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ABSTRACT
In this paper, we introduce a new method called Modular Feed-forward
Neural Network (MFNN) to find the shape factor, depth and ampli-
tude coefficient parameters related to simple geometric-shaped models
such as sphere, horizontal cylinder, and vertical cylinder, which cause
the gravity anomalies, in 2D cross section. Using MFNN inversion re-
sults can determine the shape, depth and radius of  a causative body.
The design of  MFNN consists of  3 similar one layer feed-forward neu-
ral networks (FNNs). Each feed-forward Neural Network which is as
a module, first train using the back-propagation method for a param-
eter with synthetic gravity data and then to test the trained networks
with new gravity data. The new approach has been tested first on syn-
thetic data from different models using well-trained networks. The re-
sults of  this approach show that the parameters values estimated by
the modular inversion are almost identical to the true parameters. Fur-
thermore, the noise analysis has been examined where the outputs of
the inversion produce satisfactory results with 10% of  random noise.
The reliability of  this approach is demonstrated for real gravity field
anomalies measured over an iron deposit in Kerman province, Iran.
MFNN inversion show the best shape for the underground mass is ver-
tical cylinder with a depth of  21.18 m and a radius of  17.89 m.

1. Introduction
Inversion of  gravity data is nonunique in the sense

that the observed gravity anomalies in the plane of  ob-
servation can be explained by a variety of  density dis-
tributions in different depths and various shapes. In the
other words, different geometrical distributions of  the
subsurface mass can yield the same gravity field at the
surface [Skeel 1947]. One way to solve this ambiguity is
to assign a suitable geometry to the anomalous mass
with a known density followed by inversion of  gravity
anomalies [Chakravarthi and Sundararajan 2004]. Al-

though simple models may not be geologically realistic,
they are usually are sufficient to analyze sources of
many isolated anomalies [Abdelrahman and El-Araby
1993]. We can obtain a general view of  the location of
the structures by these simulations. The interpretation
of  such an anomaly aims essentially to estimate the pa-
rameters such as shape, depth, and radius of  the gravity
anomaly causative body such as geological structures ,
mineral mass and artificial underground structures. Sev-
eral graphical and numerical methods have been devel-
oped for analyzing residual gravity anomalies caused by
simple bodies, such as Saxov and Nygaard [1953] and
Bowin et al. [1986]. The methods include, for example,
Fourier transform [Odegard and Berg 1965, Sharma and
Geldart 1968], Mellin transform [Mohan et al. 1986],
Walsh transforms techniques [Shaw and Agarwal 1990],
ratio techniques [Hammer 1977, Abdelrahman et al.
1989] and least-squares minimization approaches
[Gupta 1983, Lines and Treitel 1984, Abdelrahman 1990,
Abdelrahman et al. 1991]; effective quantitative inter-
pretations using the least-squares method [Gupta 1983]
based on the analytical expression of  simple moving av-
erage residual gravity anomalies are yet to be developed.
Abdelrahman and El-Araby [1993] introduced an inter-
pretive technique based on fitting simple models con-
volved with the same moving average filter as applied
to the measured gravity. A simple method proposed by
Essa [2007] is used to determine the depth and shape
factor of  simple shapes from residual gravity anomalies
along the profile. Another automatic method, the least-
squares method, was proposed by Asfahani and Tlas
[2008], by which the depth and amplitude coefficient
can be determined. 
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Artificial Neural Networks (ANNs) are of  major
research interest at present, involving researchers of
many different disciplines. Subjects contributing to this
research include biology, computing, electronics, math-
ematics, medicine, physics, psychology and etc [Bich-
sel 2005]. The new method, the neural network, has
been used in recent years for different branch of  geo-
physics especially potential fields. For example, the lo-
cation of  buried steel drums is estimated from
magnetic dipole source using supervised artificial neu-
ral network [Salem et al. 2001]. Depth and radius of
subsurface cavities are determined from microgravity
data using back propagation neural networks [Eslam et
al. 2001]. Depth of  the deposit was determined by ap-
plying a neural network [Hajian 2004]. A new approach
in neural networks, Cellular Neural Network (CNN),
has been proposed by Chua and Yang [1988], which is
focused on 2D image processing. CNN was applied for
separation of  regional/residual potential sources in
geophysics [Albora et al. 2001a, 2001b]. Forced Neural
Networks for gravity anomaly was proposed by Osman
et al. [2006, 2007]. Abedi et al. [2009] calculated the
depth and radius of  the simple geometry by the neural
network from the gravity anomalies. Al-garni [2013]
used MNN inversion for estimating the depth of  the
gravity anomaly source related to simple geometry sep-
arately. Eshaghzadeh and Kalantari [2015] have been
proposed a new method based on feed-forward neural
network for gravity field inverse modeling due to anti-
clinal structures. 

