
1

ANNALS OF GEOPHYSICS, 62, 2, VO226, 2019; doi: 10.4401/ag-7745

“CRUST DEVELOPMENT INFERRED FROM NUMERICAL MODELS OF LAVA 
FLOW AND ITS SURFACE THERMAL MEASUREMENTS„ 
Igor Tsepelev1, Alik Ismail-Zadeh2,3,*, Yulia Starodubtseva1, Alexander Korotkii1,4, 

Oleg Melnik5 

(1) Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
(2) Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
(3) Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia
(4) Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
(5) Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia

1. INTRODUCTION

A flow of lava is a common volcanic feature on the
Earth’s surface. A lava flow can destroy villages or se−
riously damage cities as happened in and around 
Catania, Sicily, during the eruption of Etna volcano in 
1669 [Branca et al., 2013]. Although lavas have been 

used as a construction material for centuries and have 
been a source of nutrients in agriculture, lava flows 
remain a threat to human activity [Poland et al., 2016]. 
The hazard is not negligible as hot lava kills vegeta−
tion, destroys infrastructure, and may trigger floods 
due to melting of snow/ice [e.g., Harris, 2015]. Lava 
flow fields are widespread, e.g., the Permian−Triassic 
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ABSTRACT 
Propagation of a lava flow is governed by slope topography, magma rheology, heat exchange with the atmosphere and the underlying ter−

rain, and the rate of the eruption. Highly viscous crust is formed due to cooling and solidification of the uppermost layer of the flow. We 

consider here two numerical model problems for lava flows, both based on the fundamental physics of a hot fluid flow: a model problem, 

where thermal conditions (e.g. temperature and heat flow) at the lava surface are unknown a priori (a direct model problem), and a model 

problem, where the lava surface conditions are known and determined from observations (an inverse model problem). In both models, the 

lava viscosity depends on temperature and the volume fraction of crystals. By way of solving the direct model problem, we perform a para−

metric study of steady state lava flows to investigate the influence of the heat flux, viscosity, and effusion rate on the lava crust devel−

opment. Numerical experiments show that a lava crust becomes thicker in the case of the nonlinear heat transfer compared to the case of 

a linear heat flow at the interface of lava with the atmosphere. Also, the crust thickens at lower lava effusion rates, while higher rates re−

sult in a rapid lava advection, slower cooling, and development of a thinner crust. Moreover, a lava crust becomes thicker with a higher 

coefficient of conductive heat transfer, or a higher lava viscosity, or the growth of effective emissivity of the lava surface. By way of solv−

ing the inverse model problem, we use an assimilation technique (that is, a method for an optimal combination of a numerical model of 

lava flows with observations) to propagate the temperature and heat flow, inferred from measurements at the interface between lava and 

the atmosphere, into the lava flow interior and to analyse the evolving lava crust. Results of thermal data assimilation illustrate that the 

physical parameters of lava flows, including the thickness of it crust, can be recovered from measured surface thermal data well enough 

at least for slow effusion rates.  



Siberian and Cretaceous−Tertiary Deccan large ig−
neous provinces, the Quaternary Yellowstone rhyolitic 
lava flows or the Holocene lava flows in Iceland 
[Christiansen, 2001; Self et al., 2008; Bryan et al., 
2010; Pinton et al., 2018]. Several regions in the world 
are prone to lava flow hazard including in Hawaii/USA 
[Patrick et al., 2017], Iceland [Pedersen et al., 2018], 
Italy [Corsaro et al., 2009], Réunion/France [e.g., Sol−
dati et al., 2018], Kamchatka/Russia [Belousov and Be−
lousova, 2018], and some other regions of the active or 
historic effusive volcanism [e.g., Chevrelet al., 2016; 
Dietterich et al., 2018].  

Volcanic eruptions produce a variety of lava flows 
depending on the chemical composition and tempera−
ture of the erupting material, and the topography of the 
surface over which the lava flows [e.g., Griffiths, 2000; 
Rumpf et al., 2018]. Eruption (effusion) rates control 
lava flow dynamics: with higher effusion rates a lava 
flows the more rapidly and longer [Walker, 1973; Row−
land and Walker, 1990; Harris et al., 1998; Castruccio 
and Contreras, 2016]. The rapid development of 
ground−based thermal cameras, drones and satellite 
data allows collection of repeated thermal images of the 
surface of active lava flows during a single lava flow 
eruption [Calvari et al., 2005; Wright et al., 2010; 
Kelfoun and Vargas, 2015]. These data require devel−
opment of appropriate quantitative methods to link 
subsurface dynamics with surface observations and 
measurements. 

Numerical modelling plays an essential role in un−
derstanding lava flow patterns as well as their mor−
phology and thermal evolution [e.g., Costa and 
Macedonio, 2005; Cordonnier et al., 2015; and refer−
ences herein]. Numerical modelling of lava flows was 
advanced for the last few decades moving from one − 
(1D) to three−dimensional (3D) flows. Cordonnier et al., 
[2015] provided a recent overview of the volcanologi−
cal community’s codes for modelling of lava flow em−
placement. We highlight here only those codes which 
are related to deterministic models (the mathematical 
models defined by a set of governing equations and 
boundary/initial conditions) as they are related to the 
type of modelling we used in our study. The 1D chan−
nel lava flow code developed by Harris and Rowland 
[FLOWGO, 2001] is very fast to run as it does not cal−
culate dynamic properties of fluid flow; but its limita−
tion is that it does not consider vertical variations 
within a lava flow. Numerical codes for depth−average 
models of lava flow (using a shallow−water approach) 

