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ABSTRACT

On April 2013, a local scale seismic network, named OTRIONS, com-
posed of twelve short period (1 Hz) three component seismometers, has
been located in the northern part of the Apulia (southern Italy). In the
first two months of data acquisition, the network recorded about one hun-
dred very small (M, <2) magnitude earthquakes. A three-layer 1D V, ve-
locity model was preliminarily computed, using the recordings of
earthquakes occurred in the area in the period 2006-2012 and recorded
by the national seismic network of INGV (Istituto Nazionale di Geofisica
e Vulcanologia). This model was calibrated by means of a multi-scale ap-
proach, based on a global search of the minimum misfit between observed
and theoretical travel times. At each step of the inversion, a grid-search
technique was implemented to infer the elastic properties of the layers, by
using HYPO71 to compute the forward models. In a further step, we used
Pand S travel times of both INGV and OTRIONS events to infer a min-
imum 1D V, velocity model, using a classical linearized inversion ap-
proach. Owing to the relatively small number of data and poor coverage
of the area, in the inversion procedure, the V,/ Vg ratio was fixed to 1.82,
as inferred from a modified Wadati diagram. The final 1D velocity model
was obtained by averaging the inversion results arising from nine differ-
ent initial velocity models. The inferred V, velocity model shows a grad-
ual increase of P wave velocity with increasing the depth. The model is
well constrained by data until to a depth of about 25-30 km.

1. Introduction

Despite the Gargano promontory is a part of the
Adria foreland (Figure 1), it is characterized by an un-
usual seismicity rate, comparable with that of seismi-
cally active part of the Italian peninsula [e.g., Di Bucci
and Angeloni 2013]. However, this part of Italy has
been monitored less than other areas, probably owing
to the smaller magnitude of the events. Instrumental
observations are in fact available only for low to mod-
erate size events of moment magnitude My, not greater
than 5.7 [Del Gaudio et al. 2007], although historical
documentation reports cases of catastrophic events

which killed people in the order of thousands [e.g., Pa-
tacca and Scandone 2004]. Moreover, historical cata-
logues report at least eleven events having an estimated
M_>5.5 in the last millennium [Gruppo di Lavoro
“Mappa della Pericolosita Sismica” 2004]. The present
day seismicity seems to be related to tectonic activity
along the approximately E-W Mattinata fault and adja-
cent faults [e.g., Del Gaudio et al. 2007] (Figure 1).
Based on these evidences, in the frame of an Eu-
ropean Territorial Cooperation Programme Greece-
Italy 2007-2013 (acronym OTRIONS, INTEREG III), on
April 2013 a seismic network was installed on the
Gargano promontory (Figure 2a). The geometry and
instrumental properties of the OTRIONS network will
be presented in a next section. The positions of the
recording sites were chosen to cover the part of the
Gargano promontory that is affected by the higher rate
of seismicity, according to the actual knowledge of the
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Figure 1. Geodynamics of Italy and surrounding regions. The
major thrust fronts are represented. (redrawn from Billi [20057).
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Figure 2. (a) Location of seismic stations of the Otrions seismic net-
work. The surface projections of the most important faults are also
represented. A.F: Apricena fault; M.F: Mattinata fault; T.F:Tremiti
fault; C.EF: Cerignola-Foggia fault; S.F: Sannicandro Garganico-
Apricena fault (redrawn from Del Gaudio et al. [2007]). (b) Location
of INGV seismic stations considered in this study. Only stations
recording at least one available datum are shown. The size of trian-
gles is proportional to number of T, and T readings at each station.

Italian seismicity as reported in the INGV seismic cata-
logue. The sites were selected among those made avail-
able by local institutions controlled by the Puglia
Region government. The installation of this regional
seismic network was aimed at improving the knowl-
edge of the seismogenic potential of the area, through
either the geometrical and dynamical characterization
of the active faults and the elastic and inelastic proper-
ties of the crustal rocks.

In this study we focus on the inference of a veloc-
ity model for the upper crust lying below the Gargano

promontory. The inference of a reliable velocity model
is the first step in the assessment of the seismic hazard
of a region, allowing to locate the recorded seismic
events, to compute their magnitude and to image the
geometry of the active faults.

