mantle, we set 
and . Thus, the equa-

tion for dg(x,y) can be written as 

with

In its linearized form, the dg(x,y) observed gravity
is given as the sum of  four terms that will be analyzed
in the following. Integrals I2, I3 are linear terms in f and
dt while I4 contains the product f(p,i)dt(p,i). This last
integral is thus a second order term which is likely to be
smaller than I2. So, in a first approximation, we assume
that I2 + I4 � I2. If  we now disregard I4 , we have E[dg]
= E[I1] + E[I2] + E[I3]. In our hypotheses on f and dt, it
holds that ,
which implies that                                                      . So,
in principle, one can estimate 
from observed gravity. This is indeed possible only in
theory but not in practice due to the standard defini-
tion of  observed gravity anomalies (there is a mismatch
in the reference density between our definition and the
standard one based on the normal ellipsoidal field).
Thus we assume to have an estimate of  as given in-
dependently (e.g. from seismic information). 

The last term to be discussed is I3. It gives the grav-
ity effect due to density variations over the thickness

Hmax %f

( , ) ( ) ( )d x yxy
2 2p i p i= - + -

( , )H E H x y= 6 @

[ ( , )]E x yt t=

, , , , , ,

, , , , , , ,

, , ,g x y H H x y

H x y I H x y

I x y I

I

0

4

1 2

3

d t t f

dt dt f

= + +

+ +

^ ^ ^

^ ^

h h h

h h

[ ( , , , , )] [ ( , , , )] 0E I H Hx y E I x y2 3t f dt= =

[ ]/(2 )H E g Gd r t=

H

, ,
,

,

g x y G d d r

G d d r

0
PQ

R

PQ R H
R

R2

2

d p i
t p i

p i
t p i

= +

-
-

^
^

^

h
h

h

# #

# #

, , ,
,

, ,

g x y G d d
d

d H

0 1

1
/

R xy

xy
2 2 1 2

2

,d p i p i
p i

p i p i

+

-
+

^ ^
^

^ ^

h h
h

h h

;

6 @ E

# #

, , ,
,

,

,
,

,

g x y G d d
d

H d

G d d
H d

H

0 1

1
/

/

R xy

xy

R xy

2 1 2

2 3 2

2

2

t

t

d p i p i
p i

p i

p i p i
p i

f p i

= +

-
+

+

+
+

2

2

^ ^
^

^

^
^

^

h h
h

h

h
h

h

;

6

6

@ E

@

# #

# #

,
,

,

, ,
,

,

, ,
,

,

, , ,
,

,

I H G d d
d

H d
G H

I H G d d
H d

H

I H G d d
d

H d

I H G d d
H d

H

1

1 2

1

1

/

/

/

/

R xy

xy

R xy

R xy

xy

R xy

1

2 1 2

2 2 3 2

3

2 1 2

3 2 3 2

2

2

2

2

t p it
p i

p i
r t

t f p it
p i

f p i

dt p idt p i
p i

p i

dt f p idt p i
p i

f p i

= +

-
+

=

=
+

= +

-
+

=
+

2

2

2

2

^
^

^

^
^

^

^ ^
^

^

^ ^
^

^

h
h

h

h
h

h

h h
h

h

h h
h

h

;

6

6
;

6

6

@ E

@

@ E

@

# #

# #

# #

# #

H

THE COLLOCATION APPROACH TO MOHO ESTIMATE

Figure 1. Spherical geometry and planar approximation.
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layer. The impact of  this term can be large as it can be
assumed that, in the mean over the whole Earth, �

30 km. Hence, this term must be locally modeled based
on available crustal density variation data in the inves-
tigated area.

The amplitudes of  the four integrals terms and
the impact on the estimated f values will be further
discussed in the numerical simulations given in para-
graph five.

3. The collocation estimate method
It is well known [Menke 1989, Tarantola 2005] that

the gravity inversion is unstable. Thus the estimation
algorithm to be applied should be stable and smooth
with respect to high frequency gravity signal compo-
nents. Collocation method can be successfully applied
to this aim. It is a stochastic filtering/predicting method
that filters out high frequencies based on the covariance
structure of  the data. It has been widely applied in Ge-
odesy [Tscherning 1985, Moritz 1989] particularly in
view of  the use of  heterogeneous data. In our applica-
tion, this implies that dg data can be used together with
f known values (coming from e.g. seismic) to get an
integrated estimate of  f.

