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1. INTRODUCTION

The comparison of geo-spatial maps of data is use-
ful in several research fields. In particular it is increas-
ingly used in the environmental field and in numerous
Earth science sectors. If the maps represent measure-
ments of the same variable made at the same sampling
locations then a map of simple arithmetic difference be-
tween the respective values is sufficient. The compari-
son becomes more complex when there are more than
two variables with different measurement units and the
sampling sites are different. 
The representation of spatial data was born during the

late 1960s [Coppock and Rhind, 1991] but only 25 years
later the main principles and concepts were fully sum-
marized in the reference work of Burrough and McDon-
nell [1998]. Burrough and McDonnell [1998] describe the
spatial modelling of discrete and continuous data using
the vector and raster representation and applying the
main analysis of map algebra. The authors mention also

geostatistics as an appropriate tool to treat spatial data
in the environmental field. Geostatistical techniques
were developed to estimate changes in ore grade within
a mine using discrete observations at specific locations,
along with the associated errors in the estimates [Math-
eron, 1963; 1965]. Since the works of Matheron, geo-
statistics has evolved but has always remained faithful
to the notion of regionalized variable that has spatial con-
tinuity from point to point, unlike random variable, but
whose changes are not fully describable by a determin-
istic function. This approach uses discrete observations
at specific locations to derive a variogram, which repre-
sents the spatial rate of change of the variable, which is
then used to estimate values of the variable for the en-
tire area of interest. The estimation procedure is called
kriging, after Krige [1966], also a pioneering work in the
application of geostatistical techniques to estimate
changes in ore grade within a mine. 
In the 1970s and 1980s, practitioners had to write

their own code for geospatial analysis, but in the last 30

Article history
Receveid June 15, 2018; accepted September 19, 2018.
Subject classification:
Numerical code; Map similarity; Spatial correspondence; Python web application; Open source code.

ABSTRACT
We present here a simple web application, PeakLocator 1.0 (hereafter referred to as PL1.0), for the analysis of gridded geo-located maps.

In the present version of the code, the maps can contain up to 10 different variables with different units, not necessarily measured at the

same locations, as well as the same variable recurrently measured in the time. The aim of PL1.0 is to identify regions where values lie out-

side the standard deviation from average values. The degree of spatial correspondence between these regions is reflected in the “fitting in-

dex” associated to the overlapping area. Here we demonstrate some possible applications of PL1.0 using published datasets, although its

potential applicability extends to wide range of topics where the common demand is the comparison of two or more variables mapped

over a common area or over areas partially overlapping. PL1.0 is freely accessible through a web interface and runs on any platform.



years powerful software has become widely and cheaply
available in the public domain. At the present, such
analysis can be done using Statistic or MATLAB or with
GIS (Geographic Information System) platforms such as
ESRI, GRASS, QGIS. These GIS platforms are able to
process discrete or continuous data by using geo-coded
vector or raster formats. They provide dedicated tools
for making comparisons between variables by using
mainly map algebra analyses on grid/matrix formats.
In order to compare different variables measured in

a common area without using GIS platforms or complex
software, we developed a very simple web tool in
Python, called PeakLocator 1.0 (PL1.0 hereafter). It com-
pares maps of n variables (up to 10 in the present ver-
sion of the code) that have the same or different mea-
surement units, measured in overlapping domains but
not necessarily taken at the same locations. The code is
then able to highlight regions where the variables are
positively or negatively different from average values by
some pre-determined thresholds. Alternatively, PL1.0
can query maps related to the same variable recurrently
measured in the time (up to 10 times) in an effort to un-
derstand if area(s) characterized by unusual values are
stable or variable in time. In addition, a quality param-
eter, named ‘the fitting index’, is computed to quantify
the degree of spatial overlapping for the different maps.
The advantages of PL1.0 are: 1) it is applicable to grid-
ded datasets with variable sampling density and differ-
ent measurement units; 2) it allows simultaneous con-
sideration of n variables in order to identify regions of
the domain where two or more variables are positively
or negatively correlated; 3) it allows selection of the
threshold for identifying unusual values, 1, 2 or 3 stan-
dard deviations above or below the mean for each vari-
able; 4) it allows quantification of the spatial area over
which two or more variables are correlated in relation
to the whole domain; and 5) it produces gridded outputs
which are readable by most contouring and mapping
software and GIS tools. The only necessary require-
ment is that the observations must fall in a common area
or in two or more areas partially overlapping, obviously
with a higher significance of the analysis the larger is
the common portion and the density of observations.
Moreover, since the code is designed to work with grid-
based data only, the sparse measurements should be in-
filled in a gridded pattern to cover the entire domain
through a gridding procedure. This step cannot be per-
formed directly by PL1.0, other tools can be used to in-
terpolate the values at not sampled locations to create
suitable maps to compare. 
In the cases presented here, variables were infilled us-

