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1. INTRODUCTION 
 

The mechanisms controlling lava flow emplacement 
are not yet fully understood, due to the complexity of 
the fluid, its non-Newtonian rheology, and the strong ef-
fect on the rheology by the physical and chemical prop-
erties of the fluid (temperature, chemical composition, 
degree of crystallization, etc.) and their evolution over 
time. Mathematical modeling and computer simula-
tions can play an essential role in improving our un-

derstanding of the lava flow patterns, its morphology, 
and thermal evolution [Del Negro et al., 2008; Ganci et 
al., 2018; Vicari et al., 2009]. The complex nature of the 
fluid, aspects such as free surface and irregular to-
pographies, and phenomena like phase transition and 
the consequent formation of levees and tunnels make 
simulation of lava flows an extremely challenging task 
for Computational Fluid Dynamics (CFD). In the model-
ing of lava flow hazards [Cappello et al., 2011, 2016a; 
Del Negro et al., 2013, 2016; Ganci et al., 2013; Hérault 
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ABSTRACT 
Lava flow modeling is important in many practical applications, such as the simulation of potential hazard scenarios and the planning of 

risk mitigation measures, as well as in scientific research to improve our understanding of the physical processes governing the dynam-

ics of lava flow emplacement. Existing predictive models of lava flow behavior include various methods and solvers, each with its advantages 

and disadvantages. Codes differ in their physical implementations, numerical accuracy, and computational efficiency. In order to validate 

their efficiency and accuracy, several benchmark test cases for computational lava flow modeling have been established. Despite the pop-

ularity gained by the Smoothed Particle Hydrodynamics (SPH) method in Computational Fluid Dynamics (CFD), very few validations against 

lava flows have been successfully conducted. At the Tecnolab of INGV-Catania we designed GPUSPH, an implementation of the weakly-

compressible SPH method running fully on Graphics Processing Units (GPUs). GPUSPH is a particle engine capable of modeling both New-

tonian and non-Newtonian fluids, solving the three-dimensional Navier–Stokes equations, using either a fully explicit integration scheme, 

or a semi-implicit scheme in the case of highly viscous fluids. Thanks to the full coupling with the thermal equation, and its support for 

radiation, convection and phase transition, GPUSPH can be used to faithfully simulate lava flows. Here we present the preliminary results 

obtained with GPUSPH for a benchmark series for computational lava-flow modeling, including analytical, semi-analytical and experi-

mental problems. The results are reported in terms of correctness and performance, highlighting the benefits and the drawbacks deriving 

from the use of SPH to simulate lava flows.



et al., 2009], common approaches to the simulation of 
lava flows start by reducing the complexity with a 
number of different strategies, such as reduced dimen-
sionality, simplified thermal or dynamic models, or the 
use of stochastic approaches with little or no physical 
modeling [Costa and Macedonio, 2005]. These simplifi-
cations allow easier implementations and higher per-
formance, and while the results may still be useful for 
real-time forecasting [Cappello et al., 2016b], risk mit-
igation [Scifoni, 2010] and the production of long-term 
scenarios [Del Negro et al., 2013], they are inadequate 
for a more thorough study of the behavior of the fluid 
and the laws underlying its rheology, which require the 
detailed modeling of the full three-dimensional flow and 
its rheological aspects. 

The Smoothed Particle Hydrodynamics (SPH) method, 
recently introduced in the field of Computational Fluid 
Dynamics (CFD), is a Lagrangian mesh-free particle-
based method that allows a three-dimensional modeling 
of the fluid, taking into account in an efficient way 
many physical aspects that are typical of lava flows, 
such as the free surface, solidification fronts, the high dy-
namicity of the fluid and the interaction with irregular 
boundaries, such as solid lava emplacements and natu-
ral topographies. One main drawback of the SPH method 
is low accuracy, since in its common form it is a first or-
der method [Monaghan, 2005]. A second drawback comes 
from the frequent adoption of a weakly-compressible 
model [Hérault et al., 2010] instead of a fully incom-
pressible one. As stated by Cordonnier et al. [2016], this 
choice affects the quality of the simulation, requiring an 
adjustment of parameters in order to improve the results. 
Moreover, the adoption of a weakly-compressible model 
affects the simulation performance, since the time step-
ping is driven by the speed of sound [Zago et al., 2018]. 
On the other hand, a weakly-compressible model allows 
a complete parallelization of the computations that can 
be run on massively parallel hardware like Graphics Pro-
cessing Units (GPU), giving an advantage in terms of per-
formance [Hérault et al., 2010]. 

