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ABSTRACT

Pressurized cavities are commonly used to compute ground deformation
in volcanic areas: the set of  available solutions is limited and in some
cases the moment tensors inferred from inversion of  geodetic data cannot
be associated with any of  the available models. Two different source mod-
els (pure tensile source, TS and mixed tensile/shear source, MS) are stud-
ied using a boundary element approach for rectangular dislocations
buried in a homogeneous elastic medium employing a new C/C++ code
which provides a new implementation of  the dc3d Okada fortran code.
Pressurized triaxial cavities are obtained assigning the overpressure in
the middle of  each boundary element distributed over the cavity surface.
The MS model shows a moment domain very similar to triaxial ellip-
soidal cavities. The TS and MS models are also compared in terms of  the
total volume increment limiting the analysis to cubic sources: the observed
discrepancy (~10%) is interpreted in terms of  the different deformation
of  the source interior which provides significantly different internal con-
tributions (~30%). Comparing the MS model with a Mogi source with
the some volume, the overpressure of  the latter must be ~37% greater than
the former, in order to obtain the same surface deformation; however the
outward expansion and the inner contraction separately differ by ~±10%
and the total volume increments differ only by ~2%. Thus, the density
estimations for the intrusion extracted from the MS model and the Mogi
model are nearly identical.

1. Introduction
Ground deformation in volcanic areas is generally

recognized as a reliable indicator of  unrest, possibly re-
sulting from the intrusion of  fresh magma within the
shallow rock layers. Following this suggestion, defor-
mation sources are generally modeled as pressurized
cavities endowed with some prescribed geometrical
shape. The most popular of  these models is the Mogi
[1958] source which describes the deformation due to a
spherical cavity with radius much smaller than its
depth; McTigue [1987] provided corrections account-
ing for the finite radius of  the spherical cavity. Bonafede

and Ferrari [2009] have shown some hidden implica-
tions of  the well known equivalence between isotropic
moment sources, Mogi sources and a set of  three or-
thogonal dislocations: very different estimates of  the
incremental volume are predicted, because the near-
field displacement is involved.

Solutions for the deformations associated with
more general triaxial ellipsoidal cavities were proposed
by Davis [1986], under the point-source assumption.
Yang et al. [1988] and Cervelli [2013] provided approx-
imate solutions for finite ellipsoids in a homogeneous
half-space. Fialko et al. [2001] provided semi-analytic
solutions for a finite horizontal circular crack. Bonafede
and Ferrari [2009] generalized the Mogi source to a vis-
coelastic half-space and to a spherical viscoelastic shell
embedding the source in an otherwise elastic half-
space, providing an interpretation of  a pressurized cav-
ity in terms of  dislocation sources and related moment
tensor. These solutions are used to infer from geodetic
data the depth and the (incremental) volume of  the in-
trusion, which are very important parameters for vol-
canic risk implications.

However, it is well known [e.g., Backus and Mulc-
ahy 1976a,b, Aki and Richards 1980] that any internal
source of  deformation can be described in terms of  a
suitable moment tensor, but there is no general scheme
of  inversion from which the geometrical shape of  an
“equivalent pressurized cavity” can be inferred: for ex-
ample the moment tensor domain pertinent to pres-
surized ellipsoids is very limited [e.g., Trasatti et al.
2011]. Furthermore important parameters such as the
overpressure within the cavity and the source volume
expansion are related to the near-field deformation
which can be very different for different source shapes.
Overpressure estimates are important to assess the pos-
sibility of  dyke opening and fracture propagation in the
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region surrounding a magma reservoir; source volume
changes are important to infer density estimates of  an
intrusion from gravity measurements. In the present
paper, we use parallelepiped cavities to extend the cor-
respondence between triaxial pressurized cavities and
moment tensors: we show that triaxial parallelepiped
cavities are mostly equivalent to ellipsoidal cavities [Davis
1986], when surface deformation is computed in the
far-field. Two different models are presented (pure ten-
sile sources and mixed mode sources) which are studied
employing a boundary element approach [Crouch and
Starfield 1983] and the solutions given by Okada [1992]
for the internal displacements and strains due to rec-
tangular dislocations buried in a homogeneous half-
space. Furthermore the boundary element method
allows simulating triaxial pressurized cavities with lin-
ear dimensions comparable or greater than depth. 

2. Source models
In this section, we introduce two models of  defor-

mation sources which are studied using a boundary el-
ement approach. The boundary element method is
implemented in a C++ code and two different imple-
mentations of  Okada expressions are used to compute
the stress and the displacement induced by finite rec-
tangular dislocations: 

- the original fortran code (dc3d.f ) written by
Okada [1992]; 

- a new C/C++ code optimized for boundary ele-
ment methods. 

The results obtained employing the new imple-
mentation are compared with those obtained with the
original code to check their correctness and to test the
computation speed improvements.

The parameter N determines the total number
NTOT of  dislocation elements that are used to discretize
the six faces of  the parallelepiped source (l1, l2, l3 length
edges and Xi

± unit normal vector in the direction of  the
xi axis, Figure 1). An algorithm was designed to achieve

a uniform distribution of  nearly square boundary ele-
ments on the cavity boundaries.

Two types of  sources are considered: 
- Tensile source (TS): on each face of  the cavity

only tensile dislocations operate, with Burgers vector
normal to the dislocation surface (Figure 2). The dis-
placement discontinuity components (bT) associated to
each element are found solving the linear system of
NTOT equations in NTOT unknowns:

(1)

where T stands for tensile dislocation and: 
- (vi

T)0 are the prescribed boundary tractions, nor-
mal to dislocation area; 

- Aij
TT are the influence coefficients obtained from

Okada [1992].
In this model, the problem is defined assigning the

normal component of  traction vT at the center of  each
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Figure 1. Orientation of  the cracks which cover the faces of  the cubic source. The source is observed from two different points of  view in
order to increase the readability of  the illustration.

Figure 2. Tensile (T), strike-slip (S) and dip-slip (D) components of
a rectangular inclined fault (d, dip angle). In our models the dip angle
d assumes only two values: 0°, in the case of  the horizontal faces and
90°, in the case of  the vertical faces of  the parallelepiped cavity.
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boundary element and then it is solved for the bT com-
ponent of  the Burgers vectors. 

