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ABSTRACT
In order to study in the field of  the dynamics and continuous varia-
tions in the ionosphere, the ionospheric measurement tools such as
ionosondes, incoherent scatter radars, satellites, and Global Position-
ing System (GPS) networks should be used. Total Electron Content
(TEC) is a key parameter in the investigation and identification of
ionosphere layer. Observations of  dual frequency GPS receivers may
lead to extraction of  the ionospheric TEC. Global Ionospheric Maps
(GIM) are auxiliary Maps for studying ionosphere layer all around the
world. Providing the regional TEC map for precise studying of  the iono-
spheric TEC is absolutely essential. Extracting the TEC using dual fre-
quency GPS receivers is carried out by the use of  the Bernese software.
Regional modeling of  ionospheric TEC using Artificial Neural Net-
work (ANN) is a significant domain for predicting the TEC at both sin-
gle and double frequency GPS receivers. Five locations in Iran were
identified and used in the development of  an input space and the ANN
architecture for the TEC modeling, during the time interval of  2006-
2010. The input space comprises the day number (seasonal variation),
the hour (diurnal variation), the sunspot number (a measure of  the
solar activity) and the magnetic index (a measure of  magnetic activ-
ity). Based on the obtained results, the ANN shows an acceptable ca-
pability and flexibility in modeling and predicting the TEC. The TEC
predicted by ANN A (NN TEC) and TEC obtained from the IRI-2012
version of  the International Reference Ionosphere (IRI TEC) are com-
pared during equinoxes and solstices. The obtained results show that
ANN predicts GPS TEC more accurately than the IRI over Iran. It can
be concluded that the IRI-2012 model is not a suitable method for pro-
viding the TEC over IRAN.

1. Introduction
The ionosphere is a region of  the upper Earth’s at-

mosphere where there are high concentrations of  free
ions and electrons. Most of  the factors describing the

ionospheric variability are interconnected with the sun
and its activities under various space weather condi-
tions. Some variations of  the ionosphere are predictable
such as daily variations, seasonal variations, solar cycle
variations (11-year), and 27-day variations. On the con-
trary, there are also some other unpredictable variations
such as sporadic variations.

Electromagnetic signals are delayed when propa-
gating through the ionosphere due to its dispersive na-
ture. The delay occurred in the signal is related to the
Total Electron Content (TEC) along the signal path.

If  we use dual frequency GPS receivers at two
lower-band GPS frequencies, L1 (1575.42 MHz) and L2
(1227.60 MHz), then the electron content of  the iono-
sphere in each considered station will be known and
easy to calculate [Hofmann-Wellenhof  et al. 1992].
TEC describes a projection of  the total number of  free
electrons in a column of  one meter squared cross sec-
tion taken along the signal path extending between two
points (i.e. between the satellites and the receiver on
the ground) which can be a slant path (STEC) or a ver-
tical path (VTEC).

The TECU indicates the unit of  TEC and 1 TECU
is equal to 1016 electrons/m2 [Seeber 2003]. Variations
of  TEC are functions of  many factors such as solar
cycle variations, geomagnetic activity effects, diurnal
variations, seasonal variations, latitudinal variations
(Location), gravitational and seismic activity.

In the past years, ionosondes, inherent scatter
radars, Topside sounders and satellites were the major
data sources for studying ionosphere layer [Kelley
1989]. Afterwards, empirical and mathematical models
were introduced [Klobuchar 1975, Schaer 1999, Bilitza



2001, Komjathy and Langley 1996, Farzaneh and Fo-
rootan 2017]. Nowadays, Global Navigation Satellite
Systems (GNSS), like GPS, are widely used for various
applications especially research and modeling of  the
ionosphere using temporal and spatial total electron
content (TEC) variations [Meggs 2005, Schaer et al.
1996, Tulunay et al. 2004, 2006, Opperman et al. 2007,
Liu et al. 2011].

The ionospheric delay after the selective availabil-
ity (SA) deactivation is the main source of  the system-
atic error in the navigation systems. The medium of
the ionosphere is dispersive and ionospheric refraction
depends on the signal frequency and the Total Electron
Content (TEC) [Klobuchar 1991]. 

Several parameters can affect the displacement of
the error, namely the hour, the geographic position, the
geomagnetic activity and the solar activity [Hofmann-
Wellenhof  et al. 2001].

Geometry-free combination can eliminate the
ionospheric delay of  signals only at dual frequency GPS
receivers. If  a single-frequency GPS receiver is used,
deleting the ionospheric delay will be necessary to
achieve an accurate navigation. These values of  the
ionospheric delay can be calculated and eliminated
using neural networks or other recommended tech-
niques [Coster et al. 2003, Skone 1998, Komjathy and
Langley 1996, Liu and Gao 2003]. Klobuchar iono-
spheric model is a predicted ionospheric modification
model for single frequency GPS users designed to de-
crease the ionospheric effect by 50% [Klobuchar 1991,
Seeber 2003].