were developed by Macedonio et al. [2005] and Kelfoun 
and Druitt [2005]; the codes provide rather fast compu−
tations, but their limitation is that the lava viscosity 
does not vary vertically. Smooth particle hydrodynam−
ics codes have been also employed in modelling of lava 
flows [e.g., Herault et al., 2011]. The codes use meshless 
numerical methods to calculate flow of individual par−
ticles, for which physical characteristics are specified. 
3D finite−volume or finite−element fluid−dynamics 
codes allow for studying lava flows on a complex to−
pography, using complex rheology, and various bound−
ary conditions, although they are slower compared to 
those mentioned earlier. Tsepelev et al. [2016] used the 
OpenFOAM toolbox (ver. 2.3.0, http://www.open−
foam.org) to develop a code for a 3D isothermal lava 
flow with crustal pieces in a channel and on a real to−
pography. Isothermal models of viscous flows have 
demonstrated how the lava generated by effusive vol−
canic eruptions would advance in the absence of cool−
ing, and these have been supplemented by more 
sophisticated models including complex rheology, cool−
ing, solidification, and dynamic interaction of lava and 
its crust [e.g., Griffiths, 2000; Costa and Macedonio, 
2005; Fujita and Nagai, 2015; Tsepelev et al., 2016].  

A mathematical model of lava flow can be described 
by a set of partial differential equations and boundary 
and initial conditions defined in a specific domain. A 
model links the causal characteristics of a lava flow 
(e.g., lava viscosity, thermal conditions at lava inter−
faces with the atmosphere and the terrain) with its ob−
served/measured properties (e.g., lava temperature and 
its flow rate). The aim of the direct model problem is to 
determine the properties of a lava flow based on the 
knowledge of its causes, and hence to find a solution to 
the mathematical problem for a given set of parameters 
and coefficients. An inverse model problem is consid−
ered when there is a lack of information on the causal 
characteristics but some information on lava flow prop−
erties exists. For example, a mathematical problem of 
determination of the thermal and dynamic characteris−
tics of lava flow from measurements of the absolute 
temperature on its upper surface belongs to a class of 
inverse problems [e.g., Kirsch, 1996; Kabanikhin, 2011], 
and hence, a small error in measured temperature at the 
lava surface can result in a significant deviation from 
the true solution of the problem (e.g. lava temperature). 
To solve the inverse problem, special techniques for data 
assimilation [e.g., a variational data assimilation; Is−
mail−Zadeh et al., 2016] should be employed to con−
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strain the unknown thermal condition at the lower 
boundary of the lava flow from observations at the lava 
surface [e.g., Korotkii et al., 2016]. The basic principle of 
this assimilation in the case of lava flows is to consider 
a thermal condition (temperature or heat flow) at the 
lava bottom (the interface between moving lava and the 
underlying terrain over which it flows) as a control 
variable and to find the optimal condition at the bot−
tom by minimizing the misfit between the measure−
ments at the lava interface with the atmosphere and the 
model solution at the same interface.  

To numerically model a lava flow, boundary condi−
tions should be known. Meanwhile the temperature or 
heat flux at the lava bottom is unknown as it is almost 
impossible to measure it. However, airborne and space 
measurements of temperature (heat flux) at the interface 
of lava flow with the atmosphere allow to determine 
thermal conditions at the lava bottom using data as−
similation. Once the boundary conditions at the lava 
bottom are determined, the lava flow can be modelled 
to estimate its extent, temperature and flow rate.  

In this paper, we develop two−dimensional numer−
ical models of steady−state lava flows to analyse the 
development of the lava crust depending on the heat 
flux into the atmosphere from the lava surface, the 
lava viscosity, its discharge rate, and the lava front 
propagation rate (Sections 2−4). We assimilate syn−
thetic thermal data (a model of thermal measurement 
at the lava interface with the atmosphere) into the lava 
interior to determine the unknown thermal condition 
at the lava bottom (Sections 5−8). We develop direct 
and inverse models of lava flows introducing the fol−
lowing complexities: (i) the lava viscosity depending 
on temperature and the volume fraction of crystals; 

(ii) nonlinear heat transfer mechanism at the surface of 
lava with the atmosphere, including the radiant and 
convective parts of the total heat flux; (iii) varying 
flow conditions at the lava surface; and (iv) lava flow 
on a real surface topography.  
 
 
2. THE DIRECT MODEL PROBLEM OF LAVA 

FLOW 
 
To state mathematically a problem of lava flow, we 

need to consider the following components of a model: 
computational domain (e.g. topography on which lava 
flows or slope of the inclined surface or channel as 
well as vent geometry); basic equations which govern 
the lava flow; the boundary condition on flow veloc−
ity (e.g., effusion rate, free−slip or no−slip or free sur−
face conditions); the boundary conditions on 
temperature (e.g., effusive temperature as well as ra−
diative, convective or conductive heat flow at the in−
terface with the atmosphere and with the land); and 
physical properties of the lava (that is, lava viscosity, 
density, thermal conductivity, rheology etc.). 

Here we present a mathematical statement of the 
direct problem of steady−state lava flow in model 
domain Ω ⊂ R2 (Figure 1). The model domain covers a 
part of lava flow at some distance from the volcanic vent 
and the lava flow front. The boundary of the model 
domain consists of the following parts: Г1 is a line seg−
ment connecting points A and E (xA = (x1

A, x2
A) = 

(0.0,1.5), xE = (x1
E, x2

E) = (0.0,2.5)); Г2 is a circular arc 
connecting points A and B (xB=(x1

B, x2
B) = (10.0,0.0)); 