- Mixed source (MS): on each face a mixed (tensile,
strike-slip and dip-slip) dislocation operates (Figure 2).
In this case, the displacement discontinuity compo-
nents (bT,bS,bD) associated to each element are found
solving the linear system of  3·NTOT equations in 3·NTOT
unknowns:

where T,S,D stand for tensile, strike-slip and dip-slip dis-
locations, respectively, and: 

- (vi
T)0, (vi

S)0, (vi
D)0 are the prescribed boundary

tractions; 
- Aij

TT, Aij
TS, Aij

TD, Aij
ST, Aij

SS, Aij
SD, Aij

DT, Aij
DS, Aij

DD are in-
fluence coefficients obtained from Okada [1992]. 

In the MS model, the problem is defined assigning
the three components of  traction vT, vS, vD at the cen-
ter of  each element and then it is solved for the bT,bS,bD
components of  the Burgers vectors. If  a pressurized
cavity is assumed, then vi

S = vi
D = 0 but non vanishing

values apply if  fluid intrusion takes place in a pre-
stressed medium [see, e.g., Trasatti et al. 2011]. In this
model strike-slip and dip-slip dislocations operate and
so the source is allowed to shift as shown in Figure 3.

Several tests have been performed which show a
general consistency between the results obtained using
our implementation of  Okada expressions and the orig-
inal code by Okada (dc3d.f ). A major issue is found for
the MS model when the depth of  the source is compa-
rable with its dimensions: the cavity interior is subjected
to a major rigid body translation along the vertical di-

rection which implies non-physical results (e.g., matter
interpenetration). The displacement in the external do-
main is univocally determined imposing null displace-
ment at infinity, but the solution in the internal domain
is undetermined by a rigid body translation in accor-
dance with the uniqueness Kirchoff  theorem. A de-
tailed analysis (see Appendix A for details) has shown
that the numerical problem can be solved fixing the dis-
placement of  the interior region in order to prevent it
from translating or rotating arbitrarily. 

Finally, the tests show that significant speed im-
provements can be achieved using our C++ imple-
mentation of  Okada expressions (see Appendix B for
details) and so in the following we shall refer only to
the new code to perform computations.

3. Point source approximation
Before we proceed, it is necessary to describe how

a single moment tensor can be associated with each TS
and MS source. If  N=1, over each face a rectangular dis-
location is considered with surface area A±

i (where ±
denotes the two faces normal to xi, see Figure 1): of
course A±

1 = l2l3, A±
2 = l1l3, A±

3 = l1l2. According to Kir-
choff uniqueness theorem [e.g., Fung 1965], outside a
pressurized parallelepiped the deformation field is iden-
tical to that provided by 6 pressurized rectangular
cracks over its faces: 

- according to the TS model, these cracks may be
approximated as 6 tensile dislocations and their Burgers
vectors b±

i are computed in order that they provide the
same overpressure at the mid point of  each face (see
linear system (1)). It must be stressed that the TS model
is not exactly pressurized since non-vanishing shear
stress may appear over the cavity boundary; 

- according to the MS model, these cracks may be
represented by 6 mixed dislocations and their Burgers
vectors b±

i are computed in order that they provide the
same overpressure (vi

T)0 and vanishing shear tractions
(vi

S)0, (vi
D)0 at the mid point of  each face (see linear sys-
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Figure 3. Translation of  the source interior determined by the slip of  strike-slip and dip-slip dislocations located over the faces of  the cubic
parallelepiped cavity.



tem (2)). Accordingly the MS model should provide a
better approximation of  a pressurized cavity. 

In the case of  the TS model, the six tensile disloca-
tions are equivalent, in the point-source approximation,
to 3 orthogonal tensile dislocations, located in the cen-
ter of  the cavity, with surface areas and Burgers vectors 

b1 = (b1,0,0)    b2 = (0,b2,0)    b3 = (0,0,b3) (3)

with bi = b+
i + b−

i.
The moment tensor (describing these three or-

thogonal tensile dislocations) is simply obtained (em-
ploying the axes as basis vectors) from the theorem of
body force equivalents [Burridge and Knopoff  1964]

The point source (PS) so defined is located in the
center of  the parallelepiped cavity and it is represented
by a single moment tensor Mij, Equation (4).

Instead, in the case of  the MS model, the six mixed
dislocations are equivalent, in the point-source approx-
imation, to 3 orthogonal mixed dislocations, located in
the center of  the cavity, with surface areas and Burgers
vectors

b1 = (b1
1,b1

2,b1
3)    b2 = (b2

1, b2
2, b2

3)    b3 = (b3
1,b3

2,b3
3)        (5)

with b j
i = b+j

i + b−j
i .

The moment tensor (describing these three or-
thogonal mixed dislocations) is computed as follows

according to the theorem of  body force equivalents;
again, the point source (PS) which we have defined is
located in the center of  the parallelepiped cavity and it is
represented by a single moment tensor Mij, Equation (6).

When N>1, Equation (4) is still valid in the far field
(point source approximation) for the TS model if  we put
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Figure 4. We consider three source configurations: (a) a cubic source, (b) a square horizontal sill, (c) a square vertical dike. In each case, the
center of  the source is located in C(0,0,−d) (d>0).

(4)

(6)

(7)
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where b−1, b−2, b−3 are the mean values relative to the three
distributions of  boundary elements correspondent to
the couple of  faces X±

1, X±
2, X±

3, respectively.
In the same way, when N>1, Equation (6) remains

valid for MS sources in the far field if  we put 

b1 = (b−1
1,b−1

2,b−1
3)    b2 = (b−2

1,b−2
2,b−2

3)    b3 = (b−3
1,b−3

2,b−3
3)          (8)

where the mean value of  Burgers vectors components
are computed with formulas similar to Equations (7).

In this section, we have realized an association be-
tween a single moment tensor (PS) and a finite source
(FS) which represents instead a moment tensor distri-
bution; this correspondence is certainly acceptable

when we want to evaluate the displacement and the
stress in the far field. Instead, in the near field, this ap-
proximation must be checked in order to evaluate if
and where it is acceptable.

For this aim, we consider three different source
configurations (Figure 4) and we plot 
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Figure 5. We fix N=1 and we consider duz (left column) and dur (right column) relative to three different source configurations: a cubic
source (a), a horizontal square sill (b), a vertical square dike (c); the source depth d is fixed in order to have h=d/max(l1,l2,l3)=5. In the figure,
all the distances are normalized with respect to d.



radial component) at the free surface (z=0) produced by
the finite source (FS). We expect that the difference be-
tween PS and FS is significant only when the source di-
mension is comparable to depth. Let h denote the ratio
between depth d and the largest edge, h=d/max(l1,l2,l3).