This method can be properly applied to the ob-
servation equation .
Thus, in order to get unbiased estimates, we need to
model and remove the signals related to the I3 and the
I4 terms that account for density variations. As it will
be proved in the simulations, these terms give a sig-
nificant signal having also a frequency signature that
couples with I2. However, it can be reasonably as-
sumed that I4 ≪ I2 and I4 ≪ I3. Thus, the proposed es-
timation method is performed according to the
following steps.

1) Estimates of and dt(x,y) are given using avail-
able information on t(x,y).

2) On observation points, the I3 term effect is esti-
mated based on the given values of  dt(x,y) and (this
last term can be derived from known geological infor-
mation and/or from seismic profiles). This effect can
be straightforwardly computed using the closed for-
mulas of  the gravity effect of  a prism [MacMillan 1958].

3) Reduced gravity data are estimated as dgI(x,y,0) =
dg(x,y,0) − E[dg] − and, assuming that
dgI(x,y,0) � are estimated by col-
location.

4) Using the estimated values, I4 is com-
puted and subtracted from dgI(x,y,0) to get dgII(x,y,0) =
dgI(x,y,0) − .

5) Then, the last computation step is accomplished
using dgII(x,y,0) as input data and getting, by colloca-
tion, . Thus, in the end, 

In order to see how collocation can be applied to
get the estimate of  f, a brief  presentation is given in
the following. A more detailed description can be
found in Barzaghi et al. [1992], Biagi [1998] and Fors-
berg [1984].

We assume that the following linear relationship
between gravity (dg) and depth (f) holds

Assuming that and are known, the colloca-
tion estimate of  f can be obtained based on dg obser-
vations and f values given in some scattered points. 

To get these estimates, we further have to assume
that: 

1) f is a weak stationary stochastic process, ergodic
in the mean and in the covariance

2) the noises in gravity and depth, ng and n
f

are un-
correlated zero mean signals

3) the cross-correlation between signals and noises
is zero.

Auto and cross covariances can then be summa-
rized as follows

Using these covariances and observations plus
noise

we can get the following auto-covariance matrices of
the observations

The collocation estimate of  f [Moritz 1980, Barza-
ghi et al. 1992] in a point Pk = (xk ,yk) is given by

with (3.9)
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To compute this estimate, we first have to esti-
mate the empirical covariance function of  dg which
must be then modeled with proper positive definite
model functions [Moritz 1980]. Also, models for auto
and cross-covariances must be defined in order to com-
pute the matrices defining the f estimator.

This can be done via covariance propagation law
applied to linear functionals [Moritz 1980]. In our ap-
proach we assumed 

where LP [f] indicates the linear functional relating f to dg.
It follows by covariance propagation law that 

A suitable model for C
ff

can be 

(J0 : zero order Bessel function)

which implies [Biagi 1998]

Another model that can be used for the auto-co-
variance of  dg is

(J1 : first order Bessel function)

which gives 

The A and the a values contained in these models
are tuned to fit the empirical estimated covariance val-
ues of  dg. As stated above, models for C

ff
and C

fdg can

be then derived, allowing the computation of  the ma-
trices contained in the estimation formula for f.

3.1. Some comments on the efficient computation of  the
estimation formula

One numerical major problem in computing the
collocation estimate of  f is the inversion of  the covari-
ance matrix of  the data Cll. Some standard data config-
urations are discussed here. We firstly assume that the
number of  known Moho depths NH coming from seis-
mic is at maximum 200. We then consider three differ-
ent gravity data distributions:

1. A quite poor gravity data coverage and depth in-
formation:

2. High gravity data coverage and no depth infor-
mation:

3. High gravity data coverage and depth informa-
tion:

Case 1. Can be handled using standard techniques
such as Cholevsky decomposition [see e.g. Press et al.
1992]. The efficient numerical computations of  case 2
and 3 can be obtained if  we assume that gravity data
are regularly gridded. In this case, the covariance matrix
has a Toeplitz/Toeplitz structure: based on this partic-
ular structure, in case 2, Fast Collocation can be applied
[Bottoni and Barzaghi 1993]. Case 3 must be discussed
in more details. Also in this case, we assume to have
gridded gravity data. On the other hand, depth infor-
mation are assumed to be given on scattered points.
Under these assumptions, an efficient solution can be
obtained by partitioning the solution. We have to solve
the following system