Neural networks as a type of  artificial intelligence
tools are widely used to describe complicated non-lin-
ear input/output relationships using training data [Can-
der 1998]. ANN (Artificial Neural Networks) models,
compared to mathematical models, are able to learn
when the relationship between dependent and inde-
pendent variables is unknown or very complex or with-
out a priori knowledge of  model structure [Mittal et al.
2000, Shene et al. 1998, 1999; Hill et al. 1994, Savkovic-
Stevenovic 1994]. Multi-perceptron neural networks
using a back propagation algorithm are very helpful for
modeling nonlinear, multivariable, nonparametric and
complex phenomena due to their ability to approxi-
mate the non-linear function [Rumelhart et al. 1986].

During recent years, the neural networks are ap-
plied to predict the ionospheric TEC considering sev-
eral observed ionospheric parameters such as local
times, seasons, longitude, latitude, solar and geomag-
netic activities. [Yilmaz et al. 2009, Watthanasang-
mechai 2012, Leandro and Santos 2007, Ghaffari Razin
et al. 2015, Maruyama 2007, El-naggar 2013].

2. TEC Determination

2.1. TEC Extraction from Dual Frequency GPS Data
The GPS network was constructed from 24 satel-

lites and every four satellites were settled in one plane
orbiting the Earth.

Dual frequency GPS receivers record carrier phases
Φ1, Φ2, and codes P1, P2 observations on both the L1 and
L2 frequencies as follows [Seeber 2003, Gao et al. 2002,
Barrile et al. 2006, Sharifi and Farzaneh 2017]:

(1)

(2)

(3)

(4)

Where ρ is the true geometric range (m) between the
satellite and the receiver, dρ is the orbital error (m), c is the
speed of  light (3.0×108 m/s), dt is the satellite clock error
with respect to GPS time(s), dT is the receiver clock error
with respect to GPS time(s), dT is the tropospheric error(m),
I1 and I2 are the pseudo-range ionospheric delays(m) at L1 and
L2 respectively, b

S p1 and b
S p2 are the pseudo-range satellite

delays (m) at L1 and L2 respectively, b
r p1 and b

r p2 are the
pseudo-range receiver delays (m) at L2 and L2 respectively,
ε(P1) and ε(P2) are the Pseudo-range measurement noises
which include multipath errors (m), λ1 and λ2 are the carrier
signal wavelengths at L1 and L2 frequencies respectively, N1
and N2 are the carrier phase integer ambiguities, I1 and I2 are
the carrier phase ionospheric delays (m), bSΦ1 and bSΦ2 are
the carrier phase satellite delays or interfrequency biases (m),
ε(Φ1) and ε(Φ2) include the carrier phase measurement noises
along with multipath errors with units of  meters(m). 

The “geometry-free” linear combination is determined
using the difference between the pseudo-range measure-
ments or the carrier phase measurements as follows:

(5)

Wherein

(6)

where 40.28 is the constant coefficient. Therefore, TEC is ex-
tracted from the geometry-free linear combination as follows
[Sharifi and Farzaneh 2016]:

(7)
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TEC can be expressed in its units TECU and 1
TECU is equal to 1016 electron/m2.

Similarly, the TEC can be extracted from the car-
rier phase measurement using the following equation:

(8)

Single-frequency users cannot put down the iono-
spheric delay straightly but they can decrease the de-
lay using the pre-prepared ionospheric models [Dach
et al. 2015].

There are different sources for predicting the total
electron content (TEC) i.e. the International Reference
Ionosphere (IRI) [Bilitza and Reinisch 2008]. For mea-
suring the ionospheric delays the Klobuchar model can
be used whose coefficients are transmitted via the nav-
igation message of  the GPS satellite [Klobuchar 1987].
Another method for achieving the total electron con-
tent is the Global Ionospheric Maps (GIM) that is avail-
able in IGS site. The resolution of  these maps is 5° in
longitude and 2.5° in latitude at 2-hourly intervals (from
00:00 to 00:00 of  another day) [Schaer et al. 1998,
Wienia 2008, Dow et al. 2009].

2.2. TEC Estimation Using the Bernese Software
Global TEC maps have a low precision and resolu-

tion which are often imperfect to study or describe de-
tailed features of  the regional ionosphere. Therefore, it
is required to access regional ionospheric models to get
high precision and high resolution of  ionospheric cor-
rections. Many models, such as polynomial, grid, and
spherical harmonics models have been used to provide
regional models [Schaer 1999, Gao et al. 2002, Moon
2004, Sayin et al. 2008, Hirooka et al. 2011].

In this research, the Bernese GPS Software (BGS) is
used to calculate the ionospheric TEC values. The TEC
maps are initial values in this software. The BGS is a
convenient tool for geodetic applications using GNSS
systems with a great performance, great accuracy, and
numerous flexible reference GPS/GLONASS post-pro-
cessing package. It can extract several components, e.g.,
station coordinates, ionospheric (TEC map) and tropo-
spheric delays, orbital parameters, etc.