ing the sequential Gaussian simulation approach (sGs,

Deutsch and Journel, 1998), also described in Cardellini
et al., [2003]. Variables at each not sampled location
were infilled by a random sampling of a Gaussian con-
ditional cumulative distribution function defined on
the basis of original data (conditioning) and previously
simulated data within its neighbourhood (sequentiality).
Also, while kriging provides the variance of each local
estimate, differences among many sGs realizations can
be used as a quantitative measure of the associated
spatial uncertainty [Deutsch and Journel, 1998;
Goovaerts, 2001; Cardellini et al., 2003].
The format and the description of input and output

files are described in Appendix A.

2. CODE DESCRIPTION

The main function of PL1.0 is to find common areas
of negative or positive extreme values between two or
more maps. This goal is obtained through several steps
described here and sketched in Figure 1.

Step 1. All the N maps are cropped over a common
frame, given by the intersection of the domains, and in-
terpolated on the same grid points (repositioning). For
this purpose, a nearest neighbor interpolation is used, in
order to avoid the creation of artificial values and to
keep the areas with no values that could be present in
the original maps.

Step 2. Each map is nondimensionalized and scaled
in order to overcome the problem of the different units.
In this phase, the average value μi and the standard de-
viation si are computed over the common frame for
each variable Yi (where i=1,…, n). Then, each variable is
centered with respect to its average value and divided
by its standard deviation:

(1)

The new variable Si will represent the number of
(non-dimensional) standard deviations above or below
the mean. We remark that, when μi and si are known,
the original value Yi can be recovered from the nor-
malized value Si. 

Step 3. The regions of extreme values Ai,α, corre-
sponding to areas where Si exceeds (positively or neg-
atively) a user-determined multiple of the standard de-
viation (“exceeding coefficient” αi), are defined as:

(2)

These regions define a masking of the original maps.
It is important to note that the exceeding coefficients
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can have different values for the different maps; in this
way, it is possible, for example, to search for the corre-
lation between a higher value region of the first map
with a lower value region of the second map
(α1 > α2). 
Then, the area Ᾱ is defined by the intersection of re-

gions of extreme values of individual maps as:

(3)

Finally, in order to quantify how well the extreme
value regions overlap, a fitting index is defined as the
ratio of the intersection of all the regions divided by the
union, following Jaccard [1901]:

(4)

The closer the fitting index is to 1, the larger is the
similarity of the extreme value regions of the different
variables, meaning that the common area Ᾱ well repre-
sents the regions of extreme values of all the maps. 
In order to visualize the values of the maps in the

common region, a new map is defined, with the value
γ defined for each pixel in the common area:

(5)

This means that if a pixel in the resultant map has

a certain value, for example 2, in that pixel all the con-
sidered variables have values exceeding (positively or
negatively according to the sign of αi) the respective
mean value μi by at least 2 standard deviations si. 
PL1.0 can be run as a web tool at the website

http://peaklocator.pi.ingv.it and the source code can be
downloaded from https://github.com/demichie/Peak-
Locator.

3. APPLICATIONS

We propose and briefly discuss hereafter some ap-
plications of PL1.0, suggesting some possible practi-
cal benefits, using published datasets that were the
subject of previous scientific papers. 