Г3 is a line segment connecting points B and C  
(xC = (x1

C, x2
C) = (10.0,0.5)); and Г4 is a circular arc con−
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FIGURE 1. Model geometry.
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necting points C and E. All coordinates are in meters. 
Although the lava rheology can be more complicated, 
we assume that the lava behaves as a Newtonian fluid 
with a temperature− and volume−fraction−of−crystals−
dependent viscosity and temperature−dependent 
density and thermal conductivity. We note that crys−
tallisation is shown to be the primary process, which is 
responsible for the increase of the viscosity during 
emplacement of mafic lava flows [Chevrel et al., 2013]. 
The flow is described by the Navier−Stokes, continuity, 
and heat equations [e.g., Hidaka et al., 2005; Ismail−
Zadeh and Tackley, 2010]. Although a lava flow can be 
non−steady state depending on an effusion rate, for a 
simplicity of the mathematical problem’s description we 
assume a steady−state lava flow in the modelling [a 
justification to this assumption is provided by Korotkii 
et al., 2016]. In the case of viscous flows with the small 
Reynolds number (Re<1), the governing equations can 
be represented in the following form: 

 
,   (1) 

 
,                          (2) 

 
.         (3) 

 
Here x = (x1, x2) ∈ Ω are the Cartesian coordinates; 

u = (u1(x),u2(x)) is the vector velocity; p = p(x) is the 
pressure; T = T(x) is the temperature; η is the viscosity; 
r is the temperature−dependent density; k is the tem-
perature-dependent heat conductivity; g is the accele-
ration due to gravity; c* (= 1000 J kg-1K-1) is the spe-
cific heat capacity; e2 = (0,1) is the unit vector; ∇, T, and   
〈·,·〉 denote the gradient vector, the transposed matrix, 
and the scalar product of vectors, respectively.  

Lava viscosity depends on temperature, the volume 
fraction of crystals, water content and some other phy-
sical parameters [e.g., Dragoni, 1989; Giordano and Din-
gwell, 2003; Harris and Allen, 2008; Costa et al., 2009]. 
In this study, we consider two models of viscosity: a tem-
perature-dependent viscosity [Dragoni, 1989] 

 
,              (4) 

 

where n = 4 x 10-2 K-1, and Tm (= 1333 K) is the typi−
cal lava melting temperature; and a volume-fraction-
of-crystals−dependent viscosity [Marsh, 1981; Costa et 
al., 2009] 

,                 (5)

where 
 

,       (6) 
 

,  (7) 

 
,  (8) 

 
f is the volume fraction of crystals; f* (= 0.384) is the 
specific volume fraction of crystals; θ = (T-Ts)/(Tm-Ts), 

Ts (= 1053 K) is the solidus temperature; B (=2.5) is the 
Einstein coefficient’s theoretical value (it was experi−
mentally determined that the Einstein coefficient 
varies from 1.5 to 5; Jeffrey and Acrivos, 1976);  
δ = 13-γ, ξ = 2.0x10-4, γ = 7.701 [Lejeune and Richet, 
1995; Costa et al., 2009], θ1 = 0.5, b2 = 3/2 [Wright and 
Okamura, 1977], and b1 = √30 [Marsh, 1981]. 
Finally, we use in the modelling the following lava 
viscosity restricting its exponential growth with tem−
perature by the prescribed value η0 (Figure 2):  
 

 
(9) 

 
where η* (=106 Pa s) is the typical lava viscosity, and   
η0 takes values from 103 to 106 in the modelling. 

In addition to these equations, we consider the fol−
lowing relationships for the thermal conductivity 
and the density: 

 
 

,  (10) 
        , 

 
,      11) 

 
where, T = 1473 K; rm (= 2750 kg m-3) and rc (= 2950 

kg m-3) are the typical lava melt density and the typ−
ical crystal density corresponding to the crystals 
composed of 50% olivine and 50% plagioclase, re−
spectively. As the effective density of the lava crust with 
about 20% volume of vesicles is estimated to be about 
2200 kg m-3 [Kilburn, 2000], we introduce the term  
f(T)δr (where δr = 750 kg m-3) to reduce the density 
of the lava crust and to permit crustal pieces drifting 
with and not sinking into the lava.  

We consider the following conditions at the bound−
ary Γ = Γ1 U Γ2 U Γ3 U Γ4 of the model domain. The 
velocity u1 and the temperature T1 are prescribed at the 

~
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left boundary Γ1: 
 

,               (12) 
 

No slip condition and zero heat flux (no heat lost 
to the base via conduction) or temperature T2 are pre−
scribed at the lower boundary Γ2: 

 
,                  (13) 

 
where n is the outward unit normal vector at a point 
of the boundary. We assume at the right boundary Γ3: 

 
,           (14) 

 
where σ = η(∇u+∇uT) is the deviatoric stress tensor.  

At the interface of lava flow with the atmosphere 
(boundary Γ4), zero normal flow and free−slip tangential 
conditions are prescribed. Lava cooling in the atmos−
phere is the simultaneous action of radiation and ther−
mal convection. Although the lava emissivity is such 
that radiation is the main mechanism of heat flow dur−
ing the very first minutes of cooling, convection by the 
surrounding air becomes very important after just a few 
minutes [Neri, 1998]. A heat flow at the boundary Γ4  
(the lava surface) can be then either linear: 

 
           , 

(15) 
       , 

or nonlinear 
 

(16) 
         , 

 
where the first term in the right−hand side of Equa−
tion (16) is related to the radiant heat flow, and the sec−
ond term to the convective heat flow. Here Ta (= 300 K) 
is the air temperature; l

~
 is the conductive heat 

transfer coefficient; ς (=5.668108x10-8 W m-2 K-4) is the 
Stefan–Boltzmann constant; ε is the effective emissivity 
of the lava surface; l is the dimensional (W m−2 K−M) 

constant; and M (= 1 or 4/3 in this study) is the pow−
er−law exponent. In the dimensionless form the linear 
and nonlinear heat flow conditions can be represented as 
k〈∇T,n〉 = -Nu(T-1) and −k〈∇T,n〉 = a1 (T4 -1) + a2(T -1)M 
respectively, where Nu = l

~h / k* is the Nusselt number, 
a1 = hk*

-1T3
aςε, a2 = hk*

-1T1/3λ, k* = rmc*ĸ* is the typ−
ical heat conductivity, ĸ* (= 10-6 m2 s-1) is the typical 
heat diffusivity of lava as it is a very poor thermal con−
ductor, and h (= 2 m) is the typical lava thickness. 
The effective emissivity of the lava surface ε and the di−
mensional constant λ vary from 0.6 to 0.95 and from 1 
to 10, respectively [Neri, 1998; Harris et al., 1998].  
The problem (1)−(16) is transformed to a dimensionless 
form assuming that length, temperature, viscosity and 
heat conductivity are normalised by h, Ta, η*, and k*. 