The TEC maps have been produced with the BGS
using PPP program and the output has been delivered in
the standard IONEX (IONosphere map EXchange) for-
mat [Schaer et al. 1998]. In the BGS, PPP is processed
using BPE including data, user scripts, and four process
control files (PCF) such as PPP.PCF, RNX2SNX.PCF,
BASTST.PCF, CLKDET.PCF.

In this PPP.PCF, regional ionosphere model is pro-

duced in IONEX format file using GPS Estimation
(GPSEST) program. 

The GPSEST is a program with the capability of
calculating TEC maps by a geometry-free linear com-
bination from the zero-difference code observations in
IONEX [Schaer et al. 1998]. 

The Global Ionospheric Maps (GIMs) are used in
the CODE processing to modify the resolution of  the
primary carrier phase ambiguities [Rothacher et al.
1996a]. For extracting the TEC values in the vertical di-
rection, the user has to operate modified single-layer
mapping function (MSLM). It is assumed that in this sin-
gle-layer model a shell with an infinitesimal thickness
has circumvented the Earth at an altitude, H, of  about
450 km and all the free electrons are laid on it.

Figure 1 demonstrates the fundamental geometry
of  the MSLM in the sun-fixed coordinate system. The
signal transferred from the satellite to the receiver
crosses the ionospheric shell known as ionospheric
pierce point (IPP). 

The regional TEC maps are generated with the
spatial and temporal resolution 0.5°×0.5° and 1 hour,
respectively using PPP.PCF analysis.

3. Artificial Neural Networks
Artificial Neural Network (ANN) is a computational

technique when formulating an algorithmic solution for
a problem becomes impossible or modeling tools for
statistical data is not linear in a case with a lot of  samples
and the purpose of  predicting the future [Fausett 1994,
Haykin 1994, Bishop 1995 Barrile et al. 2006].

ANN is made of an interconnected group of artificial
neurons working together in harmony to solve non-lin-
ear approximations or determine target function and etc.

ANNs behavior has a resemblance to human be-
ings, they learn by samples. ANNs include three main
layers namely, input, hidden, and output layers. They
are constructed by a number of  nodes and weights con-

Figure 1. Single-layer Model of  the Ionosphere [Modified from
Todorova 2008].
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necting the nodes. The input data are multiplied by the
associated weight of  the neuron and a bias is summed
with them.

Finally, as can be seen in Figure 2, the production is
transmitted to a non-linear filter called activation func-
tion (transfer function) to generate the final output. 

The number of  neurons and layers can be deter-
mined by trial and error in each problem. [Simpson
1990]. The multi-layer feed-forward network [Rumel-
hart et al. 1986, Haykin 1994] in which the signals go
through the network transferring only in a forward di-
rection, start from the input neurons leading to the out-
put ones, hence this network is an acyclic type of
network (see Figure 2). ANNs have a number of  prop-
erties known as problem-solving techniques. ANNs
have some important capabilities, namely learning abil-
ity, generalization ability, parallel processing, robustness,
applicability, and fault-recognition. The activation func-
tion, f, used in this work is the sigmoid function. The
generation equation of  the output vector is demon-
strated as below:

(9)

(10)

In this equation, the values w1, w2,…..wn, are
weights of  the input vector, x=[ x1, x2,….. xn]

T, vector b
indicates the bias components, f is an activation func-
tion and o is an output vector.

The neurons in each inner layer or hidden layer are
called hidden neurons. 

3.1. Input Space to the Neural Network
Neural Network is an immensely useful tool for

nonlinear approximation after training the adequate
epochal data [McKinnell and Poole 2000, Habarulema et
al. 2007, 2009a; McKinnell 2008]. 

TEC plays an important role to show the variations
of  the nonlinear ionospheric predicted by using a neu-
ral network [Habarulema et al. 2007, 2009a; Maruyama
2007, Watthanasangmechai et al. 2010, Ratnam et al.
2012, Ghaffari Razin et al. 2015]. 

Selecting the input space of  the neural network is
an important stage of  the modeling process because the
TEC variations depend on the number and type of  the
chosen parameters. The instances of  these variations
are seasonal and diurnal variation expressed by the day
number (DN) and the hour (HR) respectively.

For data continuity, DN and HR are split into two
cyclic trigonometric components or sine and cosine
components as follows [McKinnell and Poole 2000,
Habarulema et al. 2007, 2009a, McKinnell 2008, Tulu-
nay et al. 2004a and Watthanasangmechai et al. 2010] :

(11)

(12)

DNS, DNC, HRS, and HRC are sine and cosine
components of  DN and HR respectively.

Other inputs of  neural network consist of  geo-
graphical location of  the GPS receivers demonstrated
by geographic latitudes and longitudes (lat, long), Solar
activity and magnetic activity variations shown by a 4-
month mean of  the daily sunspot number (R4) and the
mean of  the previous eight 3-hourly magnetic A index
values (A8) respectively [Habarulema et al. 2007].