The partitioned solution is given by

with 

In this way, the term m can be computed via Fast
Collocation being dg on a grid. The same holds in com-
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puting C, since we can apply Fast Collocation NH times in
solving Ci = . , where ci is the i-th column of  ,
i = 1,..., NH. The memory allocation for this method is
equal to (Ng + NH)(1 + 2NH) since we have to store the
first row of  the Toeplitz/Toeplitz matrix Cdgdg, the full
C

ff
and C

fdg matrices, the C and X matrices and the
vector m. This memory occupation is smaller than
those implied by the full Cll matrix storage. Further-
more, in terms of  computation effort we have (NH + 1)
Fast Collocation solutions having Ng dimension and 2
Cholesvky based solutions having NH dimension. The
computation time is thus proportional to (NH + 1)N

d
2

g
logN

dg + 2NH
3 which is less than the one require for solv-

ing the full Cll system by standard Cholevsky method.
A last remark is in order. Usually collocation is a

stepwise procedure since it is an adaptive filter which is
tuned by the empirical covariance. Thus, in the first
step, the low frequency component is dominant while
in the further steps the high frequencies become dom-
inant. At each step, residuals on observation points are
obtained as the difference between observed and collo-
cation predicted values. The iterative process stops
when residuals (e.g. gravity residuals) are uncorrelated. 

4. The simulated tests 
The devised method has been tested via numeri-

cal simulations that aim at verifying:
- the properties and the stability of  the inversion

procedure under model/data consistency,
- the impact of  known HOBS data in the inversion,

i.e. the improvements that one can get with respect to
the inversion based on gravity data only,

- the biases induced in the depth estimates when

model inconsistencies are present, like for example, er-
rors in the gravity contrast model or in the mean
Moho depth.

A surface depth has been simulated on a regular
(x,y) grid with 10 km grid knot over a rectangular area
600 km × 400 km. The depth values
are given with respect to mean depth                          while
the f values have been generated according to the pro-
cedure described in Barzaghi et al. [1992]. The a-priori
covariance structure of  the f values has been fixed ac-
cording to the following parameters

The simulated depths (Figure 2) have the follow-
ing statistics

v(f) = 6.4 km
min(H)= −43.67 km
max(H)=−16.00 km

As one can see in Figure 2, the resulting depth sur-
face is smooth and regular which seems to be quite far
from the real Moho behavior, at least in some particular
areas where high frequencies features are present (e.g.
the Alpine region). However, this is not so relevant since
in the devised tests we are aiming at defining the impact
of  model inconsistencies on the inversion procedure.
This can be critically evaluated even if  high frequency
pattern is not present in the target surface. Generally,
the simulated depth does not respect the condition
adopted for the (2.9) linearization, i.e. : this
will allow a sensitivity assessment of  the proposed al-

C g
T
fdC cg g i

1
d d
-

( , ) ( , )H x y H x yf= +

, 55 km , 0.0160 kmC AJ r Ar 0
2 1a a= = =ff

-^^ hh

31.51 kmH =-

Hmax %f
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Figure 2. Simulated depth.

30 kmH =
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gorithm with respect to this critical approximation.
Starting from the simulated depths, the gravimet-

ric effect has been computed according to two different
density contrast models. In the first case a constant den-
sity contrast t(x,y) = t0 = −0.52 g/cm3 has been con-
sidered. In the second case, it is assumed that the
density contrast varies linearly with x:

In both the cases (Figure 3), the gravimetric effect
has been computed at z = 0 by prism integration for-

mula [MacMillan 1958] over the same grid used for the
depth values. In the following, the two computed grav-
ity fields will be named GC(x,y) (constant t0 value) and
GL(x,y) (linearly varying tL value). Furthermore, three
depth sections have been computed based on the H(x,y)
grid. In this way, we simulated 2501 H(x,y) grid values,
2501 gravity grid values and a total of  100 scattered
depth observations on the three distinct sections. 

These preliminary simulations are aimed at the
discussion of  the theoretical model and the analysis of
the implemented software: therefore, no noise has been
added to the simulated observations.