We carried out two different types of inversion of
travel times using two different data sets. A first three-
layer model was obtained before the installation of the
OTRIONS network. To this aim, we used the dataset
of the events recorded in the area during the period
2006-2012. We re-picked all P and S phases of 220
events (2<M, <3.5) recorded in the area by the na-
tional seismic network managed by INGV. Owing to
the peculiar configuration of the INGV network (Fig-
ure 2b), that has only two stations steadily operating
in the Gargano area, the ray sampling of the crust is
not optimal to infer a 1D velocity model from a stan-
dard linearized inversion of travel times. For this rea-
son, we used a multi-scale approach, based on the
calculation of several thousand forward layered mod-
els, by progressively increasing the number of layers
of the crust. The obtained 1D velocity model was then
implemented in the SEISCOMP3 software [Olivieri
and Clinton 2012] to allow the automatic and prelim-
inary localization of the events recorded by the OTRI-
ONS network.

In a second inversion, we combined P and S travel
times of both INGV and OTRIONS events to infer a
1D velocity model of P-waves from the inversion of P
and S travel times. The problem can be formulated as a
linearized inverse problem around initial values of un-
known model parameters [Kissling et al. 1994]. The
data are represented by the travel times of first arrival
P and S phases of a set of earthquakes recorded at an
array of seismic stations. The unknown model param-
eters are represented by the hypocenter location and
the origin time of the earthquakes, the V,,and/or v, ve-
locities of a one-dimensional layered medium and the
station delays.

Many papers [e.g., Husen et al. 2011, Matrullo et
al. 2013] have focused on the difficulties of finding a
stable solution to this nonlinear inverse problem. In
fact, this problem does not admit an unique solution
and, as an effect of the linearization, the final model
may depend on the starting model. The most used ap-
proach to overcome this problem is due to Kissling et
al. [1994] that proposed to compute the so-called “av-
erage minimum 1D model” as the average of a suite
of inverted models arising from different initial ve-
locity models that account for the information con-
tent coming from geology. The VELEST code
[Kissling 1995] was used to compute the minimum
1D v, model.
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2. Geological, geodynamical and structural setting
of the Gargano promontory
The Gargano promontory is a part of the Adriatic
plate and forms an isolated massif, distinct from the
Apennines by both structural and morphological setting,
with elevations of more than 1000 m above sea level, still
not involved in the accretion of central-southern Apen-
nines [e.g., Mostardini and Merlini 1986]. The Adriatic
plate is formed by continental lithosphere and is sub-
ducting towards west below the Apennine chain; it rep-
resents a promontory formed by the collision of Africa
and Eurasia plates [Channel et al. 1979]. The Adriatic
plate principally extends beneath the Adriatic sea [An-
derson and Jackson 1987], albeit it is exposed in southern
Italy in the Apulia region. In the complex geodynamic
context of the area, the Adriatic plate is considered as the
foreland of both the Apennines and the southern Alps, at
west, and of both the Dinarides and Albanides thrust
belts, at east (Figure 1) [Di Bucci and Angeloni 2013].
The Apulia region mainly consists of three de-
formed carbonatic plateaus (Gargano, Murge, Salento),
separated by transversal morpho-structural depres-
sions, which allowed the accommodation of differen-
tial vertical movements. These plateaus are cutted by
normal fault systems of different orientation and age
(from Mesozoic to Pleistocene) [Del Gaudio et al. 2007].
The Apulia foreland shows a rather uniform structure,
with a Variscan crystalline basement and an approxi-
mately 4-6 km thick Mesozoic sedimentary cover and it
is discordantly overlain by thin, discontinuous Late
Pliocene—Pleistocene deposits [Funiciello et al. 1991,
Bosellini et al. 1993]. The Moho is located at a depth of
about 30-35 km [Piana Agostinetti and Amato 2009].
Geological and geophysical data indicate that the
Gargano is a region of local crustal uplift and anomalous
contractional deformation within the relatively less de-
formed Apulian foreland [Brankman and Aydin 2004]. In
particular, gravity surveys revealed a positive Bouguer
gravity anomaly of 110 mGal, coincident with the loca-
tion of the Gargano uplift [Finetti and Morelli 1973]. De-
tailed information on the properties of the carbonate
platform have been inferred by four deep drilling per-
formed by the Italian Company for Oil Exploration
(AGIP) [Mostardini and Merlini 1986, Bosel-lini et al.
1993, 2000, Improta et al. 2000]. These data have been
recently reanalyzed by Festa et al. [2013] that proposed
a model consisting of four seismostratigraphic units,
with V, ranging from 1400 m/s to 6400 m/s, whose
thicknesses varies from a well to another one and may in-
dicate a strong heterogeneity of the crust at a local scale.
From a structural point of view, the Gargano
promontory is characterized by a widespread brittle de-
formation with normal and strike-slip faults [Brankman