Considering a single station showed the reduction
of  the input space of  neural network into seven param-
eters such as the year number, solar activity (R4), mag-
netic activity (A8), seasonal variation (DNS and DNC),
and diurnal variation (HRS and HRC). Hence, the loca-
tion of  the station is eliminated. Root mean square error
(RMSE) and coefficients of  determination (R2) are com-
parison indicators of  the ANN performance.

Reliability and accuracy of  the Neural Networks
for modeling the ionospheric TEC are determined by
R2 [Drossu and Obradovic 1996] and RMSE as follows:

(13)

(14)
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Figure 2. Fundamental Elements of  Artificial Neural Network.
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Where N is the number of  data points, TECactual is
the actual TEC (TEC calculated from GPS observations
(TECGPS)) and TECpredict is the predict TEC (TEC pro-
duced by NN (TECNN) or IRI-2012 (TECIRI)). Different
possible states of  the determination coefficient are as
follows:

(15)

The R2 is the square of  the correlation (r) between
the predicted TEC produced by NN and the actual TEC
obtained by GPS; thus, it varies from 0 to 1. The R2 = 0
represents dissimilarity between the dependent variables
(TECNN or TECIRI) and independent variables (TECGPS)
and unpredictability of  variables as an aspect of  depen-
dency, i.e. dependent variables (TECNN or TECIRI) and
independent variable (TECGPS). On the other hand, R

2 =
1 represents the high similarity between the dependent
variables (TECNN or TECIRI) and independent variables
(TECGPS) and predictability of  variables as an aspect of
dependency, i.e. dependent variables (TECNN or TECIRI)
and independent variable (TECGPS). 

If  the variance (difference) is low (i.e. the TECNN or
TECIRI values are close to the TECGPS value), the R

2

will be high and vice versa. Given the R2 parameters or
the correlation between TECNN (TECIRI) and TECGPS,
interpretation and comparison can be carried out. 

Similarly, the relative error is the ratio of  the abso-
lute error to GPS TEC [Tulunay et al. 2004, Leandro
and Santos 2007, Habarulema et al. 2009a, 2009b; Ghaf-
fari Razin et al. 2015].

The absolute error and relative error are estimated
as follows:

(16)

(17)

Eabs is the absolute error, TECNN and TECGPS are
TEC values predicted by the NN model and calculated
from the GPS observations respectively, and Erel is the
relative error. For determining the relative correction of
the NN model, calculating the (100 - |Erel|)% parame-
ter will be sufficient. [Tulunay et al. 2004, Leandro and
Santos 2007, Habarulema et al. 2009a, 2009b, Ghaffari
Razin et al. 2015].

4. Results and Discussion
The scope of  this paper is regional TEC modeling

and predicting the TEC variability. The TEC values ob-
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Station

Latitude Longitude

Geographic Geomagnetic Geographic Geomagnetic

ABADAN 30.3392° 24.67° 48.3042° 124.62°

TEHRAN 35.6961° 29.49° 51.4231° 128.54°

RASHT 37.2808° 31.31° 49.5831° 127.16°

SHIRAZ 29.6167° 23.36° 52.5333° 128.45°

MASHHAD 36.3000° 29.01° 59.6000° 136.15°

Table 1. Geographic and Geomagnetic Coordinates of  the GPS
Receivers.

Parameter Option

Rz12 Calculated automatically
from the input time

IG12 Calculated automatically
from the input time

F10_7_DAILY Calculated in model

F10_7_81DAY Calculated in model

TEC_HMAX 2000 km

Ne_TOP From NeQuick

FPEAK From URSI

F2STORM on

BOTTOM ABT-2009

F1_PROB Scotto-1997 no L

AURORAL_BOUNDARY off

foE_STORM on

Ne_Dreg IRI-95

Te_TOP TBT-2007

IONCOMP RBV10/TTS03

Table 2. Options of  IRI-2012 Model Used in This Research.
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tained from GPS were calculated from the dual fre-
quency GPS receiver network over some stations in
IRAN such as TEHRAN, MASHHAD, RASHT,
ABADAN and SHIRAZ stations using the Bernese soft-
ware with the spatial and temporal resolutions 0.5° ×
0.5° and 1 hour interval respectively.

Table 1 shows the geographical locations for GPS
receiver stations over IRAN. In Table 1, geographic and

geomagnetic coordinates of  each station are deter-
mined and the TEC values of  them are separately mod-
eled in the following sections. 

The minimum and maximum latitudes are related
to SHIRAZ and RASHT stations respectively.

For the purpose of  this work, hourly values of  the
TEC were extracted for about four years (2006–2009)
in IONEX format file using GPS Estimation (GPSEST)

Figure 3. TEC Map from IGS (GIM) over IRAN, January 1, 2006.
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program of  the Bernese GPS software v5.0. The
GPSEST is a program that can calculate the TEC maps
using a geometry-free linear combination from the
zero-difference code observations in IONEX.