3.1 CASE 1 | FINDING DIRECT CORRELATION BETWEEN
HIGHER VALUE AREAS

The goal of this application is the identification of
common areas where the values of the considered
variables are at least one standard deviation above
the respective averages. The maps to be compared can
have the same or different units and the same or dif-
ferent sampling density.
Possible practical benefits are: i) find the persistence

in time of areas of extreme values or assess their spa-
tial migration; ii) select a best site to install a monitor-
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FIGURE 1. Schematic representation of the PL1.0 procedure considering the maps of the variable 1 and 2, whose areas of extreme
values are A1,1 and A2,1, obtained setting α1=α2=1. We remark that, in the insert representing the output, the bounded grey
area represents the region where the values of both the variables exceed the mean value by at least 1 standard deviation.
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ing station; iii) find the spatial correspondence among
higher values of two variables or iv) more than two
variables. 
i) As a first example of the usage of PL1.0, we in-

vestigated the persistence or the spatial shift of areas
characterized by higher values of the soil CO2 flux in-
side the crater of Solfatara (Campi Flegrei, Italy). In this
area, CO2 diffuse degassing from the soil has been mon-
itored since January 1998 by periodic CO2 flux mea-
surements over an array of fixed stations covering an

area of ~125.000 m2 in the flat floor of the crater (Fig-
ure 2a). With time, the array has become gradually
more dense by increasing the number of fixed stations
from 30 to 71 [Granieri et al., 2010], without significant
enlargement of the investigated area. For this applica-
tion, we used the dataset of measurements over the
primary 30-point array that was repeated during 157
campaigns from January 1998 to September 2007. The
average value of each campaign is reported in Figure 2b.
Owing to the different frequency of sampling (weekly in
1998 and then almost monthly in the following years),
the campaigns are irregularly spaced in the time
[Granieri et al., 2010].
We ordered the campaigns in chronological order

from 1 to 157 (the numbers at the top of the graph of
Figure 2b are referred to some of these campaigns) and
10 of these were randomly selected as training data
through a procedure of generating random numbers in
the appropriate interval (1-157), with the condition that
any duplication is avoided. The 10 maps that came up
(10, 34, 46, 63, 72, 96, 105, 123, 143, 149, indicated by
red dots in Figure 2b) were processed through PL1.0 and
the overall result, in terms of pixels exceeding by at least
one standard deviation the mean value (αi=1 for all the
maps), is shown in Figure 3. We remark again that the
plotted value is the minimum among the normalized
values of all the maps.
Although the campaigns, randomly selected, are

characterized by different average values (cfr. Figure 2b),
one main common area of high values is the fumarole
area of SOL1 and STUFE (zone 1 in Figure 3), located at
the intersection of the NW-SE and NE-SW main fault

FIGURE 2. a) Array of 30 fixed points inside the crater of Solfatara to monitor the soil CO2 emission. Fumaroles are also shown;
the Fangaia is a mud pool; b) Variation of the soil CO2 flux in the 1998-2007 period over the 30-point array (average
values of 157 campaigns). Red points refer to 10 campaigns randomly extracted to be considered in the application of
PL1.0. 

FIGURE 3. Areas of highest values resulting from 10 randomly
selected campaigns after the application of PL1.0.
The main tectonic structures come from Isaia et al.,
[2015].
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systems of the Solfatara crater [Isaia et al., 2015], and a
less extended area of high values is in the center of the
crater (zone 2), near to the Fangaia mud pool. We ob-
serve that for this test the fitting index is quite low
(Iα ~0.028), expressing the fact that the resulting com-
mon area (1653 m2) represents only a small portion (ap-
proximatively 3%) of the area where all maps exceeded
the respective average values by one standard deviation.
Although of limited size, the persistence through time of
these areas displaying significant CO2 emission, could
suggest a better connection between the surface and the
feeding hydrothermal system of Solfatara than sur-
rounding zones. 
ii) We used another test bed to demonstrate PL1.0 as

a tool for selecting optimal sites for automated contin-
uous sampling stations, starting from a limited number
of explorative field surveys. In the case presented here,
we investigated the CO2 flux from the soil at La Fossa
crater of Vulcano (Aeolian Archipelago, Italy). CO2 soil
flux is monitored here by periodic field surveys over a
discrete number of sample locations and continuously