First, we consider the case N=1; in this case the
models TS and MS give practically the same results. For
h=5, the point source approximation is still acceptable
(Figure 5); in each source configuration, the absolute
value of  duz and dur never exceeds 5%. The major dis-
crepancy is observed for |x1|/d<0.5,|x2|/d<0.5 while,
outside this region, duz and dur are negligible. More
precisely, above the source at the surface, if  we use the
point source approximation, uz, ur are underestimated
in the case of  the cubic source (a), overestimated in the
case of  the sill (b). Instead, in the case of  the dike (c), no
significant discrepancy is observed. The sign and the
magnitude of  the error are dependent on the shape of
the source and more precisely on the dimensions and
the position of  X±

3 faces. In the case of  the cubic source,
the error is negative (underestimate) since the point
source is located in C(0,0,−d) and so the effect produced
on ground deformation by the horizontal face X±

3 (lo-
cated at depth z=−d+ l3/2) is underestimated since the
asymmetric opening of  the tensile components over X±

3

faces is not taken into account. In the case of  the hori-
zontal sill, the effects produced by X±

1 and X±
2 faces are

negligible and so under the point source approximation
the concentration of  the total moment in C(0,0,−d) de-
termines a little overestimate of  ground deformation
over a small central region; however the error intro-
duced is negligible since the source shape (l3 << l1 = l2)
and its horizontal orientation makes the source center
depth truly representative of  the source depth. In the
case of  the vertical dike, the effects produced by the X±

3
faces are very little since their area is negligible and so
in this case the point source approximation is quite ac-
curate (Figure 5c).

If  h is smaller, N>1 must be considered and the
models TS and MS are no longer equivalent (Figure 6).
The MS models show a better agreement with the
point source solution since a significant discrepancy is
observed only in the region |x1|/d<0.5,|x2|/d<0.5
(|duz|>5% and |dur|>5%) and |duz|,|dur| never ex-
ceeds 15%. In order to obtain an accurate evaluation of
the surface displacement, N may be reasonably low
(N=15 in Figure 6); however we shall see that higher
values of  N must be used if  the near-field displacement
is needed, such as in the evaluation of  source bound-
ary expansion.

FERRARI ET AL.
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Figure 6. We fix N=15 and we compare duz (first row) and dur (second row) computed according to the TS model (left column) and according
to the MS model (right column) in the case of  a cubic source with a depth d comparable with its dimensions (h=d/l=2).
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4. Moment tensor domain and pressurized sources
As previously observed, triaxial ellipsoids [Davis

1986] and circular horizontal cracks [Fialko et al. 2001]
are generally employed in the inversions of  ground
deformation and gravity data to infer the geometrical
shape of  deformation sources in volcanic areas. How-
ever these models do not represent the most general
internal sources, since they can generate only a lim-
ited subset of  moment tensors [Trasatti et. al 2011].
In the following we investigate if  this subset can be
wider when pressurized parallelepiped cavities are
considered. We consider the case of  a source embedded

in a homogeneous space and we fix the side length l1,
l2, l3 to determine how the eigenvalue ratios M2/M1,
M3/M1 are dependent on the edge ratios l1/l3, l2/l3 of
the cavity. The choice of  the vertical edge l3 as refer-
ence is arbitrary.

For both TS and MS models, when N=1, the do-
main in the plane M3/M1 vs M2/M1 is a triangular area
(Figure 7a) which extends considerably (Figure 7c) the
domain covered by triaxial ellipsoid cavities (Figure 7b).
The moment ratios M2/M1 and M3/M1 must be positive
and ratios lower than 1/3 cannot be obtained (in the
Poisson approximation). This map has been retrieved

PRESSURIZED CAVITIES AND MOMENT SOURCES

Figure 7. The domain in the space of  moment ratios (M3/M1, M2/M1) proper to parallelepiped rectangular cavities (panel (a), coincident for
TS and MS models if  N=1) is compared with the domain proper to ellipsoid sources (panel (b)). In panel (c), the area with single line pat-
tern represents the extension provided by rectangular parallelepiped cavities to the ellipsoids domain (crossed lines pattern).

Figure 8. In panel (a), we show the non uniform distribution in the moment ratios domain (M3/M1, M2/M1) of  the different configurations
(correspondent to different edge ratios) of  a rectangular parallelepiped cavity. On each line of  the graph the value of  l1 is fixed and moving
from right to left the value of  l2 is increased by a constant step from the value l1 to the value fixed for l3. In panel (b), the map identifies the
distribution of  the different source configurations of  a rectangular parallelepiped source in terms of  the value of  the ratio l1/l2. The top ver-
tex of  coordinates (1,1) (blue dot) corresponds to the cubic cavity which yields the same result as a spherical cavity (in the point source ap-
proximation). The vertical side of  the triangular domain corresponds to the parallelepiped rectangular cavities having l1=l2<l3 (prolate
sources) and the vertex (1,0.5) (pink dot) is associated to cavities which have l1=l2<<l3. The oblique side, which connects the top vertex with
the bottom vertex of  coordinates (0.33,0.33) (yellow dot), represents cavities with l1<l2=l3 (oblate sources) and indeed for l1<<l2=l3 the rec-
tangular parallelepiped cavity can be identified with a tensile square crack. 



considering a set of  parallelepiped cavities character-
ized by different l1/l3, l2/l3 ratios. These points are not
uniformly distributed over the triangular domain (Fig-
ure 8a), with density increasing from prolate sources to
oblate sources. This relation between density and source
geometry implies that, for an oblate source, minor
changes in l1/l3, l2/l3 ratios determine significant vari-
ations of  M3/M1, M3/M1 ratios. If  we consider Table 1,
we see that M3 < M3 < M1 if  the parallelepiped edges
are in the reverse order (l1 < l2 < l3), which is the same
qualitative behavior generally observed for a triaxial el-
lipsoidal cavity with respect to the order of  its axes.

This is the reason why l3 is taken as the reference edge
and M1 as the reference moment.

Now the TS and the MS models are studied in
terms of  the discretization parameter N. First, we com-
pare the results obtained when N=1 and N=15 if  we
consider a TS parallelepiped cavity (Figure 9a). The do-
main pertinent to rectangular parallelepiped cavities is
still the triangular region (Figure 10a) which extends
considerably (Figure 10d) the domain covered by triax-
ial ellipsoidal cavities (Figure 10c). But for every source
configuration (namely for fixed ratios l1/l3, l2/l3) the mo-
ment ratios are dependent on the value of  N (arrows in
Figure 9a). The different configurations are affected in
different ways by N since the direction of  the arrows
does not show a uniform pattern. The axially symmet-
ric configurations (l1 = l2, vertical line and l3 = l2, top
oblique line) are quite insensitive to the increase of  N.