Three different inversions have been carried out:
1) Integrated inversion based on GC(x,y) gravity

, ;
. g/cm , . g/cm ;

. g/cm

x y x
x y0 56 0 50

0 53

L

L

0
3 3

0
3

# #

t t a

t

t

= +

- -

=-

^

^

h

h
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Figure 3. Gravity field with constant density model (top) and differences of  the gravity field with the linear density model (bottom).



and known depth values assuming a constant gravity
model t0. This is the case when data and density are
consistent.

2) Inversion based on GC(x,y) gravity data only as-
suming the constant gravity model t0. Also in this case
data and density are consistent.

3) Integrated inversion based on GL(x,y) gravity
and known depth values assuming that density is lin-
early varying following the tL(x,y) rule. Once again
data and gravity model are consistent.

4) Integrated inversion based on GL(x,y) gravity
and known depth values assuming that density is con-
stant and equal to t0. This is the critical case where we
have a mismatch between data and density model.

In all the inversions, the model covariance func-
tion of  the gravity field has been fitted on the empirical
covariance function of  the simulated gravity observa-
tions [Barzaghi and Sansò 1983]: therefore, it has been
propagated by (3.14) and (3.16) to model the cross co-
variance between gravity and depth and the covariance
of  depth. Data inversions 1) and 2) are made for testing
the impact of  known depths in the collocation inver-
sion procedure. Test 3) is performed to check for the ef-
fectiveness of  the iterative inversion procedure described
in paragraph 4, assuming to have a known density model
consistent with the available data. Finally, test 4) is set to
estimate the impact of  improper density information
on the integrated estimated depths. 

Inversion 1) should provide the benchmark results,
for three reasons. The adopted density model in the in-

version is consistent with the simulated model, all the
simulated observations are used and the constant den-
sity model does not require either approximations or
iterations to manage I3 and I4 terms.

In all the inversion procedures, as it would be in
a real case, the mean depth has been estimated using
the 100 given depth values. The obtained value is

. In this way, the inversions are based
on a biased mean depth. So, the impact of  this bias on
the results can be investigated too. 

Furthermore, as a general remark on all the inver-
sion procedures, it must be underlined that two itera-
tion steps were necessary to get the final estimates since
first step residuals were still spatially correlated (which
was not the case for the second step residuals). 

The estimated depths have been then compared
with the simulated ones in order to evaluate their pre-
cisions and accuracies (to avoid edge effects that can
give biased statistics, comparisons are carried out in the
500 × 300 inner area). Statistics of  the differences for all
the four inversion procedures are listed in Table 1. Sta-
tistics over the 100 known depths are also listed when
such data are used in the different inversion procedures.
Figures 4 to 6 report the results provided by inversion 3,
that are the most interesting.

The following remarks are in order. The results ob-
tained for inversion 1 (see row one in Table 1) proved
that depths can be correctly estimated even if  the a-priori
mean depth is biased. If  scattered depth data are avail-
able, they can correct the initial bias and the final mean

km.H 32 56=-
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E(D) (km) v(D) (km) Min(D) (km) Max(D) (km)

Inversion 1:
statistics over the inner grid points

0.5 0.4 −1.1 1.4

Inversion 1:
statistics over the 100 scattered points

0.5 0.4 −0.7 0.9

Inversion 2:
statistics over the inner grid points

2.2 0.4 0.2 4.1

Inversion 3 (I3 only):
statistics over the inner grid points

0.5 0.5 −2.0 1.5

Inversion 3 (I3 and I4):
statistics over the inner grid points

0.5 0.4 −1.3 1.4

Inversion 3 (I3 and I4):
statistics over the 100 scattered points

0.5 0.4 −0.6 0.9

Inversion 4:
statistics over the inner grid points

0.4 0.9 −2.6 2.3

Inversion 4:
statistics over the 100 scattered points

0.2 1.1 −2.5 1.7

Table 1. Statistics of  the residuals D = Hsimulated − .Hestimatedt
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discrepancy between estimated and simulated depths
is 0.5 km, which is negligible if  compared to the mean
depth of  30 km. If  gravity data only are used (inversion 2)

the a-priori bias remains in the final estimates, because
no depth observations are given to tune the mean. In this
case the mean of  the differences is 2.2 km (see row three

THE COLLOCATION APPROACH TO MOHO ESTIMATE

Figure 4. Integrated inversion 3 (linear density model and consistent correction of  I3 and I4 terms): prediction errors.