For extracting the TEC values along the vertical
direction, H is assumed to be about 450 km around the
Earth and all the free electrons are laid on it and an el-

evation cut-off  angle of  15 degrees will be adopted, the
receiver IFBs are calculated using the Bernese GPS
software v5.0 and the IFB values for the satellite are
gained from the Center of  the Orbit Determination in
Europe (CODE).

The precise orbit files collected by several IGS
agencies are interpolated to determine satellite position.

Figure 4. Regional TEC Map (RIM) Produced by BGS over IRAN (GPS Network of  20 Stations from Iranian Permanent GPS Network
(IPGN)), January 1, 2006.
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Finally, the IRI-2012 is used for testing algorithms. Table
2 shows the specifications of  IRI-2012 for this research. 

Figure 3 shows Global Ionosphere Map (GIM) in
time intervals of  2 hours and the spatial grid of  5° ×2.5°
over IRAN on January 1, 2006 that were captured from
the Center of  the Orbit Determination in Europe
(CODE). Figure 4 shows Regional Ionosphere Map
(RIM) in time intervals of  2 hours and the spatial grid of
0.5° ×0.5° over IRAN on January 1, 2006 that were ex-
tracted from INX file of  the BERNESE software.

The variations of  TEC during 24 hours of  the day
are dependent on the levels of  the solar activity. Hence,
these variations of  TEC during 365 days of  the year are
dependent on the location, direction, and levels of  the
solar and geomagnetic activities. Figure 5 shows the low
level of  the solar activity from 2006 to 2010 (studied pe-
riod). Figure 6 shows stages of  the research from iden-
tification to production and the last stage is modeling
and statistical analysis.

The input space of  the ANN includes the day num-
ber (seasonal variation), the hour (diurnal variation),
sunspot number (a measure of  the solar activity) and
magnetic index (a measure of  magnetic activity).

Variations of  TEC are the function of  many factors
such as solar cycle variations, geomagnetic activity ef-
fects, diurnal variations, seasonal variations, latitudinal
variations (Location), gravitational and seismic activity.

Consideration of  a single station showed the re-
duction of  the input space of  the neural network into
seven parameters, namely the year number, solar activ-
ity (R4), magnetic activity (A8), seasonal variation (DNS
and DNC) and diurnal variation (HRS and HRC).
Hence, the location of  the station was eliminated.

In this study, the architecture of  the neural network
consists of  one input layer with seven parameters, one
hidden layer with fifty neurons and one output layer
with one neuron.

In this work, the main purpose is to model iono-

Figure 5. Monthly Averages of  Sunspot Numbers Trom 2004 to 2018. Data obtained from (http://sidc.be/silso) Royal Observatory of
Belgium 2015 November 1.

Figure 6. A Flowchart of  the TEC Modeling Scheme in This
Work.
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spheric TEC by NN (the NN application for predicting
the TEC over several stations in IRAN (see Table 1)) and
compare predicted TECNN with TECGPS and TEC val-
ues obtained using the IRI-2012 version of  the Interna-
tional Reference Ionosphere (IRI). 

In this paper, the dataset is divided into training and
testing sets. The training dataset is the TEC data in 2006
- 2009 time interval while the TEC data in 2010 is re-
served for the testing process. 

Table 3 shows a summary of  the correlation coef-
ficient, RMSE and R2 between TECGPS and TECNN
over each of  the five stations during the training period
of  neural network model. As shown in Table 3, the R2

values are high and there is the goodness of  fit of  a sta-
tistical model between TEC produced by the neural net-
work and TEC determined by GPS observations (the
R2 values are very close to 1) as well as the RMSE val-

ues which are less than 1 TECU (see Table 3).
The important days in 2010 consisted of  Vernal

equinox (March 20), Summer solstice ( June 21), Au-
tumnal equinox (September 22) and Winter solstice
(December 21).

Table 4 indicates the RMSE and R2 values between
the GPS TEC and TEC values predicted by the NN and
IRI-2012 models for equinox and solstice days in 2010
over TEHRAN station.

The NN model predicts TEC more precisely dur-
ing all seasons than the IRI-2012 model.

The NN model provides a more accurate predic-
tion during the autumnal equinox (September 22) in
comparison with other days. The R2 values and the
RMSE values of  the neural network are higher and less
than 1 TECU during equinoxes and solstices respec-
tively (Table 4).

On the other hand, the IRI model predicts TEC
very low resolution during all seasons because the R2
values and the average of  RMSE values are zero and

4.6362 TECU respectively (Table 4). 
There is a fact that the International Reference

Ionosphere (IRI) is a monthly median model [Bilitza et
al., J. Geodesy 85, 909-920, 2011] and can not correspond
toTEC of  a specific day. Thus, according to equation
(13), the numerator and denominator of  the fraction
are equalized (TECi(predict) = TEC(actual)). As a result

and RIRI
2 values becomes zero.