In this paper, a new definition of  the Modular
Feed-forward Neural Network is proposed for inverse
modeling of  profile gravity data. We investigate the
ability of  the suggested approach in estimating the
depth, shape and radius of  buried sphere, infinite hori-
zontal cylinder and semi-infinite vertical cylinder
sources from calculated gravity data, with and without
random noise. Then apply MFNN inversion for real
gravity data set from Iran. 

2. Sources of simple geometry
In gravity, fields of  many simple bodies are sym-

metric about the location of  the source. For example,
the general gravity g effect caused by simple models
(such as a sphere, an infinite horizontal cylinder, and a
semi-infinite vertical cylinder as shown in Figure 1) is
given as [Abdelrahman et al. 1989]:

(1)

Where z is the depth, m=1 for a sphere or a hori-
zontal cylinder and m=0 for a vertical cylinder, q is a

value (shape factor) characterizing the nature of  the
source (q =0.5 for a vertical cylinder, q =1 for a hori-
zontal cylinder, and q =1.5 for a sphere) and K is an am-
plitude factor related to the radius R and density
contrast ρ of  the source, as:

(2)

3. Modular Feed-forward Neural Network
Generally, a Neural Network is taught by a train-

ing set of  a group of  examples as it learns to estimate
one or more parameters described by the example pat-
terns. Neural networks can be classified in supervised
(associative) and unsupervised (self-organization). The
main difference is that in the case of  the supervised
neural networks the learning algorithm uses input-out-
put training data to model the dynamic system, on the
other hand, in the case of  unsupervised neural net-
works only the input data is given. In the case of  an un-
supervised network, the input data is used to make
representative clusters of  all the data.

A typical NN consists of  a minimum of  three lay-
ered nonlinear problems: an input layer, a hidden layer
and an output layer (Figure 2).
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Figure 1. (a) sphere and horizontal cylinder models, (b) vertical
cylinder model.
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Figure 2. Architecture of  feed-forward neural network (Module).
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In this paper, we have proposed a new structure of
the Modular Neural Network that consists of  some
monolayer feed-forward neural networks (FNN), each
one trained with a supervised method with distinct
training data set. Each feed-forward Neural Network
has the same structure and is trained under the same
conditions. In other words, a Modular Neural Network
has been formed with some parallel feed-forward neu-
ral networks as each independent FNN serves as a mod-
ule (local expert) operates on separate inputs to
accomplish some subtask of  the task that the network
wishes to implement (Figure 3). Response integration
is required to combine the outputs of  all the modules
in the modular network.

In a feed-forward network, the connections be-
tween neurons are in one direction. Each neuron con-
sists of  a vector of  modifiable weights or connection
strengths. The task of  a neuron is to map a given input
vector into a single output that is transmitted to other
neurons. A feed-forward network is usually arranged in
the form of  layers. In such a layered feed-forward net-
work, there is no connection between the neurons in
the same layer, and there is no feedback between lay-
ers. The neuron uses an activation function to trans-
form the net input into a single output. An activation
function commonly used in an FNN is the sigmoid
function. This function has a linear transition part that
exponentially reaches one of  two states. The sigmoid
function is given by

(3)

In the ANN context, the process of  finding opti-
mum weights is described as network training and the
set of  input–output patterns is the training set. The pur-
pose of  learning a mapping between known input–out-
put patterns for a given problem is to apply the trained
network to input patterns with unknown outputs later
on. From this viewpoint, an FNN can be described as a

non-linear function; the training process is an optimiza-
tion problem where network weights are the parame-
ters to be estimated [Macias et al. 2000].