through automated stations [Inguaggiato et al., 2018]. A
similar combined approach is applied in different vol-
canoes worldwide [Granieri et al., 2003], e.g., at Campi
Flegrei, Vesuvio, Etna, Stromboli, Vulcano (Italy),
Masaya (Nicaragua), Poa's (Costa Rica), La Palma (Ca-
nary Islands, Spain), San Salvador, San Miguel, San Vin-
cente and Santa Ana (El Salvador), Usu (Japan), Mam-
moth Mountain (California, USA). Some of these
experiences have fallen short due to non-ideal choices
of automated measurement sites. In fact, if the purpose
of the observation is to monitor deeper volcanic pro-
cesses and changes in the levels of volcanic activity in
real time, the device must be placed in a sector of the
crater where the degassed CO2 is derived from the hy-
drothermal/magmatic system, as mainly supported by
measured fluxes orders of magnitude higher than the
values of the local biological CO2 background (typically
around 20-50 gm-2d-1 for volcanic soils, Chiodini et al.
2008, Granieri et al. 2003). Furthermore, the station
needs to be in a location not too exposed to volcanic
gases, generally acidic and with detrimental impacts on

FIGURE 4.Maps of 4 soil CO2 flux campaigns at the crater of La Fossa (Vulcano island), modified from Granieri et al., [2006].
Dashed rectangle encompasses the area zoomed in Figure 5. 



measuring sensors and electronics, and easily accessi-
ble to operators for maintenance. 
Since the last eruption of 1888-1890, the crater of

Vulcano showed an intensive and persistent degassing
activity, with periods of enhanced degassing involving
both the fumaroles and the soil [Granieri et al., 2006,
2014, Paonita et al., 2013]. As reported in Granieri et
al. [2014], a CO2 output of 216 (± 83) tons per day (td

-

1) represents the “background” soil CO2 emission from
the crater in the present quiescent stage of the volcano
whereas higher CO2 emissions were recorded in De-
cember 2004 and December 2005, with CO2 emission
rates of 700 td-1 and 1600 td-1, respectively [Granieri
et al., 2014]. These values were estimated on the basis
of fifteen field surveys performed during the period
from 1995 to 2010, each of them based on a different
number of samples, taken at different locations ap-
proximately over the same crater area of ~1 km2

through the “accumulation chamber” portable device
[Granieri et al., 2014]. 

We started from 4 maps of soil CO2 flux from April
1995, July 1998, December 2004, and December 2005 at
La Fossa crater of Vulcano and reported in Granieri et
al., [2014]. They are indicative of the mean CO2 output
(266 td-1 in April 1995), low CO2 output (162 td

-1 in July
1998), high CO2 output (700 td

-1 in December 2004), and
very high CO2 output (1600 td

-1 in December 2005).
These maps, derived through the sGs approach
[Cardellini et al., 2003], are shown in Figure 4. 
First, PL1.0 was applied to pairs of maps, following

a temporal order in their coupling, and then the code
was applied to all four maps combined. 
Results from the comparison of pairs of maps (Fig-

ure 5a,b,c) highlighted that regions exceeding the mean
values by 1 standard deviation are always contained
within the present crater rim (crater A) or in a restricted
sector outside to the crater rim, along the NE edge (en-
compassed by the crater A and the paleo-crater B). The
combined map of all four surveys confirmed the exis-
tence of two common highest-emission areas (a1 and a2
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FIGURE 5. Common areas of higher soil CO2 flux considering pairs of campaigns (a, b, c) and all 4 campaigns (d). The rims of the
present-day crater (A) and of paleo-craters that were active in different times are indicated (B-Pietre Cotte; C-Palizzi and
Commenda; D-Unidentified; E-Punte Nere, from Frazzetta and La Volpe [1991]). In d) common areas are indicated by
dashed ellipses (a1 and a2) and the position of the automated station (VSCS) operative since 2007 by a yellow box.



in Figure 5d, for a total surface of 3458 m2), represent-
ing cumulatively about 2% of the total area (Iα ~ 0.02),
where all maps exceed the respective mean values by at
least 1 standard deviation. The low value of the fitting
index likely results from the appearance of new higher
values in the southern sector of the crater after the first
period of observation. Although a1 and a2 areas are
both formally suitable (Figure 5) for the placement of an
automatic station, other considerations concerning the
safe distance to preserve sensors and electronics of the
station and a more comfortable position for mainte-
nance might encourage the operator to select the area
a1 as the most appropriate. In reality, an automated sta-
tion to monitor the soil diffuse CO2 degassing at the
summit of La Fossa cone (VSCS station, Figure 5) is lo-
cated in a site near to a1 area since September 2007 [In-
guaggiato et al., 2018].
iii) Starting from different levels of soil CO2 diffuse