In Table 5, the absolute error is defined as the mag-
nitude of  the difference between the TEC predicted by
NN model and the GPS TEC. 

Station
Correlation
coefficient

RMSE R2

ABADAN 0.994 0.7139 0.9718

TEHRAN 0.992 0.6029 0.97

RASHT 0.992 0.6512 0.9633

SHIRAZ 0.994 0.7269 0.9760

MASHHAD 0.992 0.6107 0.9662

Table 3. Evaluation of  Produced Models for Each Station.

Date Neural Network(NN) IRI Model

RMSENN(TECU) R2
NN RMSEIRI(TECU)   R2

IRI

2010 Mar 20 0.5956 0.9147 4.1179 0

2010 Jun 21 0.9193 0.8747 5.7346 0

2010 Sept 22 0.3750 0.9290 4.8456 0

2010 Dec 21 0.4097 0.9117 3.8468 0

Table 4. Root Mean Square Error (RMSE) and Coefficient of  Determination (R2) Between IRI Model and Neural Network, Calculated
over TEHRAN Station for Each of  the Four Days Representing Equinoxes and Solstices in 2010.

R 2 = 1 -
(TEC i(actual) − TEC (actual) )

2

i=1

N∑
(TEC i(actual) − TEC(actual) )

2

i=1

N∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥



In Table 5, TEC predicted by NN and TEC pro-
duced by GPS are compared over TEHRAN station dur-
ing equinoxes and solstices in 2010. 

Correlation coefficients give reliability confidence
levels of  the NN model to predict GPS TEC. As shown
in Table 5, correlation coefficients are greater than 95%
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Date TEC predicted by NN
TEC calculated from GPS

Obsevations

Correlation(%)   Ereal(%) Std Mean(TEC) Std   Mean(TEC)

2010 Mar 20 95.32 4.68 2.23 8.79 2.08 8.39

2010 Sept 22 96.65 3.35 1.48 8.71 1.43 8.60

2010 Jun 21 95.32 4.68 2.93 16.26 2.65 16.38

2010 Dec 21 95.80 4.19 1.44 7.84 1.40 7.84

Table 5. Comparison of  GPS TEC with TEC Predictions from NN Model over TEHRAN During Equinoxes such as March 20, Septem-
ber 22 and Solstices such as June 21, December 21; all in 2010.

Figure 7. GPS TEC, NN Predicted TEC and IRI-2012 TEC for Important Days of  2010 from 01:00 UT to 24:00 UT over TEHRAN Sta-
tion.
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and the maximum value for the correlation coefficient
belongs to September 22. Similarly, the minimum rela-
tive error is 3.35% for September 22. A relative error of
4.68% expresses that the NN can predict TEC with the
possibility of  95.32% for March 20 and June 21. Finally,
an average relative error during equinoxes and solstices

in 2010 over TEHRAN is 4.22% indicating the approxi-
mate determination of  this NN model for about 95.77%
of  the GPS TEC on average.

As expected, TEC produced by the IRI-2012 model
is higher than GPS TEC because there is no global GPS
station over IRAN at the determination of  TEC using

TEC REGIONAL MODELING AND PREDICTION USING ANN

Figure 8. GPS TEC, NN Predicted TEC and IRI TEC for Important Days of  2010 from 01:00 UT to 24:00 UT over ABADAN, MASHHAD,
RASHT and SHIRAZ Stations.



IRI-2012 model.
Therefore the IRI-2012 model is not fit and efficient

for determining TEC over IRAN because the IRI model
is median and cannot be always corresponding to TEC
of  a specific day. According to the graphical representa-
tion of  TEC (from 01:00 UT to 24:00 UT) from three
different models in Figure 7 and correlation coefficients
values in Table 5, the high-performance neural network
was obtained.

TEC predicted by the neural network is very simi-

lar and close to TEC produced by GPS at four stations
(see Figure 8).

The separation between NN TEC and GPS TEC in
the autumnal equinox (Sept 22), vernal equinox (Mar
20) and winter solstice (Dec 21) are very low and NN
TEC is predicted with extremely high precision, but the
greatest difference is observed in the summer solstice
( June 21) and the prediction of  NN TEC has lower pre-
cision (standard deviation (Std) is high, see Table 7). It
can also be observed from Tables 6 and 7 that the RMSE
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RASHT