FERRARI ET AL.
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l1/l3 l2/l3 M3/M1 M2/M1

0.01 0.01 0.5056 1.0000

0.10 0.3380 0.3470

0.20 0.3349 0.3369

0.30 0.3342 0.3350

0.40 0.3357 0.3372

0.50 0.3351 0.3361

0.60 0.3348 0.3354

0.70 0.3346 0.3349

0.80 0.3345 0.3346

0.90 0.3344 0.3344

1.00 0.3343 0.3343

0.10 0.10 0.5546 1.0000

0.20 0.4524 0.6150

0.30 0.4091 0.4827

0.40 0.3878 0.4261

0.50 0.3760 0.3977

0.60 0.3688 0.3815

0.70 0.3640 0.3715

0.80 0.3608 0.3648

0.90 0.3584 0.3601

1.00 0.3566 0.3566

0.50 0.50 0.7676 1.0000

0.60 0.7510 0.9034

0.70 0.7357 0.8323

0.80 0.7213 0.7770

0.90 0.7080 0.7325

1.00 0.6962 0.6962

1.00 1.00 1.0000 1.0000

Table 1. Relations between the edges l1,l2,l3 of  the rectangular par-
allelepiped cavity and M3/M1, M2/M1 moment ratios valid for TS
and MS sources if  N=1.

Figure 9. The vectors show how the moment ratios change for each
source configuration increasing the value of  N from 1 to 15 for a
TS (panel a) and for a MS (panel b) sources.
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Considering the internal region of  the triangular do-
main, the sources near the upper vertex have moment
ratios which are overestimated if  N=1. Moving from
the top to the central part of  the domain the discrep-
ancy gradually decreases and major discrepancies are
only observed near the bottom vertex where instead
the moment ratios are underestimated (for N=1 with
respect to N=15).

In the case of  the MS model, N has a greater im-
pact with respect to the TS model (Figure 9b). The shift
increases progressively as we move from the top vertex
(1,1) to the bottom oblique side. Furthermore the ar-
rows point towards the top vertex (1,1) for all the
source configurations, so a significant reduction of  the
domain takes place when N>1 (Figure 10b). MS paral-
lelepiped cavities and ellipsoids have very similar do-
mains in the space of  moment ratios when N>>1
(Figure 10e). As shown by Amoruso and Crescentini
[2011], the source mechanism can be described by a
multipole expansion: the monopole term characterizes
the far field and the dipole terms vanish if  the source
exhibits mirror symmetries. Then, MS parallelepipeds
and ellipsoidal cavities differ only for terms higher than
the dipole.

5. Isotropic source: volume increment estimate
The inflation of  a magma chamber may be pro-

duced by internal differentiation processes or by the in-
trusion of  fresh magma; the volume and the density of
the intruded material are very important parameters to
discriminate between the two processes and to evaluate
the volcanic risk.

In our models

represents the total volume increment of  the paral-
lelepiped chamber due to the opening of  the tensile dis-
locations distributed over its surface. The total volume
increment can be split into the sum of  two contribu-
tions, DVin and DVout, where DVin represents the incre-
ment of  volume produced by the contraction of  the
source interior and DVout is the outward expansion over
the source boundary.

In the case of  a cubic cavity, we compare the esti-
mation of  DVm obtained with the TS and the MS models
for increasing values of  the discretization parameter N
(Figure 11a). 

For low values of  N, the two models are in very

VmVm
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T

i
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=

/

PRESSURIZED CAVITIES AND MOMENT SOURCES

Figure 10. In the space of  coordinates (M3/M1, M2/M1), we compare the domain proper to ellipsoid sources (panel (c)) with the domain
proper to TS sources (panel (a), N≥1) and with the domain proper to MS sources (panel (b), N>1). In panel (d), TS model, and in panel (e),
MS model, the area with single line pattern represents the extension provided by rectangular parallelepiped cavities to the ellipsoids domain
(crossed lines pattern).



good agreement but, for N>3, DVm decreases rapidly,
particularly for the TS model, until N~15 and contin-
ues to decrease slowly for N>15. The discrepancy be-
tween the TS and the MS models increases rapidly up
to N~15 and slowly for N>15 (Figure 11b). When N=40
the solutions are not fully stable but it is difficult to study
for N>40 since the linear system to be solved has di-
mension ∝N2. The overestimation of  DVm (due to the
overestimates of  Burgers vectors) decreases with the in-
crease of  N (Figure 11a) as it is usual employing bound-
ary element methods.

In order to understand the discrepancy between DVm
estimates, we now compare the separate estimates of

DVout and DVin performed with both models (Figure 12). 
A very good agreement between TS and MS is

observed for DVout. So the difference between DVm esti-
mates must be attributed mostly to the different defor-
mation of  the source interior (Figure 11). Indeed, DVin
estimates relative to TS and MS models are significantly
different (Figure 12b).

To study the behavior of  the source interior, we
compare the results proper to the TS and the MS mod-
els for two different values of  the parameter N=1,15
(Figure 13). The parameter de=100·(ekk−eI)/eI represents
the relative difference between ekk (computed in each
point of  the source interior) and eI=vkk/(3K) (isotropic

FERRARI ET AL.
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Figure 11. Total volume increment DVm predicted for a cubic cavity using the TS and the MS models (panel a). In panel (b), we show how
DVm

MS − DVm
TS tends to reach a constant non vanishing value as N increases (~10%). We consider a cubic cavity buried in an elastic space

(n=m=4 GPa) with edge l=100 m and overpressure vT
i=10 MPa.