and Aydin 2004]. A major active E-W striking shear zone,
known as Molise-Gondola shear zone, cuts a foreland
zone characterized by an unexpectedly high level of seis-
micity [Di Bucci and Angeloni 2013]. This shear zone is
formed by well-known faults, as the Mattinata fault that
cross-cuts the southern part of the Gargano promontory.
It is possible to identify three main fault trends: NW-SE,
ENE-WSW, E-W (Figure 2a). One of the most promi-
nent NW-SE fault is the Apricena normal fault, that ex-
tends about 30 km and was recognized by Patacca and
Scandone [2004] (Figure 2a). The most important E-W
faults are represented by the Mattinata and the Tremiti
faults (the last recognized principally offshore), respec-
tively towards south and towards north of Gargano.
These two faults are characterized by a strike-slip kine-
matic. The Tremiti line is an approximately 50 km long
fault and is described as a dextral strike- slip fault [e.g.,
Argnani et al. 1993]. The 60 km Mattinata fault (on shore)
is composed of two main active fault segments, dipping
at high angle toward the north: the San Marco in Lamis
fault to the west and the Monte Sant’Angelo fault to the
east, connected through a right-step.

3. The OTRIONS Seismic Network

On April 24, 2013, the OTRIONS Seismic Network
was installed on the Gargano promontory. The OTRI-
ONS network is composed of 12 three component seis-
mic stations whose position is shown in Figure 2a. Each
station consists of a 24 bit SL06/SARA data-logger (dy-
namic range equal to 124dB at 100 sps) equipped with a
short-period Lennartz 3D-V seismometer (flat response
above 1 Hz). The acquisition system allows the record-
ing of data on an external USB device and their real time
transfer, through a modem MOXA, to a seismic labora-
tory, located at the Dipartimento di Scienze della Terra e
Geoambientali, Universita di Bari “Aldo Moro”. The real-
time data transfer is realized by using a GPRS/UMTS
connection (Figure 3). Data are transferred also to INGV
and Regione Puglia centers. The transfer of data is man-
aged by SEED link protocol. A server collects data from
the stations by using the software “OnCell Central Man-
ager”, that allows to archive data in SEED format. More-
over, these data are sent to a PC where they are managed
by the SeisComp3 software.

SeisComp3 is a widespread software aimed at ac-
quiring and exchanging seismic data on the web. It allows
to visualize the seismic records in real time [Hanka et al.
2010]. SeisComp3 performs also the automatic picking
of P waves on the traces, allowing for the automatic lo-
cation of the seismic events and the computation of their
magnitude. Moreover, it allows both the manual repro-
cessing of P and S phases, the relocation of the events and
their storage in a seismic bulletin. The automatic location
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Figure 3. Architecture of the real time system of transfer, visualization and archiving of data of the OTRIONS seismic network.

of seismic events is based on the automatic recognition of
P phases and the consequential inversion of travel times.
The automatic picking of traces is performed through a
STA/LTA algorithm [Withers et al. 1998]. A minimum
of 6 phases is necessary to detect a seismic event. The au-
tomatic localization of the events is performed by using
the LoCSAT method [Bratt and Bache 1988] and the
IASPEI 91 velocity model [Kennett 1991]. The software
allows also to locate the events by using the NonLinLoc
global search algorithm [Lomax et al. 2000]. Moreover it
allows to allocate in input an arbitrary Vp velocity model.

In the first month of data acquisition, the detec-
tion of the events was supported by five INGV seismic
stations. During the first two months of data acquisi-
tion, 67 seismic events have been recorded by the
OTRIONS seismic network (Table 1). After the re pick-
ing of P waves and the picking of S waves with Seis-
Comp3, the events were relocated using the LOCSAT
method and the IASPEI 91 velocity model. The spatial
and temporal location of these events is reported in
Table 1. Figure 4 shows the location of all the events.
Figure 5 shows the location of the 27 events that were
recorded by the OTRIONS network but were not
recorded by INGV or EMSC networks.