Date Neural Network(NN) IRI Model

RMSENN(TECU) R2
NN RMSEIRI(TECU) R2

IRI

2010 Mar 20 0.4678 0.9479 3.5632 0

2010 Jun 21 0.8961 0.8695 5.6599 0

2010 Sept 22 0.4472 0.8886 4.4892 0

2010 Dec 21 0.4862 0.8754 3.5228 0

MASHHAD

Date Neural Network(NN) IRI Model

RMSENN(TECU) R2
NN RMSEIRI(TECU) R2

IRI

2010 Mar 20 0.4444 0.9540 4.0521 0

2010 Jun 21 0.7547 0.9143 5.0890 0

2010 Sept 22 0.4550 0.9039 5.0068 0

2010 Dec 21 0.4568 0.8568 4.2892 0

ABADAN

Date Neural Network(NN) IRI Model

RMSENN(TECU) R2
NN RMSEIRI(TECU) R2

IRI

2010 Mar 20 0.2719 0.9896 6.9332 0

2010 Jun 21 1.0140 0.9468 5.8142 0

2010 Sept 22 0.4885 0.9304 8.3489 0

2010 Dec 21 0.5624 0.9091 4.7026 0

SHIRAZ

Date Neural Network(NN) IRI

RMSENN(TECU) R2
NN RMSEIRI(TECU) R2

IRI

2010 Mar 20 0.2882 0.9912 6.9081 0

2010 Jun 21 1.2627 0.9360 5.4157 0

2010 Sept 22 0.3435 0.9709 8.5183 0

2010 Dec 21 0.4633 0.9453 4.4476 0

Table 6. Root Mean Square Error and Coefficient of  Determination between IRI Model and Neural Network are Calculated for Impor-
tant Days in 2010.
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of  the modeled ionospheric is approximately less than 1
TECU. 

As can be seen from Table 8, the minimum value
of  the RMSE is related to the spring season at the
RASHT station in the highest latitude and the maxi-
mum value of  the RMSE is related to the winter season
at the SHIRAZ station in the lowest latitude.

By choosing several stations with different lati-
tudes, it was concluded that the values of  TEC for sta-
tions with lower latitudes and closer to the equator are

larger than stations with higher latitudes. 
As shown in Figure 9, TEC values during January 1,

2006, over TEHRAN, RASHT, MASHHAD, ABADAN
and SHIRAZ stations with different latitudes are com-
pared.

The results obtained from this graph showed that,
firstly, all stations have the maximum of  TEC at 12.30
LT (9 UT+3.30=12.30 LT). At the early hours of  the day,
the TEC values increase gradually and at the midday, it
reaches its maximum value (due to high activity of  the

TEC REGIONAL MODELING AND PREDICTION USING ANN

RASHT

Date TEC produced by NN TEC produced by GPS

Correlation(%) Ereal (%) Std Mean(TEC) Std   Mean(TEC)

2010 Mar 20 96.41 3.58 2.13 8.60 2.09 8.37

2010 Sept 22 95.26 4.73 1.38 8.21 1.36 8.54

2010 Jun 21 95.60 4.39 2.74 15.94 2.53 16.11

2010 Dec 21 93.85 6.14 1.73 7.48 1.40 7.64

MASHHAD

Date TEC Produced by NN TEC Produced by GPS

Correlation(%) Ereal (%) Std Mean(TEC) Std   Mean(TEC)

2010 Mar 20 95.91 4.08 2.05 8.48 2.11 8.35

2010 Sept 22 95.12 4.87 1.21 8.03 1.49 8.05

2010 Jun 21 96.09 3.90 2.66 15.45 2.63 15.59

2010 Dec 21 95.52 4.47 1.13 7.77 1.23 8.00

ABADAN

Date TEC Produced by NN TEC Produced by GPS

Correlation(%) Ereal (%) Std Mean(TEC) Std   Mean(TEC)

2010 Mar 20 97.36 2.63 2.64 9.23 2.72 9.22

2010 Sept 22 95.18 4.81 1.55 8.81 1.89 8.88

2010 Jun 21 95.94 4.05 4.35 17.61 4.49 18.00

2010 Dec 21 93.81 6.18 1.72 8.01 1.90 8.44

SHIRAZ

Date TEC produced by NN TEC produced by GPS

Correlation(%) Ereal (%) Std Mean(TEC) Std   Mean(TEC)

2010 Mar 20 97.45 2.54 3.26 9.45 3.14 9.41

2010 Sept 22 96.68 3.31 2.04 8.79 2.05 8.71

2010 Jun 21 93.61 6.38 5.18 17.43 5.09 17.86

2010 Dec 21 95.25 4.74 2.15 8.45 2.02 8.72

Table 7. Comparison of  GPS TEC with TEC Predictions from NN Model During Equinoxes such As March 20, September 22 and Sol-
stices such as June 21, December 21; all in 2010.



sun). Afterwards, the TEC values decrease. Secondly,
Figure 9 shows that the first and the second maximum
amount of  TEC is related to SHIRAZ and ABADAN sta-
tion respectively, and the minimum amount of  TEC is
related to RASHT station (the distance of  the station
from the equator is important).

One of  the important parameters of  the variation
ionospheric TEC values is the geographic position (es-
pecially latitude). Therefore, at lower latitudes (latitude
of  SHIRAZ is 29.6°) and near the equator line, solar ac-
tivities are more effective in comparison with the higher
latitudes. The increase in ionization rate makes an in-
crease in electron density and TEC of  the ionosphere.