Figure 12. The external volume increment DVout (panel a) and the internal volume increment DVin (panel b) predicted with the TS and the
MS models are shown as function of  the parameter N. DVin

I = V0
DV—K = 1500 m3 represents the theoretical value for the internal volume in-

crement of  a cubic cavity buried in an elastic space (n=m=4 GPa) with edge l=100 m and overpressure vT
i=10 MPa. In panel (b), with N>>1,

the relative difference between DVin
MS and DVin

TS tends to ~30%.
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value pertinent to a pressurized body of  arbitrary shape
with bulk modulus K). For N=1, the results relative to
TS and the MS models are coincident and this fact is
consistent with the results of  Figure 5 and with the re-
sults of  the previous section (coincident moment domain
for TS and MS when N=1). When N=1, the internal de-
formation is far from a state of  isotropic compression
and this result is not surprising since the overpressure
vT

i is assigned only in the center of  each face. To obtain
a state of  uniform compression, the boundary conditions
must be applied uniformly over the cube boundary and,
to approach this configuration, N must be increased.
For N=15, on each face the boundary conditions are ap-
plied in 225 points and quite uniform values for de are
obtained; therefore a state of  isotropic compression is
quite correctly reproduced for both models. The MS
model overestimates the isotropic value eI but the rela-
tive difference is everywhere less than +10%, apart from
the edges of  the cavity which are singular domains. In-

stead the TS model predicts a significant minor con-
traction of  the interior since ekk is everywhere less by
20% than the theoretical value eI.

In the case of  a pressurized sphere with reference
volume V0, we know that [Bonafede and Ferrari 2009]

and so the total volume increment is equal to 

If  we put n=m (Poisson approximation), we obtain
DVin/DVm=4/9.

Now we study DVin/DVm in terms of  the parame-
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Figure 13. To study the internal deformation of  the cubic cavity, we plot the variable de which measures the relative difference between the
computed value and the theoretical value proper to a uniformly pressurized cavity of  arbitrary shape. We compare the results obtained using
the TS (first row) and the MS (second row) models for two different values N=1 (left column) and N=15 (rigth column) of  the parameter N.



ter N (Figure 14): this ratio rapidly converges to 0.29
(for the TS model) and 0.36 (for the MS model) and this
difference is easily explained since DVTS

out�DVMS
out (Figure

12a) and DVTS
in  <DVMS

in (Figure 12b). For both models,
the results indicate ratios significantly lower with re-
spect to the case of  a pressurized sphere. Thus, for the
Mogi source, the two contributions to the total volume
increment DVm are similar in size (DVin/DVout=4/5),
while the DVout contribution is significantly larger than
DVin in the case of  TS (DVTS

in /DVTS
out =0.29/0.71=0.41)

and MS (DVMS
in /DVMS

out =0.36/0.64=0.56) models. There-
fore the shape of  the source controls the near field dis-
placement implying a different partition of  the two
contributions to the total volume increment. The dif-
ferent values for the different models are not due to dis-
cretization problems (low N), but to the different source
geometries (Mogi vs MS) and to the different bound-
ary conditions (TS vs MS).

The analysis performed for a cubic cavity in terms
of  the volume increment can be extended to the case of
a generic triaxial parallelepiped cavity. In this case, the
results relative to TS and MS models must be compared
with the exact (for a homogeneous elastic medium) el-
lipsoidal cavity results given by Amoruso and Crescen-
tini [2009].

6. Residual gravity changes: Mogi source vs cubic
source

To show an application of  the MS model, we com-
pare the residual gravity computed according to a Mogi
source and a cubic source. Very similar results would
be obtained employing the TS model. Preliminarily, we
fix depth (d=5 km) and side length (h=1 km) of  the
cubic source and we assign vT

i =185MPa,vS
i =vD

i =0
(i=1, ... ,6N) as boundary conditions (pressurized cavity)
in order to reproduce the maximum uplift (~1.8 m) ob-
served in the case of  the 1982-84 uplift episode at Campi
Flegrei (n=m=1 GPa as elastic parameters). Then, we
consider a Mogi source with center at the same depth
and we adjust its strength (DP·V0) in order to reproduce
the maximum uplift determined by the cubic source at
the free surface. In this way, we find that the cubic
source and the spherical source show very similar DVm
expectations, DVMS

m =333.9·106m3 and DVMogi
m        =342.6·106

m3 (relative difference between estimations is 2%).
Thus, even if  the MS source provides a source expansion
+13% greater than the Mogi source, the different DVin
compensates mostly this difference. Instead the product
(DP·V0) is significantly different between the Mogi source
and the MS source. Indeed, when we fix the same source
volume, the two models produce the same maximum
uplift if  the overpressure relative to the Mogi source is
increased to the value DP=253.8 MPa (DPMogi/DPMS=

1.37). Equivalently, in the opposite case, when we fix
the same overpressure (DP=185 MPa), the volume of
the Mogi source must be increased to the value V0=
1.37·109 m3 with respect to the volume l3 = 1·109 m3 of
the cubic source. It must be stressed that the ratio
(DPMogi·V0

Mogi)/(DPMS·V0
MS) becomes stable for N>5.

Now we compare the two sources in terms of  the
residual gravity computed at the point of  maximum
uplift (w=uz(0,0,0)); after we correct for the free air gra-
dient, the residual gravity DgR can be split in the sum of
three contributions:

DgR = DgS + DgV + DgB                               (11)

where 
- DgS represents the gravity change induced by the

intrusion from remote distance of  new material with
density tm into the cavity. This term is evaluated in the
following way

- DgV is the gravity change determined by the de-
formation of  the material (density t) surrounding the
source volume

The integration domain V is discretized in a grid
of  NGRID volume elements and the integral is computed
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Figure 14. The value of  the ratio DVin/DVm predicted by the TS and
the MS models for a cubic cavity tends to different constant values
as N increases and both are significantly different from the value
DVin/DVm=4/9 proper to a spherical pressurized cavity; the differ-
ence is mostly due to DVout for MS sources.

(12)

(13)
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as the sum of  the contributions over each grid element.
The function dt(r→) (dt(r→)=0 if  r→∈VS and dt(r→)=1 if
r→∉VS) is introduced to eliminate the contribution of
the source interior; 

- DgB =DgB1+DgB2 represents the gravity change de-
termined by the shift of  the free surface (DgB1) and the
shift of  cavity boundaries (DgB2).

The surface integral (15) is computed as the sum of
the contributions over each boundary element. The in-
tegrals (13) and (15) are computed according to the nu-
merical procedure described by Trasatti and Bonafede
[2008].

For a Mogi source in a half-space, Walsh and Rice
[1979] proved that DgV +DgB vanishes identically and our
numerical results employing a spherical source are con-
sistent with this result 

and the discrepancy between the absolute values of DgV
and DgB is mostly due to the finite domain (100 km (X1) ×
100 km (X2) × 50 km (X3)) used for the numerical com-
putation of  the integral (13).

For the MS source, we obtain the following results 

which show a little but significant discrepancy (DgV +
DgB)/w = 2nGal/m that cannot be ascribed to the finite
domain used for the numerical integration. This dis-
crepancy is due to the non-isotropic effects of  the free
surface, since the top and the bottom faces suffer dif-
ferent inflation; the cubic source and the spherical
source differ for quadrupole terms (and higher) as pre-
viously observed in the comparison of  parallelepiped
sources and ellipsoidal cavities.