The TecnoLab at the Istituto Nazionale di Geofisica e 
Vulcanologia (INGV) in Catania has created the GPUSPH 
particle engine [Hérault et al., 2011; Bilotta, 2014; Zago 
et al., 2017], the first implementation of the Weakly-Com-
pressible Smoothed Particle Hydrodynamics (WCSPH) 
method to run entirely on Graphic Processing Units 
(GPUs). To better handle the computational needs of lava 
flow simulations, GPUSPH has been extended to dis-
tribute computations across multiple GPUs [Rustico et al., 

2012], even across separate nodes in a cluster [Rustico et 
al., 2014], and it includes a semi-implicit integration 
scheme for highly viscous flows [Zago et al., 2018].  

GPUSPH has already been validated in a number of 
contexts, both against classical theoretical problems, and 
real-world applications [Wei et al., 2015; 2016]. However, 
we need to evaluate the accuracy and robustness of the 
particle engine results in the context of lava flow simu-
lation, starting from the benchmark tests introduced by 
Cordonnier et al. [2016]. These benchmark tests of grow-
ing complexity (from a simple dam break without ther-
mal effects to a physical experiment including both dy-
namic and thermal aspects) can be used to validate lava 
flow models in terms of completeness, accuracy and 
computing performance. In their work, Cordonnier et al. 
[2016] also compare the models that represented the state 
of the art at that time, and illustrated the respective main 
features, advantages and disadvantages. Here we present 
preliminary results obtained with GPUSPH, discussing the 
influence of the model and formulation on the accuracy 
and computational performance of the results, and the 
possible strategies to improve them. 

 
 

2. SPH IN GPUSPH FOR LAVA 
 
The SPH method discretizes the fluid by means of par-

ticles that act as interpolation nodes. Each particle carries 
information about a small volume of fluid, such as velocity, 
position, density, mass, temperature and so on, and moves 
according to equations of motion. The basis of the method 
relies on the SPH smoothing, that is the way in which the 
fields are interpolated at the position of the particles [Mon-
aghan, 2005]. For each particle the effect of its neighbors 
is weighted by the value of a function called smoothing 
kernel, that is centered in the particle position and is usu-
ally indicated with W(r,h). Here, r indicates the distance 
from the neighbouring particle and h is a parameter called 
smoothing length. The smoothing kernel is usually cho-
sen with a compact support, which radius is called influ-
ence radius, usually determined as a multiple of h. 

The dynamics of fluid bodies is modeled according to 
the continuity equations for mass: 

 
(1) 

 
where ρ is the density, u the velocity and D/Dt the to-
tal derivative with respect to time, and momentum 
(Navier–Stokes equations): 
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(2) 
 

where P is the pressure, μ the dynamic viscosity, and G 
represents external forces, such as gravity, and the ther-
mal evolution is described by the heat equation 

 
(3) 

 
where T is the temperature, cp is the specific heat at con-
stant pressure and κ is the thermal conductivity. 

Even though we are considering the incompressible 
form of the Navier-Stokes equations, solving a fully in-
compressible fluid model would be rather complex and 
computationally expensive, since it would imply to 
solve the pressure form Poisson equation. Moreover, in-
compressible SPH models are known for exhibiting un-
stable behaviors in the density field and issues dealing 
with free surfaces [Ihmsen et al., 2014]. As an alterna-
tive, in SPH one uses frequently a weakly compressible 
formulation where the pressure is derived from the den-
sity using an equation of state, such as [Cole, 1948]: 

 
(4) 

 
with ρ0 the at rest density, c0 the speed of sound and γ 
the polytropic constant. By construction, the compress-
ible model allows to integrate independently each par-
ticle, making possible the adoption of explicit integra-
tion schemes without the need to solve any linear 
system. While this constitutes an advantage in terms of 
parallelizability of computations [Hérault et al., 2010], it 
also introduces a drawback in terms of time-stepping. 