degassing recently measured at the crater of Vulcano
(from 162 td-1 in July 1998 to 1600 td-1 in December
2005), we performed a further test of PL1.0 in an attempt

to identify common regions of the domain where air CO2
concentrations, whose levels are mainly due to the vol-
canic source [Granieri et al., 2014], exceed the respec-
tive mean values by 1 standard deviation. In order to
model CO2 plume dispersion, we applied the DISGAS
code [Costa et al., 2005, 2016; Granieri et al., 2013, 2014,
2017]. Despite being rare at Vulcano, for this test we im-
posed a wind from SSE since it draws a dangerous sit-
uation for the village of Vulcano Porto lying downwind
with respect to this wind direction. The average speed of
1.87 m/s was extracted from the dataset of a local me-
teorological station (Lentia station), covering the 8-
year time period from May 2008 to February 2016 (for
detail see Vita et al. 2012 and Granieri et al. 2017). Re-
sulting maps of the plume dispersion for four periods are
reported in Figure 6. 
Results show that the common area of modeled ex-

treme values of ambient CO2 concentration is encom-
passed by the rim of the present crater with the excep-
tion of a lobe in the external NE sector (Figure 7). The
inhabited area of Vulcano Porto is substantially unaf-
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FIGURE 6.Maps of the air CO2 concentration at the crater of La Fossa in different times under a SSE wind (see text). The site of the
meteorological station (Lentia station) is shown. 



fected by the crater-derived CO2 plume, confirming the
finding of Granieri et al. [2014]. The large value of the
fitting index (Iα ~0.60) obtained comparing the four
maps, confirmed that the region of the higher CO2 con-
centration, essentially concentrated in the present crater
rim (A in Figure 5), persists in time, despite different de-
gassing levels measured at the volcano.
iv) In this application of PL1.0 we were interested in

the spatial correlation between three variables, having
the same measurement units and different statistics
(mean, standard deviation, skewness, kurtosis, etc.),
which were simultaneously measured at the same loca-
tions. In this specific case, we used concentrations (in
μg/L) of arsenic (As), uranium (U) and vanadium (V) in
328 water samples, collected in the Vicano-Cimino vol-
canic district (central Italy). Data were taken from Cinti
et al. [2015] and they are provided as a test case in the
Supplementary material. In some areas of central Italy,
the concentration of heavy metals in drinkable waters
can pose a hazard for people, in particular the high level
of As, often above the threshold imposed by a specific

European directive [EC Directive, 1998]. Although not
regulated by the countries of the European Union, high
concentrations of U and V can be toxic, and for this rea-
son they were measured in the area along with the As
concentration. The main factor controlling the concen-
tration of As, U and V in waters resulted to be a combi-
nation of the lithology where waters move together with
the thermal and redox conditions of the water-rock in-
teraction [Cinti et al., 2015]. Maps derived from the data
of Cinti et al. [2015] are shown in Figure 8,a,b,c.
By correlating the entire dataset, it is not possible to

find any significant correlation among the pairs of the
three elements (r=+0.12, -0.03, 0.00 for U-V, As-V, As-U
pairs, respectively, as reported in the first column of
Table 1). The comparison consisted simply of calculating
the correlation coefficient between the concentration of
variable 1 and 2, 1 and 3, and 2 and 3, with no regard for
the spatial position of the samples. The main disadvan-
tage of this procedure is the inability to discriminate if the
overall absence of correspondence in the whole area may
mask a higher degree of similarity in sub-regions of the
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FIGURE 7. Common area of higher air CO2 concentration considering the four maps of Figure 6. The thicker black curve encom-
passes the present-day crater (A in Figure 5).