At Campi Flegrei, in the case of  the 1982-84 uplift
episode, the residual gravity change measured at the
point of  maximum uplift was DgR(obs)/w(obs)=(74±12)
nGal/m [Berrino 1994]; using this value, we obtain from
Equation (11), that tMogi

m       =1471kg/m3 
≃tMS

m  =1469 kg/m3

since the difference between DVMogi
m      and DVMS

m is largely
compensated by a non vanishing value of  DgV +DgB in
the case of  the MS source. It must be stressed that in
many papers the Mogi source is used to infer the vol-
ume of  the intruded material neglecting the isotropic
contraction of  the source interior. Since DVin and DVout
are comparable in size, the severe underestimation of  the
total volume increment determines a strong bias in den-
sity estimation. For example, in our case, if  we consider
DVMogi

out   as total volume increment, we obtain tMogi
m       =2649

kg/m3 which strongly overestimates the previous value.
Instead, in the case of  the MS model, the total volume
increment DVm is directly computed using the Burgers
components of  the boundary elements and so the den-
sity estimation is valid since the isotropic contraction
of  the interior is automatically taken into account.

7. Conclusions
Two models were presented to generalize to tri-

axial geometries the equivalence between pressurized
cavities and moment tensor sources. The models refer
to the same simple source shape (rectangular paral-
lelepiped) but differ for the boundary conditions as-
signed on their surface: the TS model assumes tensile
dislocations while the MS model allows for mixed (ten-
sile/shear) dislocations providing an assigned over-
pressure and vanishing shear tractions in the middle of
each boundary element.

The correspondence between finite source mod-
els and point sources shows that the TS and the MS
models are equivalent only if  N=1, where N represents
the discretization parameter in the boundary element
approach, provided that an internal element is added
which constrains the translation of  the MS interior (see
Appendix A). Instead, if  N>1, these models are no
longer equivalent, particularly if  we consider sources
close to the free surface for which the point source ap-
proximation fails.

The study of  the models in the space of  moment
tensor eigenvalues confirmed the equivalence if  N=1.
The domain pertinent to pressurized parallelepiped
cavities in a M3/M1 vs M2/M1 plot is a triangular area
which extends significantly the domain proper to point
like triaxial ellipsoidal cavities (Figure 7). If  N>1, the
MS domain shrinks towards the domain pertinent to
pressurized ellipsoidal cavities (see Figure 10). The do-
main proper to the TS model is unchanged with re-
spect to N=1: this is ascribed to the generation of  shear
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stresses over the cavity boundary, a non-physical impli-
cation for a fluid filled cavity.

The total volume increment DVm available to host
new magma within the source is the sum of  the out-
ward expansion DVout of  the source and the inward con-
traction DVin of  the material already resident within the
source. The DVm values predicted by the TS model and
the MS model tend to differ substantially if  the dis-
cretization parameter N increases. Limiting the analysis
to a cubic source, the difference between the two DVm
estimates (~10%, Figure 11a) must be attributed almost
completely to the different internal deformation (~30%,
Figure 13b) of  the two sources. This different behavior
is a direct consequence of  the different boundary con-
ditions imposed. Instead the DVout values predicted by
the tensile source and the mixed source models are
nearly coincident, even if  both decrease when the pa-
rameter N increases (Figure 13a).

The TS and MS models are compared with the
Mogi source in terms of  the ratio DVin/DVm (Figure 14).
The different source shape implies different near field
displacements which in turn determines a different par-
tition of  the total volume increment DVm between the
external contribution DVout and the internal contribu-
tion DVin. The cubic shape determines a larger DVout
contribution and a lower DVin contribution with respect
to a Mogi source with the same moment.

The application of  the Mogi model and the MS
model to the case of  the 1982-84 uplift episode at
Campi Flegrei shows different strengths (DP ·V0) for
the two sources. The lower value expected for the
cubic source with respect to the spherical source im-
plies a minor overpressure over the cubic source if
the same reference source volume V0 is considered.
Instead, if  the same overpressure is assigned, the
Mogi source requires an initial volume +37% greater
than the MS model in order to obtain the same sur-
face deformation. The ratio between the source
strengths DPMogi·V0

Mogi/ DPMS·V0
MS is not related to the

value of  the discretization parameter N if  its value is
greater than ~5. 

The computation of  the residual gravity allows to
estimate the density of  the intruded material. The den-
sity estimated at Campi Flegrei using the Mogi source
and the MS model are in good agreement if  the con-
traction of  the source interior is properly taken into
account. However density estimates are strongly de-
pendent on the source shape if  triaxial geometries are
considered as shown by Currenti [2014]. The present
method can be easily employed to generalize the parti-
tion of  DVm between the internal and the external con-
tributions (DVin and DVout) and the overpressure estimates
DP for triaxial cavities.
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Appendices

A. Discussion about numerical problems
To study the numerical issues related to the TS and

MS models, it is convenient to consider the cubic cav-
ity, for which we expect the simplest output, being the
most symmetrical configuration. Furthermore, we fix
N=1 in order to reduce the number of  parameters to 

- 6 components for the TS model, 
- 18 components for the MS model. 
With Xi

+, Xi
− we indicate the faces with unit nor-

mal vector in the direction of  the xi axis (Figure 1). To
perform computations, we fix l1= l2= l3=100 m and we
prescribe an overpressure vi

T=10 MPa in the middle of
each face of  the cube described as a dislocation surface.
Fixing the depth of  the source to the value d=0.5 km,
the computations performed with our boundary ele-
ment code give the output summarized in Table 2. 

Considering the TS model, the results obtained
with the two implementations are fully consistent; the
asymmetry in the tensile component over the horizon-
tal faces is expected since X3

+, X3
− are at different depths.