 
 

3. SOLUTION METHOD 
 
To solve the problem (1)−(16), we use the numerical 

approach and code developed by Korotkii et al. [2016]. 
The OpenFOAM toolbox was used to develop a solver for 
this study. The finite volume method [e.g., Ismail−Zadeh 
and Tackley, 2010] is employed in the software to solve 
the numerical models on multiprocessor computers. The 
model domain Ω was discretized by about 104 polyhe−
dral finite volumes. The SIMPLE method [Patankar and 
Spalding, 1972] was used to determine velocity and 
pressure at a given temperature (the relaxation parame−
ters are chosen to be 0.7 and 0.3 for the velocity and 
pressure, respectively). The use of polyhedral finite vol−
umes has some advantages compared to hexahedral fi−
nite volumes employed earlier by Korotkii et al. [2016]; 
for example, it enhances the convergence rate of the 
SIMPLE method, in some cases by a factor of two. 

To implement the SIMPLE method, we employ the 
conjugate−gradient method [Ismail−Zadeh and Tackley, 

FIGURE 2. Dimensionless viscosity as a function of temperature. 
1: (dashed−dotted line) temperature−dependent vis−
cosity (η1, Equation 4); 2: (dashed line) crystal−vol−
ume−fraction−dependent viscosity (η2, Equation 5);  
3: (dotted line) combines viscosity (η1 · η2); and 4: (solid 
line) the viscosity used in the model (Equation 9).
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2010] to solve a set of linear algebraic equations (SLAE) 
with positive−definite and symmetric matrices, which 
are obtained after the discretization of the Stokes equa−
tion. All computations were performed using one CPU 
Intel Core i3 2.13 GHz with 4GB memory, OS Kubuntu 
14.4. In the case of the heat equation, SLAE were solved 
by the biconjugate gradient stabilized method [van der 
Vorst, 1992] with the pre−conditioner of incomplete 
LU−decomposition. The linear Gaussian scheme with a 
flow control was used to discretize the Laplace opera−
tor. To approximate the convective operator, we em−
ployed the total variation diminishing (TVD) method 
with the minmod limiter [Sweby, 1984; Ismail−Zadeh 
et al., 2007].  

The nonlinear condition for temperature (16) at the 
upper model boundary is solved the simple iteration 
method, and at each iteration m+1 of the SIMPLE 
method the following scheme is used: 

 
 

 
 

           .  
 
 

The descent step length 0 < γ < 1 is determined ex−
perimentally to provide the convergence to the iterative 
process. This iterative process is stopped when the tem−
perature, pressure and velocity residuals become less 
than 10-4. An average computational time for solution 
of the problem (1)−(16) was about 3 min for the chosen 
dimension of the discrete problem. 

 
 

4. RESULTS: EVOLVING LAVA CRUST 
 
In this section, we present the results of several 

parametric case studies to analyse the influence of the 
heat flux at the interface between the lava flow and the 
atmosphere, and of the effusion rate on the lava flow 
temperature, viscosity, velocity, and the thickness of the 
lava’s crust. The crust is defined in the numerical mod−
els as the area, where the lava viscosity is greater than  
η0/2. The parameters of the case study models are listed 
in Table 1, and η0=103.  

Numerical experiments have been performed for lin−
ear (Equation 15) and nonlinear (Equation 16) heat flow 
conditions at the lava surface with the atmosphere for 
different injection rates |u1| (hereinafter we assume that 

the injection rate is the rate at which lava enters into the 
model domain, and the injection rate is proportional to 
the effusion rate per unit area). It is shown (see Sup-
plementary Material S1, Figure S1) that in the case of 
the nonlinear heat flow, the lava cools down faster than 
in the case of linear heat flux, and hence the lava’s crust 
becomes thicker in the case of nonlinear heat flux. At 
higher injection rates, the lava is advected rapidly and 
hence cools slowly; whereas at lower rates, the crust 
becomes thicker (Figure 3a).  

The higher coefficient of the conductive heat 
transfer, the thicker the lava crust. When the injection 
rate is 0.023 m s-1 and the viscosity is 106 Pa s, a lava 
crust does not evolve at l

~
 =1 (Figure 3b); at higher l

~
, 

a thin crust (about 6 cm) starts to develop at a certain 
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FIGURE 3. Thickness of the lava crust with distance from the lava 
injection into the model domain depending on: (a) the 
injection rate |u1|, (b) conductive heat transfer l

~
,  and 

(c) the typical lava viscosity η*. See Table 1 for case 
studies m1.1−m3.4.
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distance from the place of a lava injection into the 
model domain (boundary Γ1). With the increase of the 
lava viscosity (Figure 3c), the crust becomes thicker, 
and it reaches about 60−70 cm in the centre of the 
model domain. We note that the lava flow viscosity 
varies by several orders of magnitude depending on 
its composition. The typical viscosity is about 102-103 

Pa s for basaltic lava flows, and increases up to 109-

1011 Pa s during emplacement of andesitic lava 
[Chevrel et al., 2016]. For all cases, the crust becomes 
thinner closer to the left model boundary because of 
a converging shape of the domain in the model. Tem−
perature at the lava surface with the atmosphere de−
creases with the increase in its effective emissivity 
and the power−law constant M, although the depen−
dence on M is weak (Figure 4). At higher effective 
emissivity, the lava crust thickens (Figure 5).  