Explicit integration schemes exhibit stability re-
quirements concerning the maximum allowed time step. 
The latter is in fact linked to several factors like the 
speed of sound, the viscosity, the maximum acceleration 
and the thermal diffusivity, by some CFL-like conditions 
[Monaghan, 1989; Monaghan and Kos, 1999; Morris et 
al., 1997, and references within]: 

 
(5) 

 

where aβ is the acceleration of the particle β, cβ is the 
speed of sound at density ρβ, and C1, C2, C3 and C4 are 
stability constants. In GPUSPH we use C1=C2=0.3, 
C3=0.125 and C4=0.1. The maximum allowed time step 
for the whole system is then the minimum time step over 
all particles, Dt=minβ Dtβ. 

Because of these constraints, the speed of sound 

used for SPH simulations is usually taken smaller than the 
physical one, but still enough to prevent a compressible 
behavior. Weak compressibility is achieved as long as the 
speed of sound is large enough to bound density variations 
within certain ranges. A common choice is to take the 
sound speed one order of magnitude above the maxi-
mum velocity experienced in the flow, so that the max-
imum variation in density is contained within 1% of the 
fluid density. When the simulation involves high fluid 
columns, the hydrostatic velocity (i.e. the maximum 
velocity that a particle at the highest position would 
achieve in free-fall) can be predominant with respect of 
the maximum flow speed, and must be used instead. This 
is important to eliminate the vertical collapse of the fluid 
column due to excessive compressibility. Therefore, 
choosing a high speed of sound can help to get closer 
to the incompressible behavior, which would be more 
appropriate for lava, but such improvement is paid with 
a small time step, and then in terms of computational 
time and numerical precision. 

 
2.1 SURFACE THERMAL DISSIPATION 
Thermal dissipation is modeled both at the contact 

with the ground, using Equation (3) and on the free sur-
face. The latter occurs according to two phenomena: 

1. Thermal radiation: according to Stefan-Boltz-
mann law, we express the radiated heat per unit 
surface as: 

 
(6) 

 
with KB the Stefan-Boltzmann constant, e the emissiv-
ity, m the mass and Ta the air temperature. 

2. Air convection: We do not model air particles, but 
we account the heat lost due to air convection by 
means of a convection coefficient η, according to 
the following law, per unit surface: 

 
(7) 

 
 
2.2 SPH DISCRETIZATION OF THE EQUATIONS 
The dynamical equations seen above are discretized 

according to the SPH method as described in Bilotta et 
al. [2016], Hérault et al. [2011] and Zago et al. [2018] ob-
taining: 

 
(8) 
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for the continuity Equation (1),  
 

(9) 
 

for the momentum Equation (2), and 
 

(10) 
 

for the thermal Equation (3). 
The two formulas for the surface thermal dissipation, 

introduced in section 2.1, are applied to surface parti-
cles that are identified as described in Bilotta et al. 
[2016] and Hérault et al. [2011]. To apply these two per 
unit surface formulas, a simple way of computing the 
particle surface would be to consider it a square with the 
average inter-particle spacing as particle side. But we are 
dealing with flows that usually evolve towards a con-
dition of under-resolved flow, then we would underes-
timate the surface in the regions where the simulation 
becomes more rarefied (i.e. where we have a thin flow). 
To face this problem we compute the particle surface us-
ing the numerical volume [Hu and Adams, 2006] 

 
(11) 

 
and considering a spherical particle volume and a cir-
cular particle surface. 

 
2.3 SPH SMOOTHING KERNEL 
Given a symmetric SPH smoothing kernel W, its gra-

dient can be written as: 
 

(12) 
 

where xαβ= xα-xβ, and h is the kernel smoothing length. 
By choosing a kernel for which 

 
(13) 

 
has an analytical expression, and given Fαβ=F(|xαβ|), we 
can then write ∇β Wαβ=-xαβ Fαβ. 