domain. In order to explore this possibility, we clustered
the samples into four categories on the basis of the wa-
ter type, as identified by the authors, somehow reflecting
the spatial distribution of the samples (Figure 8d). Results
highlighted a strong positive correlation between U and
V in cold-sedimentary (r=+0.63) and thermal waters
(r=+0.28), a minor correlation in cold-volcanic waters
(r=+0.17), and a low (and negative) correlation in bub-
bling pools (r=-0.06). Similarly, a strong correlation
comes out between As and V and between As and U in
cold-sedimentary waters (r=+0.83 and +0.68, respec-

tively), moderate or low correlation in cold-volcanic wa-
ters (r=+0.06 and +0.13, respectively), and low (and
negative) correlation in thermal waters (r=-0.06 and -0.16,
respectively). Table 1 summarizes these relationships. 
PL1.0 was applied for the As-U, As-V, and U-V pairs,

starting from the whole datasets of 328 water samples.
For this application, the units and the sampling density
of the three variables are the same, but, as previously
stated, this is not required for the applicability of the
code. Results of the procedure allowed easier identifi-
cation of common areas of extreme values (Figure 8d),
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FIGURE 8. Common area of higher air CO2 concentration considering the four maps of Figure 6. The thicker black curve encom-
passes the present-day crater (A in Figure 5).

Couple
r

(all samples)

r
cold-volcanic waters

r
cold-sedimentary waters

r
thermal waters

r
bubbling pools

U-V +0.12 +0.17 +0.63 +0.28 -0.06

As-V -0.03 +0.06 +0.83 -0.06 +0.25

As-U 0.00 +0.13 +0.68 -0.16 +0.18

TABLE 1. Correlation coefficient (r) between the water concentration of uranium (U), vanadium (V) , and arsenic (As), considering
all samples (first column) or clustering the samples on the basis of four water types.



with a fitting index of about 0.15 for the couple U-V,
and lower values for As-V and As-U pairs (Iα ~0.09 and
~0.08, respectively), confirming the correspondence
between higher value areas and water types, but with
more spatial information than a simple statistical cor-
relation. In fact, common areas are all found in the spa-
tial domain of the cold-volcanic waters (Figure 8d),
where the correlation of the three considered pairs is
moderate (second column of Table 1), rather than in the
cold-sedimentary waters where the correlation is high
(third column of Table 1), suggesting that the high
correlation in the cold-sedimentary samples is likely
due to the numerically largest group of low-medium
concentration values whilst that highest values
(“anomalies”, sensu lato) are well correlated in the do-
main of the cold-volcanic waters. As a general con-
clusion, this means that if the statistical value of a cor-
relation may not be in doubt, the “physical” meaning
ascribed to that value is open to interpretation for the
peculiar nature of the geochemical data. That is the
conclusion reached through the application of PL1.0,
without the necessity of knowing a-priori a further
parameter, i.e., the water type, on which the clustering
and the subsequent correlation “for groups” was based. 
The performance of PL1.0 was tested by comparing

the results of this last case study against the prediction
from the “Raster Calculation” tool available in AR-
CGIS 10.5 software (ESRI platform).

This tool, available in the ArcToolBox extension,
presents a calculator-like interface and provides as
output a Boolean geo-raster that identifies the areas
where a request is satisfied (or not) by combining math-
ematical and logical operators. The results of the com-
parison are shown in Figure 9. The anomalous regions
obtained with PL1.0 are enclosed by the curves result-
ing from the GIS tool, showing very good spatial agree-
ment. The results of this comparison, as other ones not
shown, confirmed that the code has performed well and
it is satisfactorily robust. Then, when a comparison
among gridded maps is required, it can provide a reli-
able alternative to the more established and complicated
approach of GIS tools, for which a wealth of knowledge
and experience is necessary. In addition, it adds further
information about the user’s request. For instance, in
the aforementioned case study the GIS tool pulls out the
curve enclosing the common areas in which values of
the couples are higher than their means + 1 standard
deviation (as required) whilst the PL1.0 application
provides a pixel tessellation with different levels of the
exceedence of the mean from +1 standard deviation up
to +4.5 standard deviations. 

3.2 CASE 2 | FINDING INVERSE CORRELATION
BETWEEN INVESTIGATED AREAS

The goal of this application is the identification of
common areas where the positive values of one vari-
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FIGURE 9. Comparison between the GIS tool Raster Calculation (colored curves) and PL1.0 outputs (tessellated areas) for the case
study iv (see text).



able (calculated as average value plus 1, 2 or 3 standard
deviations) correlate with the negative values of one an-
other (calculated as average value minus 1, 2 or 3 stan-
dard deviations). Possible practical benefits are: i) identify
common areas of the domain where lithological, structural
or physico-chemical features of the medium favor the es-
cape of a gas, compound or metal in the near-surface en-
vironment and inhibit the output of another.
We present this case by inspecting the same dataset of