Figure 5. Integrated inversion 3: gravity residuals and their covariance function.



in Table 1). However, it must be stressed that the f val-
ues are correctly estimated as it results from the standard
deviation which is equal to the one obtained in inversion
1. The iterative procedure used in inversion 3 to correct
for density heterogeneities leads to satisfactory results.
It must be remarked that the computation and correc-
tion for the I4 term improves the results, even if  this term
is remarkably smaller than I3 (Table 1, row four are sta-
tistics base on modeling I3 term only; in row five, I3 and
I4 are used in the estimation procedure). 

Generally, in cases where no model error is present
in the inversion (inversions from 1 to 3) the standard de-
viation of  the residuals (0.4-0.5 km) is less than 10 % of
the standard deviation of  the simulated depths (6.4 km);
moreover, the approximation adopted to linearize the ob-
servation equations does not affect significantly the re-
sults: also on this regard, results are completely satisfying.

The adoption of  an improper model for density
heterogeneities has a significant impact on the esti-
mated depths (see Table 1, row seven). This is true even
in the case of  the integrated inversion based on gravity
and depth observations. The impact of  density model
mismatch can be evaluated in the residuals computed
on the observed depths that show high discrepancies.
Hence, the observed depth values cannot compensate
for an improper density model thus confirming the im-
portance of  a reliable correction for existing density
heterogeneities (see also row eight in Table 1; even the
residuals on given depth points are worse than in the
previous cases).

5. Conclusions
The collocation method can be profitably used to

combine gravity and depth information in order to get
reliable Moho estimate. In this framework, a theoreti-
cal background has been provided through a unique-
ness theorem for a two layers body. Under quite general
hypotheses on the body inner density distribution, it
can be proved that the separation surface between the
two layers can be uniquely estimated. Based on this the-
orem, the estimation of  the Moho is discussed and the
equations relating gravity and Moho depth are derived
in planar approximation. In this context, a procedure to
Moho estimate based on collocation approach is pre-
sented. This iterative approach has been then tested via
numerical simulation. A simulated Moho is computed
and two density models are assumed to compute the
direct gravity effect to be used in the inversion proce-
dures. These tests gave relevant insight in the devised
inversion method. Reliable results have been obtained
when density models are consistent with gravity simu-
lated data. It can be thus assumed that, under unbiased
conditions, the method is stable and can be applied to
Moho depth estimate. Also, the impact of  depth infor-
mation proved to be relevant. Collocation allows easily
the integration of  different data types and this can im-
prove the solution. Particularly, this applies to the bias
in the mean depth that is reduced if  depth data are con-
sidered. On the contrary, the solution based on gravity
only cannot compensate for this bias. Another impor-
tant remark is related to density information. It was

BARZAGHI AND BIAGI
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Figure 6. Integrated inversion 3: residuals on the depth observations.



11

clearly proved that density plays an important role in
the inversion. If  proper density information are avail-
able, the iterative inversion procedure based on collo-
cation can give reliable results. On the other hand,
when assuming inconsistency between density and sim-
ulated gravity data, we obtained remarkable distortions
in the estimated depths. Furthermore, in this case,
depth information are not effective in reducing the bias
and even on the given depth data a significant discrep-
ancy is present.

Thus, it can be concluded that the collocation
based procedure can be applied for getting Moho depth
estimates from gravity and depth information (from
e.g. seismic). However, as it is for any other inversion
method, improper density information can induce se-
rious biases in the estimates even if  depth data are in-
cluded in the inversion. Two possible evolution lines of
the collocation inversion method can be devised. One
line is to investigate its behavior in local areas where
high frequency Moho patterns are present. Being col-
location quite a stable and regularizing technique
[Barzaghi et al. 1992], this doesn’t seem to be a too crit-
ical issue. The second possible application of  this
methodology is on global Moho estimates based on
gravity data coming from the gravity dedicated satel-
lite missions. Since proper spherical model equations
can be quite easily derived and linearized [see e.g. Es-
hagh et al. 2011], global applications of  the collocation
method seem to be feasible.
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Appendix. A uniqueness theorem for the two layers
model