For the simulations presented in this work we adopt 
a Wendland kernel [Wendland, 1995], defined as 
W(r,h)=W

~
 (r/h) and F(r,h) = F

~
 (r/h) with 

 
 

(14) 
 
 

where, working in three dimensions, Cw=21/(16 πh3) and 
CF=5 Cw /(8h2). 

 
2.4 BOUNDARY CONDITIONS AND BOUNDARY MODEL 
From a mechanical point of view, at the interfaces 

between fluid and either walls and ground we impose a 
no-slip condition; this is obtained prescribing normal 
and tangential velocity along the analytical boundary: 

 
(15) 

 
(16) 

where vw is any physical sliding velocity of the wall (in 
our examples, we will always have vw=0). In our SPH 
discretization, physical boundaries are implemented ac-
cording to the Dummy boundary model [Adami et al., 
2012], where solid walls are discretized with multiple 
layers of boundary particles, enough to cover a full in-
fluence radius and thus complete the kernel support for 
fluid particles adjacent to the boundary. No-slip bound-
ary conditions with dummy boundaries is obtained as-
signing to the boundary particles a velocity obtained as 
vw plus the opposite of the Shepard-averaged velocity 
of the neighboring fluid: 

 
(17) 

 
(where F represents the set of fluid particles) while the 
density is computed to achieve a pressure that matches 
the Shepard-averaged pressure of the neighboring fluid: 

 
(18) 

 
In order to reduce the accumulation of numerical er-

ror in the computations for the boundary model, all sum-
mations are performed using the Kahan method [Kahan, 
1965]. For the thermal model we use absorbing boundary 
conditions, implemented using the sponge layer approach: 
the boundary is assumed to have a sufficiently large 
thickness Hs, through which heat propagates using the 
standard heat equation. Given a one-dimensional reference 
system with the origin on the boundary interface and ori-
ented along the inwards normal n, the conditions for the 
temperature T(n,t) (with n the wall depth coordinate, and 
t the time) can be described analytically as 

 
(19) 

 
(20) 
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where Tw is the initial physical temperature of the wall 
[Hérault, 2008]. Hs must be chosen large enough to 
guarantee the last condition over all the simulation time. 

 
 

3. BENCHMARKING THE GPUSPH MODEL 
 
The SPH discretization, as any numerical method, in-

troduces some errors that lead to a discrepancy be-
tween the simulation results and the exact solutions, 
which can be reduced adopting finer resolutions. In the 
following we will analyze the results of the simulation 
in terms of convergence with respect to the discretiza-
tion fineness. In particular, the outputs of GPUSPH 
have been compared to the first three benchmark tests 
introduced by Cordonnier et al. [2016]. 

 
3.1 BM1: VISCOUS DAM-BREAK 
Dam breaks are one of the simplest test cases in the 

field of CFD, and is described as a defined amount of con-
fined fluid that is suddenly freed from one side and al-
lowed to spread onto an horizontal plane, driven by 
gravity. In the simplest configurations, validation is made 
against the progress of the front of the flow over time.  

In Cordonnier et al. [2016], the initial configuration 
of the fluid is a box with length L = 6.6m, height 
H = 1m and width W = 6.6m. The fluid has density 
ρ = 2700 kg/m3 and a dynamic viscosity μ = 104 Pa·s. 
According to Balmforth et al. [2007] and Saramito et al. 
[2013], the evolution of the front over time is analyti-
cally described by 

 
 

(21) 
 
 

where T is the characteristic time of the problem, defined 
as T = (L/H)2 (μ/ρgh). In our case, we have T = 16.45 s. 