We have also performed numerical experiments for 
linear and nonlinear heat flow conditions with vary−
ing slip conditions at the upper surface of the lava 
flow model, particularly, considering no−slip at the 
right part of the upper surface (a circular arc con−
necting points C and D in Figure 1, which is about 
1/5 of the model domain’s horizontal length). The no−
slip condition can model the case, when the front of 
lava flow covered by a crust prevents lava to flow. 
The results show that the crust beneath the no−slip 

area becomes much thicker than beneath the free−slip 
area at both linear and nonlinear heat flow at the 
cooling surface of lava flow (see Supplementary Ma-
terial S2, Figure S2).  
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FIGURE 4. Dimensionless temperature at the interface between 
lava and the atmosphere with distance from the lava 
injection depending on the effective emissivity (case 
studies m4.1−m4.3) and the power−law exponent M 
(case studies m4.4 − m4.6). See Table 1 for the case 
studies.

Model case |u1|, ms-1 η*, Pa s l
~

,  W m-2 K-1 l, W m-2 K-M M ε

m1.1 0.058 106 5.5 - - -

m1.2 (reference) 0.023 106 5.5 - - -

m1.3 0.012 106 5.5 - - -

m2.1 0.023 106 1.0 - - -

m2.3 0.023 106 10.0 - - -

m3.1 0.023 105 5.5 - - -

m3.3 0.023 107 5.5 - - 0

m3.4 0.023 108 5.5 - - -

m4.1 0.023 106 - 5.5 1 0

m4.2 0.023 106 - 5.5 1 0.6

m4.3 0.023 106 - 5.5 1 0.95

m4.4 0.023 106 - 5.5 4/3 0

m4.5 0.023 106 - 5.5 4/3 0.6

m4.6 0.023 106 - 5.5 4/3 0.95

TABLE 1. Model parameters for case studies



5. THE DATA ASSIMILATION (INVERSE) MODEL 
PROBLEM 
 
Here we study the problem of determining thermal 

and flow characteristics of the lava and the thickness 
of its crust from measurements of temperature and heat 
flow at the interface with the atmosphere. We modify 
Equations (1)−(3) applying the Boussinesq approxima−
tion [Boussinesq, 1903] to the equation by keeping the 
density constant everywhere except for the buoyancy 
term in the Stokes equation. In this approximation, the 
dimensionless Stokes, continuity, and heat equations 
take the form: 

 
 ,  (17) 

 
 ,                         (18) 

 
 ,            (19) 

 
where and the Rayleigh number is determined as 
Ra = α*grm ΔTh3η*

-1ĸ*
-1, α* (= 10−5 K−1) is the thermal 

expansivity; ΔT = Tm - Ts is the temperature contrast; 
ĸ(T) = k(T) / (rm c*) is the thermal diffusivity. The vis−
cosity η(T) and the thermal conductivity k(T) are de−
termined from Equations (9) and (10), respectively.  
We assume the following conditions for temperature 
and velocity at the model boundary: 

 
 ,                (20) 

 
 ,                       (21) 

 
 ,         (22) 

 
        (23) 

  .  
 
The principal problem is to find the solution to the 

problem (17)–(23), and hence to determine the velocity u 

= u(x), the pressure p = p(x), the temperature T = T(x), 
and hence the viscosity in the model domain Ω, when 
temperature T4 and heat flow φ are known at boundary   
(measured data). In this study measured data are obtained 
numerically by computing thermal heat flow and tem−
perature at boundary Γ4 (see Supplementary Material S3).  

In addition to the principal problem, we state an 
auxiliary problem to find the solution to Equations 
(17)–(19) with the following boundary conditions: 

 
 ,                    (24) 

 
 ,                     (25) 

 
 ,             (26) 

 
 . (27) 

 
The auxiliary problem is a direct problem compared 

to the problem (17)–(23), which is an inverse problem, 
because the thermal condition is overdetermined at Γ4 
and underdetermined at Γ2 .We note that the conditions 
at Γ1 and Γ3 are the same in the direct and inverse 
problems; temperature T2 is known at Γ2 and no heat 
flow is prescribed at Γ4 in the direct problem compared 
to the inverse problem.  

Consider “guess” temperature T2 = ξ at model 
boundary Γ2. Solving the auxiliary problem (17)–(19) 
and (24)–(27), we can determine the heat flow at model 
boundary Γ4 and compare it to the heat flow φ (the 
known synthetic data) at the same boundary. The fol−
lowing cost functional for admissible functions ξ de−
termined at T2 is to be then assessed: 

 
 

 ,           (28) 

 
where k(Tξ) ∂T ξ / ∂n is the heat flow at Γ4 correspond−
ing to temperature T2 = ξ at Γ2; and T ξ is the tempera−
ture determined by solving the auxiliary problem. 
Therefore, we reduce the inverse problem to a minimiza−
tion of the functional or to a variation of the function ξ 
at Γ2, so that, the model heat flow at Γ4 becomes closer 
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FIGURE 5. Thickness of the lava crust with distance from the lava 
injection depending on the effective emissivity and 
the power−law exponent M (case studies m4.1, m4.3, 
and m4.6). See Table 1 for the case studies.
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to the “observations” (known synthetic data) φ at Γ4. 
 