RASHT station in comparison with other stations
is located at a higher latitude and it has less TEC value.
Consequently, increasing latitude will decrease the
TEC value.

It can be perceived that characteristics of  TEC are

primarily dependent on the position of  the station with
respect to the magnetic equator. 

The monthly mean TEC from January to Novem-
ber 2006 is shown in Figure 10 for two selected sta-
tions; RASHT station (lower latitude), and SHIRAZ
station (higher latitude). 

In spring seasons (April), the TEC values are max-
imum and in December (winter), they are minimum.
From winter to spring, the TEC values are increased but
from spring to summer, and summer to autumn, the
ionospheric TEC values are decreased (see Figure
10,11). During the April, May, and June, the TEC values
are maximum in comparison with the other months.

The average of  all graphs concerning the special
hours in Figure 10.a is shown in Figure 11. Basically,
during a day, the mean TEC values are minimum in
the early morning (Before the dawn) and at night, and
they are maximum at midday (due to the level of  the
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RMSE(TECU)

SHIRAZ ABADAN MASHHAD RASHT TEHRAN Mean

Spring 0.6467 0.6204 0.5370 0.5133 0.52 0.56748

Summer 0.6760 0.6812 0.5933 0.6793 0.5614 0.63824

Autumn 0.6358 0.6546 0.5381 0.6320 0.5748 0.60706

Winter 0.7045 0.6771 0.5913 0.6190 0.6065 0.63968

Mean 0.6657 0.6583 0.5649 0.6109 0.5656

Table 8. Comparison of  Monthly Mean Variation of  TEC at Different Seasons for Several Stations During 2006.

Figure 9. Comparison Values of  TEC at Different Stations with Different Latitudes during January 1, 2006.
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solar). In RASHT station and SHIRAZ station, TEC ex-
hibits the minimum diurnal variation of  TEC in the
pre-sunrise hours (03:00 UT) and the maximum values
occurred between 09:30 and 12:00 UT. In RASHT sta-
tion, the highest peak TEC of  ~23 TECU is recorded
in April (spring season) and the maximum TEC value
of  ~10 TECU at about 09:30 UT is recorded in De-

cember (winter season). In SHIRAZ station, the high-
est peak TEC of  ~32 TECU is recorded in April and
the Peak TEC of  ~14 TECU at about 11:00 UT is
recorded in December. 

5. Conclusion

This work investigates an ANN model to predict
TEC values in 5 GPS stations over IRAN using 50 neu-
rons in a single hidden layer. In the beginning, the
Bernese software is used to produce TEC values since
the Global TEC Maps have a low precision and resolu-

tion which are often imperfect to study or describe de-
tailed features of  the regional ionosphere. Afterward,
the parameters influencing the ionospheric TEC is stud-
ied, chosen as the input space elements of  NN. In this

TEC REGIONAL MODELING AND PREDICTION USING ANN

Figure 10. Comparison of  Monthly Mean Variation of  TEC at RASHT Station (a) and SHIRAZ Station (b) from January to December,
2006.

Figure 11. Changing Procedure of  Monthly Mean TEC over RASHT Station at Different Hours in 2006. 



study, the input spaces of  NN are the day number (DN),
the hour (HR), the geographical location of  the GPS re-
ceivers, a 4-month mean of  the daily sunspot number
(R4), and the mean of  the previous eight 3-hourly mag-
netic A index values (A8). 

Considering a single station, the input space of  the
neural network is reduced to seven parameters namely
the year number, the solar activity (R4), the magnetic
activity (A8), the seasonal variation (DNS and DNC) and
the diurnal variation (HRS and HRC). 

To search the potency and capability of  NN model
for predicting TEC, the RMSE and R2 values are com-
puted and compared with TEC extracted from the IRI-
2012 model. The result shows that the mean RMSE of
NN model is approximately less than 1 TECU and the
R2 of  NN model is close to 1 or more than 0.9 at every
station on the solstice and equinox days. 

As explained in previous sections, if  the R2 is more
than 0.9 then it can be concluded that the performance
of  the model is highly acceptable. 

The IRI-2012 model is not suitable for calculating
and providing TEC over IRAN regions, because there is
no global GPS station and ionospheric measurement
tools such as Ionosonde, satellite, etc. The IRI-2012
model overestimates the TEC as shown in all the com-
parisons. Also, the TEC values were compared in two
stations with different latitudes located in RASHT and
SHIRAZ. As it was shown, the TEC values at lower lat-
itudes (nearest to the equator) are greater than the TEC
values at higher latitudes. Hence, the strong ionospheric
layer is created in the equatorial region. Furthermore,
areas close to the equator have more free electrons and
greater TEC values. During the months of  April, May,
and June, the TEC values are maximum in comparison
with other months.
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