As, U, and V concentration in 328 water samples used in
the previous application for values exceeding the mean by
(+/-) 1 standard deviation. Results of this PL1.0 applica-
tion highlighted the absence of negatively correlated ar-
eas for the couple As-U (Figure 10), and the existence of
two small “inversely correlated” areas for the pairs U-V
and As-V (with Iα of 0.02). Interestingly, these resulting
areas, with the exception of a sub-area located near Nepi
Lake, fall in the domain of the thermal waters. This cor-
respondence is likely linked to the anoxic conditions of the
thermal waters, differently influencing the solubility of As,
U, and V [Cinti et al., 2015], but the full explanation of the
process is beyond the scope of the present paper.

3.3 CASE 3 | FINDING DIRECT CORRELATION
BETWEEN AREAS WITH VERY EX-
TREME VALUES (2s OR 3s
ABOVE/BELOW THE MEAN)

The last application of PL1.0 is aimed to identify
“very anomalous” regions of the domain where the val-
ues of two or more variables exceed (or are below) the
mean by 2 or 3 standard deviations. This could be use-
ful, for example, in the field of the mining exploration
when simultaneous high values of grade, thickness and
density of ore could suggest an ideal site for the mining.
This case concerns the comparison between the tails

of the value distribution in order to bring out the loca-
tion of sub-region(s) of the domain characterized by
very extreme values of the measured variables. For ex-
ample, when measurements are normally distributed, a
quite common peculiarity for geochemical data, no
more than 5% of all measurements are included within
the interval higher than +2 standard deviations or lower
than -2 standard deviations on both sides of the mean,
and slightly over 0.1% of all measurements fall within
the interval higher than +3 standard deviations or lower
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FIGURE 10. Resulting areas where water concentrations of U and As one standard deviation above their respective means coincide
with values of the V concentration one standard deviation below its mean.



than -3 standard deviations. 
In this application, we consider the dataset of As, U,

and V concentration in water samples for values ex-
ceeding the respective mean by at least 2 standard de-
viations. Results of PL1.0 permitted highlighting of a
larger zone of high values for the couple U-V (with a
fitting index of about 0.1) in proximity to the Tuscania

village (Figure 11), where actually the contamination
of groundwater posed serious problems for human
health [Cinti et al., 2015] and two smaller areas (with
negligible values of the fitting index) of simultaneous
As-V and As-U highest values near to Viterbo town
and Civita Castellana village, respectively (Figure 11). 
We applied again PL1.0 to the air CO2 concentra-
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FIGURE 11. Common areas with very extreme values for pairs of elements where their concentrations in water are two standard de-
viations above their means. 

FIGURE 12. Common area of air CO2 concentration considering the four maps of Figure 6 with values exceeding the mean by a)
one, b) two, and c) three standard deviations. The map in a) is the same of Figure 7.



tion maps (temporally spaced) at La Fossa crater of
Vulcano (see Section 3.1), but here considering values
exceeding the mean by 2 and 3 standard deviations.
Code results highlighted the persistence over time of a
common area inside the present-day crater rim (cfr.
Figure 6), where, as expected, the common area of very
extreme values progressively reduces its extension
when larger thresholds (from +1s to +3s) are consid-
ered (Figure 12a,b,c). For this application, even for the
largest threshold, a good similarity of common areas
for the four CO2 concentration maps (cfr. Figure 6) is
obtained, as suggested by the fitting index of 0.43 (Fig-
ure 12c). 

4. CONCLUSIONS

In this study, we describe the new PL1.0 web appli-
cation for analyzing gridded maps. We obtained some
robust results using data from there literature, which
demonstrate the reliability of PL1.0 in finding regions
of common extreme values among two or more maps
of a single or different variables measured over the
same area or over partially overlapping areas. A major
advantage of this procedure is the ability to (i) prove
the spatial correspondence of “anomalous” regions for
up to ten variables measured simultaneously; and (ii)
highlight the persistence or the migration in time of an
“anomalous” region for a single variable, measured up
to ten times. Similarly, the procedure allows identifi-
cation of regions of the domain where the largest val-
ues of a variable (1, 2 or 3 standard deviations above
the mean) are spatially correlated with the lowest val-
ues (1, 2 or 3 standard deviations below the mean) of
another variable. PL1.0 is able to accomplish these
tasks for data with different measurement units and
sampling densities. The quantitative correspondence
among resulting areas is indicated by a fitting index
which is the measurement of how well they overlap. 
Although the spatial correspondence of mapped