 

6. SOLUTION METHOD 
 
Following Korotkii et al. [2016], we minimize the 

cost functional (28) using the Polak−Ribière conju−
gate−gradient method [Polak and Ribière, 1969].  
The gradient of the cost functional 

 
 

 ,             (29) 
 
 

can be found as the solution (z, w, q) to the adjoint 
problem [see Appendix B in Korotkii et al., 2016] for 
the derivation of the adjoint problem): 

 
 ,  (30) 

 
 ,                        (31) 

 
 

            (32) 

 ,  
 

 ,                 (33) 
 

  ,                 (34) 
 

 ,          (35) 
 
 

(36) 
   ,  

 
where σ ≡ ∇w+∇wT; the square brackets [A, B]=∑ aij bij  
denote the convolution of two m × m matrices A = (aij)  
and B = (bij); and sign ʹ means the derivation. The so−
lution is a triplet (z, w, q) of quasi−temperature (z), 
quasi−velocity (w), and quasi−pressure q. The solution 
of the minimization problem is reduced to solutions of 
series of well−posed (direct and adjoint) problems. 

The algorithm for solving the data assimilation 
problem is based on solving iteratively the direct (aux−
iliary) and adjoint problems and on the assessment  
J(ξ (i)), where i is the iteration number [Korotkii et al., 
2016]. The numerical methods employed are described 
in sect. 3. An average computational time for 20 itera−

tions was about 150 min on a single node; this included 
the time required for minimization of the cost func−
tional by the conjugate gradient method, and the time 
to solve the auxiliary and adjoint problems. 

The performance of the algorithm is evaluated in 
terms of the number of iterations n required to 
achieve a prescribed relative reduction of the cost 
functional (Figure 6). The cost functional reaches a 
plateau after about 15 iterations. This behaviour is 
likely associated with errors in the model solution (see 
Section 8 for more detail). The quality of the gradient 
of the cost functional with respect to the control vari−
able have been verified using the χ −test by Navon et 
al. [1992] (see Supplementary Material S4).  
 

 
 

7. RESULTS OF THE ASSIMILATION  
 
In this section, two models of lava advancing 

down the slope on different topographic surfaces are 
analysed. The following values of the model param−
eters are used h = 2 m, λ =5.5 W m-2 K-1, Ta = 300 K, 

ε = 0.95, ĸ* = 10-6 m2 S-1, η* = 106 Pa s, and η0 = 1000. 
Initially we consider the model geometry presented 

in Figure 1. At Γ1 we prescribe the temperature T1(x1, x2) 

= 1320 K and the velocity u1(x2) = ϑ1U(x2)n1, 
x2 ∈ [x2

A, x2
E  ], where n1=(√2/2, -√2/2), ϑ1 is a constant, 

and U(x2) is the parabola passing through the 
following three points: U(x2

E  ) = 1, U(x2
A  ) = 0,  

and U(0.5(x2
A  + x2

E )) = 0.725. The cost functional is 
reduced to about 10−5 after about 15 iterations (Fig−
ure 6). The number of iterations to get a given accu−
racy in reduction of the cost functional depends on 
the initial “guess” temperature at Γ2. The closer the 
guess temperature is to the target temperature, the 
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FIGURE 6. Relative reduction of the cost functional J with the 
number of iterations at three dimensionless rates of 
lava injection: ϑ = 10 (solid line), ϑ = 20 (dotted line), 
and ϑ = 40 (dashed line). 
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fewer the number of iterations is needed. The target 
temperature at Γ2 is obtained from the solution of the 
direct problem (1)−(16). 

Figure 7 presents the target lava temperature, flow 
velocity, and viscosity as well as the residuals for vary−
ing rates of the lava injection at the left boundary of the 
model domain. Here a residual is defined as the difference 
between the target physical parameter (e.g., temperature, 
velocity, or viscosity) and that obtained by the optimiza−
tion (inverse) model. The results of this modelling show 
that at smaller rates of lava injection the residuals be−
come small after 18 iterations within the almost entire 
model domain. At lower injection rates, the temperature, 
viscosity and velocity of a lava flow are well determined 
from the known thermal data on its surface with the at−
mosphere (Figure 7a, b). Because of the topography over 
which the lava flows in the model case study, the crust 
thickens with the flow, reaches its maximal value in the 
middle of the channel, and diminishes toward the chan−

nel’s end (the boundary Γ3). At higher rates, the recov−
ery of the physical parameters worsens (Figure 7c, d); it 
can be explained by an advection−dominated lava flow 
with of a thin crust development (see Figure S1a), when 
the temperature of the lava flow approaches the temper−
ature of the injected lava, and the thermal surface data 
are not properly assimilated into the lava flow. 

We consider a lava flow on an artificial volcanic to−
pography in the second case study (Figure 8a). The lava 
flow from a vent on the topography has been modelled 
in a three−dimensional rectangular domain by Tsepelev 
et al. [2016]. As the optimization model is assumed to be 
in a steady state (that is, physical parameters of the model 
do not change with time), we select a portion of the lava 
flow on a two−dimensional profile along the lava flow; 
the profile is presented in the lower panel and its loca−
tion in the upper panel of Figure 8a, where the selected 
portion of the lava (the model domain) is marked by red.  

In the model the lava thickness at the left and right 
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FIGURE 7. Reconstruction of dimensionless viscosity, temperature, and velocity of lava flow in the model domain Ω. (a) and (c):  
Target functions at dimensionless injection rates ϑ = 10 and ϑ = 40, respectively; (b) and (d): the relevant residuals after 
the 1st iteration (the central panels) and several iterations (the right panels).
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sides are 14 m and 31 m, respectively, and the length of 
the model lava flow is 515 m. A lava is injected from the 
left boundary of the model domain. We solve the opti−
mization problem in the selected domain to determine 
the lava’s viscosity, temperature, and flow rate based on 
the known thermal data on its surface with the atmo−
sphere. Figure 8b presents the target viscosity, tempera−
ture and flow rate, and Figure 8c their residuals. We see 
that after about 30 iterations the lava’s physical param−
eters are recovered well enough from the surface thermal 
data. In this case study, a thin crust developing at the left 
end of the model domain becomes thicker toward its right 
end, and the flow velocity drops by a factor of about 3 
with the lava advancement.  