4. Data

Before the installation of the OTRIONS network,
we analyzed the waveforms of 220 seismic events
(2=M= 3.5) recorded by the seismic network of INGV,
localized in the Gargano promontory in the period
2006-2012. These data were integrated with the seismic
recordings of more than 100 small magnitude events
(0.3<M, <1.9) recorded by the OTRIONS network in
the period ranging from April 24 to May 31, 2013. The
detection of the events was visually performed using the
SAC [Goldstein and Snoke 2005] seismic software. The
visual analysis of traces allowed us to detect a number
of earthquakes greater than those automatically in-
ferred by SeisComp3. We performed the manual pick-
ing of P and S travel times on each trace of INGV and
OTRIONS seismic events. A weighting factor inversely
proportional to the uncertainty associated to the travel
time was assigned to each data. Table 2 reports the cor-
respondence between the weighting factor and the cor-
responding range of error on data. Figure 6 shows the
picking of P and S phases on the seismograms of a small
magnitude event (M; =0.9) recorded by the OTRIONS
network. The histogram representing the quality of the
overall dataset is shown in Figure 7.
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Figure 4. Automatic location of 67 seismic events detected by SEIS-
COMP3.

—41°18'N
14°40'E

15°38°F

Figure 5. Automatic location of 27 seismic events recorded at the
OTRIONS seismic event that were not detected by INGV and EMSC.

Error (s) Weight
<0.05 0
(0.05,0.1) 1
(0.1,0.2) 2
(0.2,0.5) 3
>0.5 4

Table 2. Weights associated to errors on P and S phase reading.

Since a magnitude scale for the Gargano region is
not yet available, the magnitude of these events was
computed, after the relocation of the events in the 1D vV,
model, using the equation recommended by the IASPETI:

M, =log A+ 1.11log, R + 0.00189R — 2.09
In Equation (1), R is the hypocentral distance in km,

typically less than 1000 km and A is maximum trace am-
plitude (in nm) that is measured on the horizontal com-

Velocity (counts)

Y A
06:01:09.229

0104, EHN

Velocity (counts)

fime (s)

Figure 6. Seismograms of a M; =0.9 event recorded by the OTRI-
ONS seismic network on May 1st, 2013. On the top the vertical
components, on the bottom the north components. Vertical mark-
ers indicate the P and S wave arrivals.

ponents of waveforms, after the deconvolution for the
instrumental response of the available seismometers and
the convolution with the response of a Wood-Anderson
standard seismograph, but with a static magnification of
1. Equation (1) is equivalent to that used by INGV for
the calculation of the event magnitude and is an expan-
sion of the Hutton and Boore [1987] formulation.

5. Layered V, velocity models

A layered V, and V,,/ V¢ velocity model for the area,
was calibrated by the inversion of the travel times of P
and S phases of the seismic events localized in the
Gargano region by INGV in the period 2006-2012. This
model was then used in the preliminary location of the
events recorded by the OTRIONS network. Figure 2b
shows the position of the INGV seismic stations that
recorded at least one available datum. The length scale
of the INGV network (Figure 2),that is of the order of
several hundreds kilometers, indicates that the inferred
model will only represent the averaged elastic properties
of an area that covers several regions of southern Italy.

In our analysis we used a multi-scale approach that
consists of progressively increasing the degree of com-
plexity of the crust. First, we inferred the best fit half-space
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Figure 7. Histogram representing the overall quality of the selected
dataset of P- and S-phase arrival times.

model; successively we computed the best fit two layer
V, model and, finally, the best fit three-layer v, model.
The procedure required the calculation of many thou-
sand forward models and their comparison with data.

At the first step, we considered a homogeneous v,
and Vv velocity model. To obtain V, and V values, we
developed a grid-search technique to explore the phys-
ically admissible values of v, (3<V,<8 km/s) and V,/ V
(between 1.4 and 2.8). We used a grid step equal to 0.1
km/s for v, and 0.1 for v,/ V,. In each point of this two-
dimensional parameter space (V,,, V,/ V) the origin time
and the spatial coordinates of all the events were com-
puted, using HYPO71 [Lee and Lahr 1972]. For each
unknown couple of model parameters V, and V,/Vj,
the adherence of model to data was evaluated by com-
puting the RMS between observed and theoretical P
and S travel times (Figure 8). The model that best fits
the data corresponds to V,=6.1 km/s; V,/V,=1.81. The
minimum RMS is equal to 0.69 s.