 
1) Implementation in GPUSPH: The simulation do-

main consists of a base plane and three walls 
containing the fluid. The fourth side of the main 
fluid box is left free to allow the fluid to slump, 
simulating the sudden opening of a gate (Figure 1). 
The solid walls are modeled using dummy bound-
aries, as introduced in section 2.3. The density dif-
fusion approach introduced by Molteni and Cola-
grossi [2009] is used to smooth out the noise that 
naturally develops in the density field. For the 
speed of sound, the usual choice in WCSPH is to 
pick a value c0 around 10 or 20 the maximum ve-
locity value. Our experiments however show that 
much lower errors at a given spatial resolution can 
be obtained by using a higher speed of sound. 
There are diminishing returns in raising the value 
of c0, though, due to the smaller time-step, and 
even a reversal when the time-step becomes too 
small for the available precision. The main results 
that we illustrate are thus obtained with a speed of 
sound 100 times higher than the hydrostatic ve-
locity, resulting in c0 = 443 m/s.  

2) Results for BM1: We show results for three dif-
ferent resolution, a Low Resolution with inter-
particle distance DpLR = 1/8 m = 0.125m, an In-
termediate Resolution with inter-particle distance 
DpIR= DpLR/2 = 1/16 m = 0.0625m, and a High 
Resolution with DpLHR = DpLR/4 = 1/32 m = 
0.03125m. In the following we will refer to these 
three simulations as BM1LR, BM1IR and BM1HR. 
We measure the front of the fluid as the position 
of the furthest particle in the flow, plus Dp/2 to 
take into account the particle volume. Results for 
the front position at the three resolutions, com-
pared to the front position predicted by Equa-
tions (21) are presented in Figure 2. 

We observe that GPUSPH slightly overestimates the 
theoretical solution for the front progress, and that the 
error becomes smaller at higher resolutions. Table 1 
shows the errors obtained as the difference between the 
simulated and theoretical front position in respectively 

FIGURE 1. Lateral slice of BM1HR at t = 10s. Particles are colored by velocity magnitude.



the low, intermediate and high resolution cases at time t, 
and the error ratios, obtained as the error at lower reso-
lution over the error at higher resolution. 

From Table 1 and Figure 3 we can assess the con-
vergence of the model and that the order of convergence 
grows over time, being in the best case around a second 
order trend. The latter result is due to the low-resolution 

simulation becoming under-resolved as the flow pro-
gresses, due to the decrease in thickness, leading to 
larger errors and to the formation of artifacts, as shown 
in Figure 4, illustrating the situation for BM1IR at 
t = 500s: we can observe that the front profile is no more 
well reconstructed and some artifacts are arising, like the 
formation of a second head and the detachment of the 
fluid from the ground. For BM1HR we can further ob-
serve that at t = 45s there is a temporary inversion, with 
the simulation being slightly behind the theoretical re-
sult. This may be explained by the change in the ex-
pression of the analytical law, that presents a small 
discontinuity at t = 2.5T = 41.125s, giving a bigger value 
from the right hand side.  

Finally, concerning the fluid height, we have from 
Saramito et al. [2013] that for short times the fluid height 
at the dam position and the end of the reservoir should 
remain constant (i.e. h(t,0)/H = 0.684 and h(t,-L)/H = 1) 
while the surface shape rearranges, whereas for long times 
(t >> 2.5T) the height at x = -L and x = 0m is the same, 
and evolves according to the law t-2. For short times (less 
than around 100s) all of the three different resolution sim-
ulations match the analytical result, with an error of less 
than Dp. 

3) Simulation performance: All the simulations were 
performed on a NVIDIA Titan X GPU (Maxwell ar-
chitecture); with the adopted spatial discretization, 
BM1HR consists of 30'890'152 particles and the 
time step (controlled by the speed of sound) is 
DtBM1HR = 2.54 · 10-5 s. 1s of BM1HR evolution 
is simulated in around 1950s of real time. BM1LR 
involves 8'080'744 particles and a time step 
DtBM1LR = 5.63 · 10-5 s and 1s of BM1LR evolu-
tion is simulated in around 168s. Finally, BM1LR 
involves 187'244 particles and a time step 

ZAGO ET AL.

6

 0

 2

 4

 6

 8

 10

 12

 0  100  200  300  400  500

do
w

n-
sl

op
e 

ex
te

ns
io

n 
[m

]

time [s]

BM1LR
BM1IR

BM1HR
Analytical

FIGURE 2. Front position over time for BM1. The comparison 
among the analytical solution and the solutions sim-
ulated with different resolutions reveals convergence 
of the method.