 
 

8. DISCUSSION 
 
Under relatively steady eruption conditions, a vis−

cous lava flow cools at the interface with the atmo−

sphere and develops a crust. A nonlinear heat flow at 
the interface, lava cooling, and crystallization of the 
uppermost layer of the moving melt results in the crust 
insulating the lava flow interior. The crust preserves the 
lava against rapid cooling and permits the lava flow to 
extend to substantial distances. If the lava supply ceases 
and the interior of the lava flow cools (so called “vol−
ume−limited” flow regime) or a lava flow cools to such 
a degree that it can no longer moves even at a contin−
uous slow supply of lava (“cooling−limited” flow 
regime), the lava will stop its further advance [Harris et 
al., 2007; Harris and Rowland, 2009; Rhéty et al., 2017]. 

In this paper, by solving direct problems we have 
studied how the lava crust forms at different conditions, 
namely, the changing effusion rates, and various pa−
rameters of nonlinear heat flow and lava viscosity. Nu−
merical experiments show that lava cools faster and its 
crust becomes thicker in the case of the nonlinear heat 
flow compared to the case of linear heat flow at the in−
terface between lava and the atmosphere. At lower ef−
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FIGURE 8. Reconstruction of dimensionless viscosity, temperature, and velocity of lava flow on a synthetic topography. (a): A relief 
map (6000 m × 4000 m) of three−dimensional lava flow pattern, view from the top (upper panel) and the cross−section 
AB (lower panel) along the line indicated in the upper panel; the flow was computed by Tsepelev et al. [2016]; the red 
area marks the model domain in the inverse problem; (b): Target functions at dimensionless rates of lava injection ϑ = 10; 
(c): the relevant residuals after the 1st iteration (the left panel) and after 31st iteration (the right panel).
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fusion rates of lava into the channel (the model do−
main), cooling leads to development of a thick crust; 
the higher rates result in rapid lava advection and in a 
delay of a thick crustal formation . It has been also 
shown that a lava crust becomes thicker with either a 
higher coefficient of conductive heat transfer or higher 
lava viscosity. At a higher lava viscosity the flow be−
comes slower, the lava cools and the crust develops 
more efficiently than in the case of a rapid lava flow 
due to its lower viscosity. Temperature at the lava sur−
face with the atmosphere decreases and the lava crust 
thickens with the increasing its effective emissivity. If 
the front of lava flow covered by a crust prevents lava 
to flow easily, numerical experiments illustrate that the 
lava crust beneath the immobile region (the stuck area 
at the front of lava flow) becomes much thicker.  

If direct problems present models dealing mostly 
with understanding of phenomena, inverse models are 
related to finding either initial conditions or boundary 
conditions or model parameters based on geological, 
geophysical, geodetic and geochemical observations 
and measurements. Inverse problems in geodynamical 
models are mostly related to optimization of residuals 
between observed data and those obtained from rele−
vant mathematical models.  

Earth orbiting radiometers can measure spectral ra−
diance at a lava surface to be converted into thermal 
anomalies; lava temperature and heat flow can be then 
inferred from the detected anomalies. Results of nu−
merical modelling illustrate that the lava’s physical pa−
rameters, including the lava crust thickness, can be 
recovered from the surface thermal (known/measured) 
data well enough after a few dozens of iterations be−
tween the adjoint and auxiliary problems. However, a 
spatial resolution of many satellites is coarse enough to 
not allow for high−resolution monitoring and precise 
measurements, and this gives a rise to uncertainties in 
thermal measurement as well as in the inferred param−
eters [e.g. Zakšek et al., 2015]. Hence, if the measured 
temperature and heat flow data are biased, this infor−
mation can be improperly assimilated into the lava flow 
models. And vice versa, if surface temperature and heat 
flow data are of high resolution and radiometric accu−
racy, the temperature and velocity in the lava’s interior 
can be determined properly from measured data using 
the data assimilation approach. The data assimilation 
approach becomes be important in studies of natural 
lava flows, especially in the cases of thick lava flow. 
Synthetic Aperture Radar (SAR) satellite observations 

on lava thickness, volume, and flow extent [e.g., 
Kubanek et al., 2015], together with thermal measure−
ment at the lava surface, could facilitate research and 
data−driven modelling of lava flow.  

The studied models describe steady−state flow, al−
though lava flows are non−stationary. Meanwhile, as 
measurements on absolute temperature are discrete in 
time in most cases (e.g., depending on the location of 
Landsat satellites), a problem of non−steady state flow 
can be reduced to a series of steady−state flow problems 
with varying model domain and boundary conditions 
assimilating thermal data available at the discrete−in−
time measurements. Also, airborne and space measure−
ments of absolute temperature at the lava interface with 
the atmosphere, being almost instantaneous compared 
to the duration of the lava flow, allow searching for 
thermal conditions at the bottom of the lava flow using 
the cost functional (28). Once the boundary conditions 
at the lava bottom are determined, the steady−state 
problem can be replaced by a non−steady state problem, 
and the lava flow can be modelled forward in time to 
determine its extent, lava’s temperature and flow rate as 
well as backward in time using variational [Korotkii et 
al., 2016] or quasi−reversibility [Ismail−Zadeh et al., 
2007] methods to search for the initial temperature of 
the lava flow and for the evolution of the effusion rate.  

 
8.1 DATA ASSIMILATION LIMITATIONS 
The mathematical problem (17) − (23) does not 

possess the stability property of its solution [Korotkii 
and Kovtunov, 2011]. This means that if the problem 
is solved numerically, small errors in measured input 
data, e.g., the absolute temperature estimated from 
remote sensors measurements of thermal (electro−
magnetic) radiation, and in the inferred heat flow at 
the interface of lava with the atmosphere, as well as 
computational errors, can result in significant errors 
in determination of temperature, viscosity, and flow 
velocity.  