At the second step, we considered the case of a ho-
mogeneous layer over a half-space. We fixed the v,/ v,
ratio of each layer to the value obtained at the first step.
Therefore, in this case, the problem consists of deter-
mining the body wave velocity Vp of P waves in the

Vp/Vs

30 35 40 45 50 55 60 65 70 75

Vp (km/s)
0.0 1.5 3.5 5.5 7.5 9.5
R-MS. {s)

Figure 8. Initial RMS plot in the two-dimensional (V}, and V,/ V)
parameter space.

layer having thickness H, and the P-wave velocity Vp,
of the underlying half-space. In order to constrain these
model parameters, we adopted a recursive procedure,
based on a grid search in a two-dimensional parameter
space constituted by the couples (Vp, H,), (Vp, Vp),
(Vp,, H,). For each search in these two-dimensional pa-
rameter spaces, the third parameter was fixed to the
previously obtained value or to its initial value, as ob-
tained in the half-space analysis. The grid step was 0.1
km /s for v, velocities and 1 km for the depth of the lay-
ers. In each of these two-dimensional parameter spaces
we inferred the origin time and the spatial coordinates
of all the events, using HYPO?71. For each model pa-
rameter, the adherence of model to data was evaluated
by computing the RMS between observed and theoret-
ical P and S travel times. The procedure was stopped
when no further variance reduction was obtained. The
two-layer V, model that best fits data is characterized
by Vp = 5.9 km/s, H = 30 km, Vp, =7.3 km/s. The
minimum RMS is equal to 0.61 s.

At the third step, we considered a three layer v, ve-
locity model (two layers over a half-space). In this case
the model has five degrees of freedom: the velocity of
the two layers (Vp, and Vp,), the thickness of the two
layers (H, and H, ) and the velocity of the half-space
(Vp,). As above, the inference of model parameters was
obtained by means of a recursive procedure based on a
grid-search in two-dimensional parameter spaces con-
stituted by couples of unknown model parameters, by
fixing the remaining three parameters to the previously
obtained values or to their initial values, as obtained in
the two-layer velocity model. The grid step was 0.1
km/s for v, velocities and 1 km for the depth of the lay-
ers. In each of these two-dimensional parameter spaces
we inferred the origin time and the spatial coordinates
of all the events, using HYPO71. For each model pa-
rameter, the adherence of model to data was evaluated
by computing the RMS between observed and theoret-
ical P and S travel time data. The procedure was stopped
when no further variance reduction was obtained. The
minimum RMS is equal to 0.55 s (Figure 9). A variance

Vp, (kmvs)

Figure 9. Final RMS plot for the search of the best-fit three-layer
Vp velocity model.
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Figure 10. The layered Vp velocity models obtained with the grid-
search method.

reduction with respect to the homogeneous model of
about 15% and a RMS reduction of 9% was inferred.
The three obtained models are shown in Figure 10.

6. The 1D velocity model

We used the Velest code [e.g., Kissling et al. 1994]
to determine the “minimum” 1D velocity model. This
code is based on a damped least square approach and
several iterative inversion steps and allows to infer the
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model parameters through a linearized approach. As
an effect of linearization, the inferred parameters (seis-
mic velocities and hypocenter locations) are generally
dependent on the starting values.

As concerns the actual dataset of P and S travel
times, the main problems are represented by both the
relatively small number of available events (320) and
the greater source to receiver distance range of the
events recorded by INGV network, that has a typical
length scale (of the order of hundreds kilometers)
greater than the local scale (of the order of ten kilo-
meters) of the OTRIONS network (Figure 2). For this
reason, we decided to reduce the number of degrees of
freedom of the problem by fixing the v,/ Vv value and,
therefore, the V, 1D profile. For the same reason, we
did not consider the effect of the station delays, even
because the number of INGV stations that recorded at
least one event is higher than 100.

Following Matrullo et al. [2013], a first selection of
data was performed by removing from the dataset all
P and S travel times having a residual higher than a fixed
threshold (1.5 s in this study), after their localization
with a simple homogeneous velocity model (V,=5.5
km/s; v,/ Vs=1.8). Moreover, we included in the dataset
only those events that have at least four P travel times
and 2 S travel times. The total number of events avail-
able for the study reduced to 280 (200 recorded by
INGV and 80 recorded by OTRIONS). After the re-
moval of outliers, a total number of 3580 P wave travel
times and 1800 S wave travel times was selected.