Time (s) BM1LR (8 parts/m) BM1IR (16 parts/m) BM1HR (32 parts/m)

10 error [m] 0.3085 0.2628 0.1822

10 err ratio 1.1739 1.4423 -

500 error [m] 2.9546 1.0267 0.2113

500 err ratio 2.8779 4.8599 -

TABLE 1. Errors for BM1 at short and long time. The error ratios are computed as the ratio of the error at lower resolution over the 
error at higher resolution.

 0.2
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E
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Error at t = 10 s
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linear
quadratic

FIGURE 3. Logarithmic plot of the error for BM1 over the spa-
tial discretization interval for different times. The 
convergence rate is higher at longer times due to the 
under-resolved condition of lower resolution simu-
lations.



DtBM1LR = 5.6 · 10-4 s and 1s of BM1LR evolution 
is simulated in around 18 s. 

 
3.2 BM2: INCLINED VISCOUS ISOTHERMAL SPREAD-

ING 
This benchmark test regards the simulation of a fluid 

spreading onto an inclined plane, and follows the ana-
lytical solution derived by Lister [1992]. The fluid has a 
Newtonian rheology and is injected at a constant rate Q 
from a point source through the plane. We are interested 
in the evolution of the down-slope and cross-slope ex-
tent (Ld and yp, respectively as shown in Figure 5) of the 
flow. The plane is inclined by an angle α = 2.5° and the 
fluid, with kinematic viscosity ν = μ/ρ = 11.3 · 10-4 m2 /s, 
flows at a rate Q = 1.48 · 10-6 m3/s. 

The density is left free by Cordonnier et al. [2016], 
and we have opted to use the same value adopted in 
BM1, ρ = 2700 kg/m3. According to Cordonnier et al. 
[2016], the analytical solution at long time for the 
downslope extent over time is given by: 

 
(22) 

 
 

and for the cross slope extent, at long times, is given by: 
 

(23) 
 

1) Implementation in GPUSPH: The simulation do-
main is constituted by a base plane and a piston, 
the latter used to obtain the constant flow rate Q, 
as shown in Figure 6. Also in this case we perform 
a convergence test using three levels of dis-
cretization: a low resolution with inter-particle 
distance DpLR = 1/384 m= 2.6 · 10-3 m, an Inter-
mediate resolution with DpIR = DpLR/1.5 = 1/512 m 
= 1.95 · 10-3 m, and a High Resolution with DpHR  
= DpIR/1.5 = 1/768 m = 1.3 · 10-3 m. 

The fluid source, ideally a point source, is obtained 
by means of a hole in the plane, through which the fluid 
is extruded. Because of consistency requirements of the 
SPH method, the size of the source cannot be chosen ar-
bitrarily small, but there is a lower bound dictated by the 
resolution. To avoid under-resolving the inlet, we impose 
a lower bound on the inlet diameter in order to have at 
least 8 Dp with the coarser resolution, then we use 2 cm. 
For simplicity, the source has a squared shape. The 
width of the piston is 0.1m. It is taken bigger than the 
hole section to avoid having a high fluid column that 
would require a very high speed of sound and conse-
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FIGURE 4. Under resolved flow front for BM1IR at t = 500s: this is one of the resolution issues arising in BM1 as the flow evolves.

FIGURE 5. Setup for BM2. [from Cordonnier et al., 2016].



quently very small time steps. On the other side, having 
a too large piston implies more stresses on the fluid that 
would lead to higher disorder in the flow, with conse-
quent increase in the discretization error [Monaghan, 
2005]. Moreover a large piston surface, coupled with the 
small value of Q, can determine small particles veloci-
ties that can be affected by numerical precision during 
the integration process. 

In order to make a simpler definition of the geome-
try, with reduced numerical rounding, the floor is par-
allel to the xy coordinate plane, and gravity is oriented 
by an angle of -α. A side view of the simulation at t = 
15s is presented in Figure 6. 

As in BM1, the speed of sound is chosen so as to 
minimize compressibility while avoiding numerical in-

stabilities due to loss of precision. For BM2, we use 
c0 = 125,5 m/s. 