The most widely used training method is known
as the back-propagation method. The simplest imple-
mentation of  back-propagation learning updates the
network weights and biases in the direction in which the
performance function decreases most rapidly. The back-
propagation method produces a least-squares fit be-
tween the actual network output and a desired output
by computing a local gradient in terms of  the network
weights [Rummelhart et al. 1986]. During the training
process, the measure of  the error is given by [Macias et
al. 2000]

(4)

Where ok
q s the kth output of  the network and yk

q is
the kth value which is expected, k=1, . . . ,M. After learn-
ing, a neural network represents a complex relationship,
and possesses the ability for generalization.

4. MFNN training 
In a neural network, we can train the network by

using input and output data (training vector). Here, the
inputs of  feed-forward neural networks are gravity data
of  synthetic profile that are generated by forward mod-
eling. Outputs are the geometric parameters of  a model.

The new approach will integrate the information
from three main modules, one for each of  the three ge-
ometric parameters (Figure 3).Therefore each module in
MFNN architecture estimate one of  the shape factor,
depth or amplitude coefficient parameters from the grav-
ity data. The final decision is based on the results of  the
three modules. This strategy is caused instead of  training
the entire dataset at once, data divide into smaller subsets
as can define some smaller FNN, thus increase the learn-
ing speed and improve the output accuracy. 

The number of  training samples should be suffi-
cient to reach the desired training accuracy. To gener-
ate training samples, forward modeling is performed at
33 points over 66 ms profile with two-ms interval. We
have considered the ranges from 8.0 to 25 ms, with 10
points for the depth (z) parameter, the ranges from 0.4
to 1.6 with 10 points for shape factor (q) parameter and
the ranges from 10 to 210 units, with 22 points for the
amplitude coefficient (k) parameter. The parameters are
selected in aforementioned ranges disorderly. The
choice the expected ranges of  the parameters is based
on the behavior of  measured field data and the geolog-
ical information from the area under consideration. 

Because each module is taught for estimating one

Figure 3. Architecture of  a modular feed-forward neural network
(MFNN) with three module.
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of  the parameters, in the forward modeling phase for
generating training data, to avoid repeating a constant
value for a parameter in training vectors, we have used
from the rand command in Matlab. Two thousand two
hundred training patterns are calculated. Each training
vector contains thirty four samples. 

The selected modules are a (33, 20, 1) FNN. It
means a feed-forward neural network with 33 neurons

as inputs (gravity data), 20 neurons in the hidden layer
and 1 neuron as output layer, because outputs are one
of  the q, K or z parameters. The error convergence dur-
ing network training depends on the number of  neu-
rons in the hidden layer of  the network. More
important than the error reduction is the ability of  the
network to predict answers successfully from new data
which depends on both the number of  neurons defining
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Model Sphere horizontal cylinder vertical cylinder

Parameter Initial Without
noise

with
noise Initial Without

noise
with
noise Initial Without

noise
with
noise

Depth (z) 20 20.07 22.72 22 21.87 23.08 15 15.062 15.64

Shape factor (q) 1.5 1.495 1.453 1 1 0.986 0.5 0.503 0.467

Amplitude
coefficient (k)

110 109.89 112.32 25 24.83 26.87 12 12.03 10.86

Table 1. Inverted parameters from MFNN for synthetic gravity data. The depth unit is m and the amplitude coefficient unit for sphere
model is mGal.m2 and for horizontal and vertical cylinder is mGal.m.

Figure 4. The gravity response of  the sphere model (blue curve)
and MFNN inversion (red curve).

Figure 5. The gravity response of  the horizontal culinder model
(blue curve) and MFNN inversion (red curve).

Figure 7. The gravity response of  the sphere model which  corrupted
with 10% random noise (blue curve) and MFNN inversion (red curve).