variables is a frequent demand of geologists and sci-
entists in the environmental field only a few attempts
have been made by these communities to do more than
make comparisons “by eye”. The purpose of this study
is to provide a user-friendly and suitable web tool for
approaching this topic without using GIS platforms or
complex software for which a solid base of knowledge
is necessary.
As the next step, our objective is to implement the

proposed procedure in cloud platforms for the analysis
of geospatial datasets (i.e. Google Earth Engine, GEE) in
order to reach a wider audience.
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APPENDIX

Appendix A. Input and output file format
The input files have to be in the ASCII grid format (.grd).
The “.grd” file is descripted below after modification
from the tutorial of the Surfer Golden© software (vers.
8.0). 
ASCII grid files (.grd) contain five header lines that pro-
vide information about the size and limits of the grid,
followed by a list of Z values. The fields within ASCII
grid files must be space delimited.
The listing of Z values follows the header information
in the file. The Z values are stored in row-major order
starting with the minimum Y coordinate. The first Z
value in the grid file corresponds to the lower left cor-
ner of the map. This can also be thought of as the
southwest corner of the map, or, more specifically, the
grid node of minimum X and minimum Y. The second
Z value is the next adjacent grid node in the same row
(the same Y coordinate but the next higher X coordi-
nate). When the maximum X value is reached in the
row, the list of Z values continues with the next higher
row, until all the rows of Z values have been included. 
The general format of an ASCII grid file is:
id (the identification string DSAA that identifies the file
as an ASCII grid file);
nx ny (where nx is the integer number of grid lines
along the X axis (columns) and ny is the integer num-
ber of grid lines along the Y axis (rows));
xlo xhi (where xlo is the minimum X value of the grid
and xhi is the maximum X value of the grid);
ylo yhi (where ylo is the minimum Y value of the grid
and yhi is the maximum Y value of the grid);
zlo zhi (where zlo is the minimum Z value of the grid
and zhi is the maximum Z value of the grid).

Then: 
grid row 1 
grid row 2 
grid row 3
…
These are the rows of Z values of the grid, organized in
row order. Each row has a constant Y coordinate. Grid
row 1 corresponds to ylo and the last grid row corre-
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sponds to yhi. Within each row, the Z values are ar-
ranged from xlo to xhi.
The following example grid file is ten rows high by ten
columns wide. The first five lines of the file contain
header information. X ranges from 0 to 9, Y ranges
from 0 to 7, and Z ranges from 25 to 97.19. The first Z
value shown corresponds to the lower left corner of the
map and the following values correspond to the in-
creasing X positions along the bottom row of the grid
file. This file has a total of 100 Z values.
DSAA    
10 10    
0.0 9.0    
0.0 7.0    
25.00 97.19    
91.03 77.21 60.55 46.67 52.73 64.05 41.19 54.99 44.30
25.00
96.04 81.10 62.38 48.74 57.50 63.27 48.67 60.81 51.78
33.63
92.10 85.05 65.09 53.01 64.44 65.64 52.53 66.54 59.29
41.33
94.04 85.63 65.56 55.32 73.18 70.88 55.35 76.27 67.20
45.78
97.19 82.00 64.21 61.97 82.99 80.34 58.55 86.28 75.02
48.75
91.36 78.73 64.05 65.60 82.58 81.37 61.16 89.09 81.36
54.87
86.31 77.58 67.71 68.50 73.37 74.84 65.35 95.55 85.92
55.76
80.88 75.56 74.35 72.47 66.93 75.49 86.39 92.10 84.41
55.00
74.77 66.02 70.29 75.16 60.56 65.56 85.07 89.81 74.53
51.69
70.00 54.19 62.27 74.51 55.95 55.42 71.21 74.63 63.14
44.99

Output files
Output files are in ASCII grid format (.grd) such as the
input files. They have to be saved (and eventually re-
named) as “namefile.grd” and can be read by several
commercial plotting software (e.g., Surfer Golden ©) or
by GIS tools.
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