Therefore, to solve the problem special numerical 
methods should be employed. Particularly, the prob−
lem (17)−(23) is replaced by the optimization of the 
cost functional (28) which, in its turn, lead to the so−
lution of the coupled auxiliary (17)−(19), (24)−(27) 
and adjoint (30)−(36) problems to find the gradient 
(29) of the cost functional. The Polak−Ribière stable 
iterative conjugate gradient method was used to min−
imize the optimization problem. However, the itera−
tive method provides the rapid and accurate solution 
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to the adjoint and auxiliary problems only when the 
following condition is satisfied [Korotkii and Kov−
tunov, 2011]: 

 
 

 , (37) 
 
 

where C1 and C2 are positive constants. An iterative 
convergence slows at high Rayleigh numbers, and the 
iterations diverge at the Rayleigh numbers greater than 
106. As the injection rate of lava into the model do−
main increases, the minimization process slows down 
(Figure 6). A rapid injection results in advection of high 
temperature with flow and, hence, in a decrease of lava 
viscosity, and in slowing convergence of iterations and 
their divergence.  

 
8.2 UNCERTAINTIES AND MEASUREMENT ERRORS 
The results of numerical modelling of the problem 

(17)−(23) show that the optimization works effec−
tively: the temperature, viscosity and velocity resid−
uals are very small already after a few dozens of 
iterations within the almost entire model domain. 
Normally any measurements (observations) are pol−
luted by errors; for example, in the case of lava tem−
perature measurements at the surface, the accuracy of 
the calibration curve of remote sensors and the noise 
of the sensors can influence measurements and con−
tribute to the measurement errors [Short and Stuart, 
1983]. Korotkii et al. [2016] performed numerical ex−
periments introducing a noise on the “measured” heat 
flow data φδ(·) = φ(·) + δχ(·) and analysed the sensi−
tivity of the model to the noise. Here, δ is the magni−
tude of the noise, and χ(·) is the function generating 
numbers that are uniformly distributed over the in−
terval [−1, 1]. They showed that the temperature and 
velocity residuals get larger with increase of the noise 
of the input data, but are still acceptable at the level 
of noise (or errors in measurements) of up to 10%. It 
should be noted that the error analysis of subpixel 
temperature retrieval from satellite infrared data 
showed that errors in measurements of the radiant 
heat flux are within about 5% to 10%, and can be re−
duced [Lombardo et al., 2012].  

In general, the cost functional related to the inverse 
(optimization) problem with noisy measurements at the 
surface of the lava flow with the atmosphere can be 
written in the following form: 

 

(38)  
      . 

 
 
Substituting the solution ξ* to Equation (28) into 

Equation (38), we obtain Jδ(ξ*) ∼ δ2, because the first 
and second terms of the right hand−side of Equation 
(38) turn to zero at ξ*. Therefore, at the minimization of 
the functional Jδ, the functional will be approaching the 
non−vanishing value equal to the square of the noise’s 
magnitude (δ2). In the case of synthetic thermal data 
prescribed at the upper model boundary (instead of real 
measurements), the ‘plateau’ in the curve illustrating the 
minimization of the functional (Figure 6) is likely to be 
associated with numerical errors. Forcing the solution to 
the functional to attain zero may lead to an unstable 
(or erroneous) solution. Moreover, some a priory infor−
mation assists in solving the problem. For example, the 
temperature inside the model domain cannot be higher 
than that at the left boundary of the model domain 
(where the lava is injected into the model domain). This 
can serve as a control parameter for the computed tem−
perature in the minimization problem. 

Rather accurate reconstructions of the model temper−
ature, viscosity, and flow velocity in this study rely on the 
chosen method for minimization of the cost functional 
(28). In the general case, a Tikhonov regularization term 
should be introduced in the cost functional as: 

 
 

(39) 

      ,    
 

where α is a small positive regularization parameter, 
ᴧ > 0 is the operator accounting for a priori informa−
tion on the problem’s solution (e.g., its monotony prop−
erty, maximum and minimum values, and the total 
variation diminishing), and ξ0 is a priori known func−
tion close to the solution of the problem. The introduc−
tion of the regularization term in the cost functional 
makes the minimization problem more stable and less 
dependent on measurement errors. For a suitable regu−
larization parameter α = α(δ), the minimum of the reg−
ularized cost functional will tend to the minimum of 
the functional (28) at δ → 0 [Tikhonov and Arsenin, 
1977]. The choice of the regularization parameter is a 
challenging issue as it depends on several factors, e.g., 
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on errors of measured data [e.g., Kabanikhin, 2011]. 
Meanwhile, if there is a lack of the information on the 
solution of the problem, the better strategy is to mini−
mize the functional (28) using a stable minimization 
method (e.g., the Polak−Ribière method).  

 
 

9. CONCLUDING REMARKS 
 
Understanding the mechanisms influencing cooling 

and solidification of lava is essential in forecasting the 
lava flow advance. Numerical experiments of lava flows 
at different conditions, presented in this paper, provide 
an insight into lava cooling and its crust development 
and assist in bridging the gap to application for natu−
ral lava flows. If the temperature and heat flow at the 
interface of lava with the atmosphere are of high reso−
lution and radiometric accuracy, the temperature and 
velocity in the lava’s interior can be determined prop−
erly from the measured data. Modelling of direct and 
inverse problems provides a knowledge of the thermal 
and dynamic characteristics of lava flow, and it be−
comes important for lava flow hazard and disaster risk 
assessments [e.g., Wadge et al., 1994; Harris, 2015; Cut−
ter et al., 2015]. 
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