Figure 6. The gravity response of  the vertical culinder model (blue
curve) and MFNN inversion (red curve).
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the network and the number of  examples used for train-
ing [Macias et al. 2000].The number of  hidden neurons
can be defined more exactly by trial-and-error methods
in the calculated limits.

5. Synthetic models
After correct training of  the modules, by entering

residual gravity anomaly profile of  a synthetic model or
real gravity profile into trained MFNN, geometric pa-
rameters of  the model are obtained. In this study, we
have trained and saved three FNN as modules for inverse
modeling of  the sphere, infinite horizontal cylinder and
semi-infinite vertical cylinder shapes. 

Those have assumed that the sphere model to have
parameters z=20 m, q=1.5 and K=110 mGal.m2, hori-
zontal cylinder model to have parameters z=22 m, q=1
and K=25 mGal.m and vertical cylinder model to have
parameters z=15 m, q=0.5 and K=12 mGal.m. The grav-
ity effects of  the sphere, horizontal cylinder and vertical
cylinder models and generated gravity responses from
MFNN inversion are shown in Figures 4, 5 and 6, re-
spectively. The Table 1 shows the estimated parameters
from the modules output.

The trained networks ability was also tested using
corrupted synthetic gravity data with 10% random noise.

The gravity data profile of  the sphere, horizontal cylin-
der and vertical cylinder models with added noise and
Prediction results from MFNN inversion responses are
shown in Figures 7, 8 and 9, respectively. The inverted pa-
rameters from corrupted data with noise are tabulated in
Table 1. The satisfactory results have been obtained.

6. Field example
The area under study is located in the north of  Ker-

man province, Iran, as encompass an area about 270 m by
130 m (Figure 10). Kerman province can be a part of  Cen-
tral Iran zone in structural units and extent of  sedimen-
tary basins viewpoint. Paleozoic to Mesozoic geological
formation of  the study region consists of  dolomite and
dolomitic limestone, orbitolina limestone with marl, al-
ternations of  marly biomicrite with marl, sandy micrite
and siltstone. Quaternary sediments include sand dunes
and sheets, silt and clay. Percambrian outcrops comprise
volcanic rock, quartzite, sandstone and shale.

Figure 11 shows the geological map of  region
under investigation as the exploration area lie in the dis-
trict confined by the black rectangle. The main iron ores

in this area are from the oxide group consisting of
hematite and magnetite. The aim of  the gravity field
measurments is underground metal mass detection. 

The gravity reading was done with a station sepa-
ration of  about 5 m, along 13 north-south profiles with
a distance of  about 20 m. After gravity corrections, the
complete Bouguer gravity anomalies map will be ob-
tained (Figure 12). The Bouguer gravity field demon-
strate a increasing trend from south-east to north-west. 

As we are looking for the local gravity anomalies,
residual gravity anomalies are computed removing a
trend (degree 2) from the Bouguer anomalies. Figure 13
shows the residual gravity anomalies map of  the area
under investigation. Due to presence the non-metallic
minerals and other elements in the iron deposite, the
density of  the iron ore deposite is about 4.5 gr/cm3,

Figure 9. The gravity response of  the vertical culinder model which
corrupted with 10% random noise (blue curve) and MFNN inver-
sion (red curve).

Figure 8. The gravity response of  the horizontal culinder model
which  corrupted with 10% random noise (blue curve) and MFNN
inversion (red curve).

Figure 10. The location of  the area under study.
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thus the iron deposite mass has a density contrast
about 1.9 gr/cm3 than surrounding sediments with a
density of  about 2.6 gr/cm3. The positive anomalies
over the residual gravity anomalies map of  the area
under evaluation indicate the causative masses with
positive density contrast such as metal minerals. 

Profile A with direction of  NE-SW in residual
anomaly map is considered for inverse modeling with
MFNN algorithm (Figure 13). The gravity sampling
was done at 33 points over profile A with a distance
of  2 m. 