The gravity inversion problem can be defined as fol-
lows: to estimate the inner density distribution of  a body
given gravity observations in the spatial domain outside
the body. As it is well known, this problem is an ill-posed
problem [Moritz 1990] because uniqueness is not, in gen-
eral, guaranteed. As an example, concentric spheres hav-
ing the same total mass homogeneously distributed can
vary their densities and volumes to give the same poten-
tial in the space outside the larger considered sphere.
Thus, by inverting the gravity potential no unique solu-
tion can be estimated. To have uniqueness in the gravity
inversion problem one has to impose proper regulariza-
tions and/or restrictions to the required solution [see e.g.
Sansò 1980, Moritz 1990, Sjöberg 2009]. In the framework
of  the gravimetric Moho estimation problem, a unique-
ness theorem for the two layers model is given in the fol-
lowing. This theorem can be considered as an extension
to a more general case of  the one proved in Barzaghi and
Sansò [1988]. It can be used as a reasonable model for the
gravity inversion to Moho estimate in the real case.

Two bodies B1 and B2 are given with two layers
inner mass distributions and the same bounding surface
S. The two inner volumes are Bi1 and Bi2 and the two
crust layers are Be1 and Be2. The two separation surfaces
between the inner volumes and the crust layers Si1 and
Si2 are considered as regular and are parameterized as
Sik = Rik (v), with k = 1,2 and v = ({,m) (see Figure A.1).
Let ti1 and ti2 be the inner part densities and te1 and
te2 the crust densities of  the two bodies. These densities
are given as a function of  (r,v). Assume that two func-
tions ti(r,v), te(r,v) are defined inside S and satisfy the
following conditions

Moreover, the following conditions hold: 

If  V1 = V2 outside S it can be proved that Si1 and Si2
are the same surface, i.e. that

Proof
We consider a body B having a density distribution

which is obtained by subtracting the B2 from the B1 den-
sity in every point. Outside S, the potential implied by
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this body is equal to zero since

where N(t) is the Newtonian operator.
The density function t has the following properties:

Furthermore, having by hypothesis that ,
it follows

We now define the two surface 

Si and Se are the bounding surface of  B. We can
further define Se+ and Si+ as those parts of  Se and Si that
bound the domain in B where t is positive. Similarly,
we define Se− and Si− as those parts of  Se and Si that
bound the domain in B where t is negative. Further-
more, we define v+ and v− as the projection of  Se+ and
Se− onto the unit sphere v. 

The potential generated by B is harmonic down to
Se since the mass of  this body is inside this surface. As
stated before, the potential of  B is equal to zero outside
S. Due to the maximum and minimum property of  the
harmonic function, it is also equal to zero outside Se. It
follows that t is in the orthogonal complement of  LH

2
B

We now define a function k(v) onto Se , satisfying
the following condition

where H
v
1/2 is the Sobolev space ½ of  the function hav-

ing domain on the unit sphere.
Based on the hypothesis on Ri1 and Ri2 , we can

also assume that Re and Ri are regular surfaces. It fol-
lows that . Furthermore, in the hypothe-
sis stated for k(v), there is a unique harmonic
function h(v) defined in B that on Se has the values
assigned to k(v). If  , it follows that

. Hence 

Being 

the following decomposition for I holds
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Figure A.1. The two bodies with two layers inner mass distributions and the same bounding surface.
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Since, obviously, I5 can be written in the following
way

It holds that I5 = 0.
We suppose now that Re(v) differs from Ri(v).

Under this hypothesis, we want to define the values
assumed by the remaining integrals. Since h(p) is har-
monic in B, it can assume its minimum or maximum
values only on the boundary, i.e. onto Se. In the limit
for l+(v) → 1, we obtain 0 ≤ l(v) ≤ 1, that is

. It follows that 

By making use of  the properties of  ^rt− , we have
that I4 < 0 which implies I3 − I4 > 0. The I2 term is pos-
itive. If  we define III as 

we have I2 < III which implies I1 − I2 > I1 − III . III can be
further be decomposed in the following way

Hence, we obtain that 

where M+ is the positive mass included in the domain
where t is positive. It follows that 

If  we now consider the limiting value for l, we can
write the following 

Since 

we finally have I1 − III > 0. So, if  we assume that Re(v)
doesn’t coincide with Ri(v), it holds that I = I1 − I2 +
I3− I4− I5 > 0. However, I must be equal to zero. This
implies that Re(v) and Ri(v) must coincide, i.e. that the
interface surfaces in the two bodies are the same.
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