Before of carrying out the inversion of data, the
overall dataset of P and S waves of the seismic events
recorded by both the INGV and the OTRIONS net-
works was used to compute the V,/V; ratio. To this
aim, we used the method proposed by Chatelain [1978],
that consists of determining the slope of the straight
line that best fits the difference between couples of S
wave travel times tg; — tg; Vs. the difference between
couples of P wave travel times t,,,— t,, i for each couple
(i,j) of stations and for each event. Data are plotted in
Figure 11 and are well interpolated
by a straight line with v,/v,=1.82,

= 008
= 0021

@

IS

residual (s)
o

with a linear correlation coefficient
R,=0.98.

As concerns the inversion of Vv,
velocity profile, based also on sev-
eral previous studies [Kissling et al.
1994, Husen et al. 2011, Matrullo et

-20 0 20

Figure 11. Modified Wadati diagram (on the top) and residuals on S wave travel times

(on the bottom).

al. 2013], the final minimum 1D V,
model was obtained as the average
of several inverted 1D models, aris-
ing from different starting velocity
models. The following nine starting
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velocity model were chosen to account for the present
day knowledge of the crust in the area (Figure 12):

a) two homogeneous velocity models (v, = 4.5
km/s and v, = 5.5 km/s).

b) three velocity models characterized by three dif-
ferent constant velocity gradients.

¢) The velocity model used by the Nation Institute
of Geophysics and Volcanology (INGV) to compile the
instrumental catalogue of Italian earthquakes [Gruppo
di lavoro CSTT 2001].

d) The model of Costa et al. [1993], that was in-
ferred after a zoning of the Italian territory.

Vp (km/s)
] 2 3 4 S 6 7 8

Od——L 1 . | B R B
o "
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N [ |
el e
N O
- 1,
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= = = = = Costaetal., 1993 D 1! U
o b
T} = = = = Venisti et al., 2005 1 !
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Figure 12. The nine starting Vp velocity models used in the lin-
earized inversions.

a Vp (km/s)
1 2 3 8
O 1 I 1 I 1 1
E 20 7] Minimum 1D model from:
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o = = = = Venisti et al., 2005
a
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i gradient, 1
gradient, 2
= = = — gradient, 3
60

e) A regional velocity model of the Apulian plate
[Venisti et al. 2005].

f) The three-layer velocity model described in the
previous section (named hypo71).

Both the two homogeneous velocity models and
the three gradient velocity models were chosen on the
basis of the available values of the seismic velocities of
the upper crust in the Gargano promontory, by taking
into account the well known heterogeneity of the crust
at a local scale in the area [e.g., Festa et al. 2013].

In each inversion process (i.e., for each starting ve-
locity model) we followed the guidelines prescribed by
Kissling et al. [1994], by using different damping coeffi-
cients for hypocenter parameters and velocity model.
The inversion steps can be briefly summarized as it fol-
lows. In a first step, we used a damping coefficient 0.01
for hypocenter parameters and a damping coefficient
0.1 for the velocity model. In this step, we jointly inferred
all the parameters several times, by updating the start-
ing velocity model with the computed velocity model.
After the relocation of the events, we performed a fur-
ther inversion step, using a damping of 0.01 for the
hypocenters and 1.0 for the velocity model, with the
aim of finding the velocity model that minimizes the
total estimated location error [e.g., Kissling et al. 1994].
We do not allowed the presence of low velocity layers
in the inversion. In fact, after several preliminary trials,
we deduced that the use of low velocity layers gives rise
to unstable solutions, as often described in literature
[e.g., Kissling et al. 1994, Matrullo et al. 2013].

The nine inferred velocity model are summarized
in Figure 13a. With the exception of the velocity model
of Costa et al. [1993], which gave rise to a higher final

b Vp (km/s)
3 4 S 8
O 1 I 1 II_ 1
20
S
S
T
|_
& 40_
&)
60

Figure 13. (a) The nine inverted 1D velocity models; (b) the minimum (blue line) 1D velocity model. Red lines represent the error bounds.
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RMS (0.43 s), the adherence of model to data is com-
parable for the remaining eight velocity models (RMS
of the order of 0.38 s). Therefore the averaged 1D ve-
locity model was computed using only these eight
models (Figure 13b).