In the case of  the MS model, the tensile components of
X1

±, X2
± faces are quite correctly identified. The pertur-

bations with respect to the value 0.117925 m (the isotropic
value valid for h>>1) are related to a small rigid body
translation of  the cavity interior along the horizontal
directions. Indeed, the S components on X1

±, X2
± and

both the S and D components on X3
± (~10-7 − 10-8 m,

F&B code and ~10-6 − 10-7 m, Okada code) are small
but significative. Instead the D components on X1

±, X2
±

faces (±1340.19 m, F&B code and ±3423.32 m, Okada
code) show that the cavity interior is subjected to a
major rigid body translation along the vertical direc-
tion. This solution is not physically acceptable since the
cavity interior would cross the cavity boundaries and
even the free surface providing an altered surface de-
formation pattern. The motivations under this non-phys-
ical behavior must be understood and a mechanism to
prevent it must be introduced. As pointed out by
Crouch and Starfield [1983] for 2D problems, when the
boundary element approach is applied over a closed
contour, the problems involving the interior and the ex-
terior regions are solved together and therefore it is
necessary to fix the displacement of  the interior region
in order to prevent it from translating or rotating. In
our 3D problem, we put one additional boundary ele-
ment inside the cubic source and so the displacements
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Table 2. Cubic parallelepiped cavity (l1=l2=l3=100 m) in a half-space (n=m=4 GPa) with h=5 (source depth d=0.5 km). An equal overpres-
sure vi

T=10 MPa acts in the center of  each face.

F&B C++ code Okada Fortran code

T component (m) TSD components (m) T component (m) TSD components (m)

T 0.117925 0.117926 0.117925 0.117944

S 2.73029e-07 X+ -1.53041e-06

D -1340.19 -3423.32

T 0.117925 0.117926 0.117925 0.117944

S -2.73029e-07 X− 1.53041e-06

D 1340.19 3423.32

T 0.117925 0.117926 0.117925 0.117946

S -4.40993e-08 Y+ 1.48208e-07

D 1340.19 3423.32

T 0.117925 0.117927 0.117925 0.117943

S 4.40993e-08 Y− -1.48208e-07

D -1340.19 -3423.32

T 0.118322 -1340.07 0.118322 -3423.20

S -4.40992e-08 Z+ 1.48208e-07

D -2.73029e-07 1.53041e-06

T 0.118164 1340.31 0.118164 3423.44

S 4.40993e-08 Z− -1.48208e-07

D 2.73029e-07 -1.53041e-06
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in the interior region are determined relative to this
fixed point while, in the exterior region, they are de-
termined relative to null displacements at infinity. Once
the problem is solved, it is possible to show that the ad-
ditional internal element is subjected to certain shear
and normal stresses which however do not affect the
solution of  the external region. The dimensions of  the
additional boundary element must be comparable (less
or equal) to the dimensions of  the other boundary ele-
ments. The choice of  the position and the orientation
of  the internal boundary element is made considering
the symmetry properties of  the source. In order to pre-
serve the symmetry of  the output TSD components,
the first attempt was to put the additional element at
the center of  the source and parallel to the free surface.
However the implementations of  Okada expressions
obey to the practical rules described in Okada [1992]:
in order to have non vanishing displacements for the in-
ternal boundary element it is necessary to shift it from

the center of  the source. After several tests, we found that
the convenient choice is to move the additional element
only a few centimeters away from the central point of
the internal region.

In Table 3, we compare the results pertinent to the
MS model when the additional boundary element is
added in the interior region. The insertion of  a bound-
ary element inside the cavity solves the issue related to
the translation along the x3 axis since the vertical trans-
lation is now correctly identified. The Burgers vectors are
consistent using the two different implementations of
Okada expressions and furthermore, removing the rigid
body translation, the tensile components of  X3

+, X3
− faces

X3
+ 0.119533 − 0.001211 = 0.118322 m

X3
+ 0.116953 + 0.001211 = 0.118164 m

reproduce the value identified according to the TS
model (see Table 2).

As a final remark we have to establish why the re-
sults relative to the vertical translation of  the cavity in-
terior are so different (1340.19 m, F&B code and 3423.32
m, Okada code) when the position of  the MS source is
not fixed (Table 2). The answer to this question is im-
mediate if  we consider the reciprocal condition number
(RCOND, see Appendix C) of  the linear system relative
to the MS model. RCOND is ~10-3 and so this linear
system is very ill conditioned. Therefore the discrep-
ancy must be attributed only to the ill conditioned na-
ture of  the problem and the two implementations of
Okada expressions must be considered consistent with
each other.

B. Details about programming routines
In this appendix we summarise the main features

of  our implementation of  Okada expressions (F&B
C++ code) which differs in some aspects from the orig-
inal Okada implementation (dc3d fortran code). Our
implementation is presented with two different inter-
faces which are designed to satisfy different needs.

The first interface reproduces the original interface
of  the dc3d Okada code:

dc3d_BF(ALPHA,X,Y,Z,DEPTH,DIP,

AL1,AL2,AW1,AW2,DISL1,DISL2,DISL3,

UX,UY,UZ,UXX,UYX,UZX,UXY,UYY,UZY,UXZ,

UYZ,UZZ,IRET)

- INPUT 

- ALPHA : MEDIUM CONSTANT (LAMBDA+MYU)/

(LAMBDA+2*MYU)

- X,Y,Z : COORDINATE OF OBSERVING POINT 

- DEPTH : DEPTH OF REFERENCE POINT 

PRESSURIZED CAVITIES AND MOMENT SOURCES

Table 3. The presence of  the inner boundary element (Inner Ele-
ment, IE) permits the correct identification of  the translation of  the
source interior. The results refer to the same values of  the model pa-
rameters used in Table 2.

TSD components (m)

F&B C++ code Okada Fortran code

0.117925 0.117925

X+ -2.78793e-17 -1.87976e-18

0.001211 0.001211

0.117925 0.117925

X− 3.17511e-17 1.05837e-17

-0.001211 -0.001211

0.117925 0.117925

Y+ -9.33233e-18 4.94014e-18

-0.001211 -0.001211

0.117925 0.117925

Y− 1.00660e-17 -2.46343e-18

0.001211 0.001211

0.119533 0.119533

Z+ -2.26335e-18 2.85821e-18

-3.14194e-17 3.47655e-17

0.116953 0.116953

Z− -1.01045e-17 2.85945e-18

-1.15280e-17 -1.32915e-17

-1.04562e-08 -1.04571e-08

IE -9.34652e-22 1.78858e-21

8.04845e-21 2.01211e-21



- DIP : DIP-ANGLE (DEGREE) 

- AL1,AL2 : FAULT LENGTH RANGE 

- AW1,AW2 : FAULT WIDTH RANGE 

- DISL1-DISL3 : STRIKE-, DIP-, TENSILE-DISLOCATIONS 

- OUTPUT 

- UX, UY, UZ : DISPLACEMENT 

- UXX,UYX,UZX : X-DERIVATIVE 

- UXY,UYY,UZY : Y-DERIVATIVE 

- UXZ,UYZ,UZZ : Z-DERIVATIVE 

- IRET : RETURN CODE (=0....NORMAL, =1....SINGULAR)