The gravity field variations along the profile A and
the gravity response related to the estimated parame-
ters by MFNN inversion are shown in Figure 14. The
neural network inversion shows that the estimated
depth is 21.18 m, shape factor is 0.587 and the ampli-
tude coefficient is 12.74 mGal.m. thus can simulate the
anomaly source shape geometrically to vertical cylin-
der. The standard error (SE) is used as a statistical pref-
erence criterion in order to compare the observed and
calculated values [Asfahani and Tlas 2008],

(5)

where gi
o and gi

c(i = 1, ..., N) are the observed and the cal-
culated values at the points xi (i = 1, ..., N), respectively.

The standard error (SE) between the real gravity
data and evaluated gravity is 0.0711. For computing the
amplitude coefficient of  a vertical cylinder, with atten-
tion to relation 2, we can estimate the approximate ra-

dius of  the anomaly causative mass, as

SE =
gi

o − gi
c( )2

i=1

N

∑
N

πGρR2 =12.74×10−5...m2 / s2

3.98×10−7R2 =12.74×10−5

R =17.89...m

Figure 11. The geological map of  the region under investigation. 

Figure 12. The Bouguer gravity anomaly map of  the area under
study. 

Figure 13. The residual gravity anomalies map of  the area under
study. 
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The resulted parameters from inverting the real
gravity data profile using MFNN have been shown in
Table 2.

Figure 15(b) show the depth estimates from Euler
deconvolution method using a structural index of  1 and
a window size of  3 points for observed anomaly of  the
profile A cross-section (Figure 15(a)). The maximum
depth is about 19 m. In comparison with the evaluated
depth from MFNN inversion, a difference of  about 2 m
is seen. This difference is because of  the underground

anomaly causative body actually has not a complete ver-
tical cylinder shape. 

7. Discussion and conclusions
In this paper, a new definition of  Modularity for

neural network architecture has been proposed. The
modular neural network is designed to separate the
functions that cause interference problems by having in-
dependent modules assigned to each function. Modules
are groups of  unconnected neurons, each connected to
the same set of  nodes. The concept of  modularity is
linked to the notion of  local computation, in the sense
that each module is an independent system and inter-
acts with others in a whole architecture, in order to per-
form a given task.

Modules can be trained in parallel which reduces

training times substantially and additional modules can
be added without the need to retrain the others. During
training the weights and biases of  the network are iter-
atively adjusted to minimize the network performance
function. The default performance function for feed-for-
ward networks is mean square error. 

The main advantage of  using MFNN for gravity
field interpretation is that once MFNN has been trained
for shape factor, depth and amplitude coefficient pa-
rameters of  the simple models such as a sphere, an infi-
nite horizontal cylinder, and a semi-infinite vertical
cylinder, it has the ability to interpret gravity field mea-
surements very rapidly. In this approach, MFNN do not
need to train for each simple shape separately. 

The modular feed-forward neural network was in-
vestigated for inverse modeling the gravity response of
the buried body with simple geometry. The efficiency
of  MFNN was evaluated with adding 10% random
noise to the synthetic gravity data. The results of  the
modular neural network approach illustrate MFNN ex-
cellent performance. We employ MFNN for the real
gravity data from Iran. The inverted parameters from

Parameter Estimated values

Depth (m) 21.18

Amplitude coefficient
(mGal.m)

12.74

Shape factor 0.587

Radius (m) 17.89

Table 2. Estimated parameters from the inverse modeling of  the
real gravity data profile by MFNN.

Figure 14. Observed anomaly of  the  profile A cross-section (blue curve) and calculated gravity from the estimated parameters of  MFNN in-
version (red curve).

Figure 15. (a) Observed anomaly of  the  profile A cross-section, (b)
the depth estimates using the Euler method.
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the real gravity data profile show the best form for un-
derground deposit mass is the vertical cylinder shape,
as is located at a depth of  21.18 m. We have compared
MFNN with the Euler method. The Euler solutions
show a depth of  about 19 m for the anomaly source
with assuming a structural index of  1. Based on geo-
logical surveys done in the region under study, these
depths are expected. The successful application of
MFNN inversion to the synthetic and gravity field data
demonstrated the reliability and the validity of  this ap-
proach.
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