7. Discussion and conclusion

The events were relocated using the average min-
imum 1D model (Figure 14). The most part of the events
occurs in the Gargano area. In this area, the event dis-
tribution is rather spread, even if a higher number of
events is located between San Giovanni Rotondo, Monte
Sant’Angelo and Manfredonia. Therefore, the position
of the epicenters confirms that the seismic activity is
mainly related to the tectonic activity in the shear zone
that comprises the Mattinata Fault and the Apricena
Fault and some minor lineaments, as found in previous
studies [Di Bucci and Angeloni 2013].

The events tend to concentrate until to a depth of
about 30 km (Figure 14). Moreover, in the three-layer ve-
locity model (Figure 10) v, abruptly increases to 7.3 km/s
ata depth of about 27-30 km. These two results seem in-
dicate that the Moho is located at a depth of about 27-30
km, as previously inferred in a teleseismic receiver func-
tion analysis [Piana Agostinetti and Amato 2009].

Moreover, we note the similarity of v,/ V; value in-
ferred from the grid search technique (Vv,/V,=1.81 for
the half-space model in Figure 8) with the value in-
ferred from the Chatelain [1978] method for the whole
dataset (V,/V,=1.82 in Figure 11). These values are in
close agreement with the results obtained by Piana
Agostinetti and Amato [2009] and may indicate that the
crust, in the Gargano area, is characterized by a mod-
erate fluid content. If we compare this value with the
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average V,/V;=1.89 [Chiarabba and
Amato 2003] of the near Umbria-
Marche Apennine, we conclude that
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the Gargano promontory is character-
ized by a minor fluid content, that
could be indicative of a minor degree
of fracturing of the crust.

The errors on source parameters
were computed using two different ap-
proaches. First, we estimated the for-
mal errors on horizontal and vertical

coordinates of the event foci using

Figure 14. Position of the earthquake foci in the minimum 1D velocity model.
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Hypo71 (Figure 15a). A further calcu-
lation (Figure 15b) was made by con-
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Figure 15. Errors on earthquake locations. (a) Error estimates using Hypo71. (b) Errors estimated as the distance between the localizations
of the events in the minimum 1D velocity model and in the minimum R.M.S. velocity model.

sidering the difference between the coordinates of the
events as computed in the average minimum 1D model
and in the inverted model that corresponds to the mini-
mum R.M.S. The histograms representing the two dif-
ferent error estimates (Figure 15) are quite similar and
indicate that the hypocenter location is well con-
strained by the retrieved 1D V, model for about one-

half of the studied events, with errors on horizontal
and vertical coordinates less than 2.5 km.

The residuals among observed and theoretical
travel times, for both the three-layer velocity model and
the average minimum 1D V, model are reported in Fig-
ure 16. A significant variance reduction is obtained
using the 1D model with respect to the previously in-

® three-layer velocity model

e 1D velocity model .

I~ S00
Y
~SLo
20

(s)

obs_TTeo

T

° 0 40 80

0.12 -
0.08 -
0.04 -

120

— T T 7
160 200 240 280

hypocentral distance (km)

Figure 16. Plot of residuals between observed and theoretical travel times. Orange points refer to the three-layer velocity model; blue points

refer to the minimum 1D velocity model.
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OTRIONS INGV+OTRIONS
DATA DATA
P residual (s) .19 .31
S residual (s) .30 .48
P and S residual (s) 24 .37

Table 3. Average residuals in the minimum 1D velocity model.

ferred three-layer model (30 % of RMS reduction). An
average total residual of 0.36 s is inferred in the 1D v,
model, that reduces to 0.24 s for the data recorded by
the OTRIONS network (Table 3).

The small number of events considered in this
study does not allow us to image the geometry of the
active faults. This objective will require the further
analysis of the about one thousand events further
recorded by the OTRIONS network in the period from
May 2013 to March 2014. The analysis of these events
is still in progress and could help us to better constrain
the elastic properties of the crust in a future study.

As final consideration we note that the use of a
local scale array in a region of apparently moderate
seismicity allows the detection of very small magnitude
(minimum M, =0.3) events, that are extremely impor-
tant to better extend the range of completeness of seis-
mic catalogues and therefore in the evaluation of the
seismic hazard of an area. Even if the magnitude of the
events has been computed using Equation (1), a further
study has to be carried out to calibrate a magnitude re-
lationship for the Gargano area, as it has been done for
the southern Italy [Bobbio et al. 2009]
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