The only major difference between our code and
the one from Okada is related to the implementation of
the rules described in the conclusions of  Okada [1992]
article (but not introduced in his code) which allows in
some cases to refer to different subsets of  the formulas
in order to compute displacement and stress fields: 

- the internal deformation field (z<0) is computed ac-
cording to Okada as the sum of  four contributions: 

• two unbounded medium terms fA(p,h,z), fA(p,h,
−z)

• two regular depth dependent terms fB(p, h, z),
fC(p,h,−z)

which must be combined in the following way

fA(p,h,z) − fA(p,h,−z) +
+ fB(p,h,z) + z · fC(p,h,−z)||.              (24)

The symbol || represents the notation introduced
by Chinnery [1961] to indicate the substitution

f (p,h,z)||= f(x,p,z)− f(x,p−W,z)−
− f(x−L,p,z)+ f(x−L,p−W,z).              (25)

where p is the coordinate along the dip direction.

- the surface deformation (z=0) is computed according
to the subset

(29)
This first interface allows programmers to create

new programs using a well known interface and gives
the opportunity to use our implementation by means
of  few changes in old programs that uses the dc3d
code.

However this interface is not the best choice when
boundary element methods (such as the displacement
discontinuity method) are implemented. Indeed, when
the influence coefficients are calculated, the simultane-
ous computation of  displacement and strain components
is unnecessary and simply determines a waste of  com-
puter resources (see Table 4). According to this consider-
ation, we make available a second interface which is
designed for codes using boundary element methods and
it consists of  two separate functions that compute dis-
placement (dc3d_FB_displ) and strain (dc3d_FB_strain)
components separately:

dc3d_FB_displ(ALPHA,X,Y,Z,DEPTH,DIP,AL1,AL2,AW1,AW2,

DISL1,DISL2,DISL3,S_displ[ ],D_displ[ ],T_displ[ ],

IRET) 

dc3d_FB_strain(ALPHA,X,Y,Z,DEPTH,DIP,AL1,AL2,AW1,AW2,

DISL1,DISL2,DISL3,S_strain[ ],D_strain[ ],

T_strain[ ],IRET). 

- INPUT 

- ALPHA : MEDIUM CONSTANT (LAMBDA+MYU)/

(LAMBDA+2*MYU) 

- X,Y,Z : COORDINATE OF OBSERVING POINT 

- DEPTH : DEPTH OF REFERENCE POINT 

- DIP : DIP-ANGLE (DEGREE) 

- AL1,AL2 : FAULT LENGTH RANGE 

- AW1,AW2 : FAULT WIDTH RANGE 

- DISL1-DISL3 : STRIKE-, DIP-, TENSILE-DISLOCATIONS
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u x y u x y
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Table 4. In the table we compare the execution time requested to compute: (a) the surface deformation pattern (z=0), (b) the influence co-
efficient matrices relative to a TS cavity and a MS cavity using our implementation (F&B C++ code) and the original Okada Fortran code.
The discretization parameter is N=15 and the source considered is a cubic cavity. Thus the number of  the boundary elements is 6N2=1350
and the matrices have the following dimensions: TS model, 1350 ·1350=1,882,500 elements; MS model, (3 ·1350) · (3 ·1350)=16,402,500 ele-
ments. The deformation at z=0 is computed on a grid of  201·201=40,401 points.

TS MS

F&B C++ code Okada Fortran code F&B C++ code Okada Fortran code

(a) Dt (s) 190.60 965.95 221.30 1648.48

(b) Dt (s) 14.86 35.42 22.87 101.06

(26)

(28)

(27)
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- OUTPUT dc3d_FB_displ

- S_displ[ ] : array with the 3 displacement components due to

the strike-slip component 

- D_displ[ ] : array with the 3 displacement components due

to the dip-slip component 

- T_displ[ ] : array with the 3 displacement components due

to the tensile component 

- OUTPUT dc3d_FB_strain

- S_strain[ ] : array with the 6 strain components due to the

strike-slip component 

- D_strain[ ] : array with the 6 strain components due to the

dip-slip component 

- T_strain[ ] : array with the 6 strain components due to the

tensile component 

The IRET variable gives as output the return code
of  the functions (=0....NORMAL, =1....SINGULAR). 

Both functions return separately the displacement
and the strain components which are devoted to the
strike-slip (S), the dip-slip (D) and the tensile (T) compo-
nents. This choice reduces execution time when we have
to compute more than one of  the S, D, T components.
The use of  the dc3d Okada code requires instead the sep-
arate computation of  these influence coefficients which
determines a longer execution time (see Table 4).

Some minor speed improvements are also ob-
tained using some small modifications introduced by
Becker et al. [2005] in a slightly modified version of
Okada fortran routines.

For fortran programmers, further informations
about how to invoke our C/C++ interfaces are given
directly in the comments of  our source code which we
provide as supplementary material of  the paper.

A version of  our interfaces is also available in the
GNU Octave language [Eaton 2002] and in the future a
Matlab version will also be released.

C. Details about the computation of  the reciprocal
conditional number

To compute the reciprocal conditional number, we
adopt the same approach used in the GNU Octave lan-
guage [Eaton 2002] by the function rcond(). This func-
tion computes the 1-norm estimate of  the reciprocal
conditional number as returned by Lapack [Anderson
et al. 1999].

The steps performed by the procedure are the fol-
lowing: 

1. the 1-norm of  the matrix is computed using the
function dlange(), 

2. the LU decomposition of  the matrix is obtained
using the function dgetrf(), 

3. the reciprocal norm is found invoking the func-
tion dgecon(). 

PRESSURIZED CAVITIES AND MOMENT SOURCES



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
    /AndaleMono
    /Apple-Chancery
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /CapitalsRegular
    /Charcoal
    /Chicago
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /GadgetRegular
    /Geneva
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /HelveticaInserat-Roman
    /HoeflerText-Black
    /HoeflerText-BlackItalic
    /HoeflerText-Italic
    /HoeflerText-Ornaments
    /HoeflerText-Regular
    /Impact
    /Monaco
    /NewYork
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /Palatino-Roman
    /SandRegular
    /Skia-Regular
    /Symbol
    /TechnoRegular
    /TextileRegular
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.10000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.10000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.08250
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /NOR <>
    /SVE <>
    /KOR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
    /ITA <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