2) Results for BM2: The evolution of Ld is shown in 
Figure 7. The comparison between the simulated 
and analytical solutions is to be performed at long 
time, anyway an irregularity can be observed at 
the beginning of the simulation for both Ld and yp, 
where, while a theoretical solution would have a 
growing trend, starting from zero, the simulated 
solutions maintain a non-zero constant value. 
This is due to the fact that the vent is not a point 
source and its size corresponds to the initial ex-
tension of the flow.  

We observe that for Ld  (Figure 7), the convergence 
is apparent, with a resolution increase leading to results 
closer to the theoretical solutions. As in BM1, as the flow 
spreads out, it becomes under-resolved at lower resolu-
tion, leading to considerably worse results that diverge 
from the analytical solution over time. Moreover, the un-
der resolved flow front generates some artifacts that re-
sult in a shaky position advance. 

The errors are reported in Table 2 and their trend is 
shown in Figure 8; as for BM1 we have a convergence 
that gains orders over time. Also in here, this can be ex-
plained considering the thinning evolution of the flow, 
which makes the low-resolution simulation becoming 
under-resolved as the flow progresses. 
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FIGURE 6. Implementation of BM2 in GPUSPH, lateral view of a slice. Particles are colored by type: fluid in blue, walls in green 
and the moving piston in red.
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FIGURE 7. Time evolution of the down-slope extension for BM2.



When it comes to the cross-slope extent, we have a 
discrepancy between the simulated and analytical ex-
tension, as shown in Figure 9, which leads at long time 
to a wider flow. The causes are not yet fully known, and 
could likely be due to the approximations done at nu-
merical level such as finite size of the inlet, as well as 
compressibility. Although the value of the density does 
not affect the theoretical behavior of the problem, it can 

be relevant in numerical terms. The impact that the den-
sity has in the discrepancies mentioned above is currently 
being investigated. 

3) Simulation performance: BM2HR involves 2'761'836 
particles and a time step DtBM2HR = 4.15 · 10-6 s. 
Running on the same hardware as BM1, one second 
of BM2HR evolution is simulated in around 7'165 s. 
BM2IR involves 1'171'807 particles and a time step 
DtBM2IR = 6.22 · 10-6 s, with one second of BM2IR 
evolution being simulated in around 1'673s. Finally, 
BM2LR involves 645'444 particles and a time step 
DtBM2LR  = 8.27· 10-6 s, with one second of BM2IR 
evolution being simulated in around 646s. 

 
3.3 BM3: AXISYMMETRIC COOLING AND SPREADING  
This benchmark test deals with a non-isothermal flow. 

The setup exhibits many similarities with BM2, including 
a point source with fluid spreading on a plane. The floor 
is however horizontal in BM3, leading to axial symme-
try in the flow emplacement. Thermal effects are also 
taken into account in BM3, with only one-way cou-
pling, as the fluid rheology is assumed to be independent 
from the temperature, which therefore acts as a passive 
tracer. The parameters for BM3 are reported in Table 3. 

The radius of the expanding fluid evolves according to: 
 

(24) 
 

1) Implementation in GPUSPH: The implementation 
in GPUSPH of BM3 is similar to that of BM2, 
though the difference in the magnitude of some 
physical parameters introduces more stringent 
constraints. The very small flow-rate sets an up-
per bound in the dimension of the source, since a 
larger inlet would result in a smaller velocity of the 
piston, that could lead to numerical issues for its 
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FIGURE 8. Logarithmic plot of the error for BM2 over the spa-
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BM1, the convergence rate is higher at longer times 
due to the under-resolved condition of lower resolu-
tion simulations.
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FIGURE 9. Time evolution of the cross-slope extension for BM2.

Time (s) BM2LR (384 parts/m) BM2IR (512 parts/m) BM2HR (768 parts/m)

100 error [m] 0.0437 0.0357 0.0233

100 err ratio 1.2241 1.5322 -

145 error [m] 0.0606 0.0388 0.237

145 err ratio 1.5619 1.6373

TABLE 2. Errors for BM2. The error ratios are computed as the ratio of the error at lower resolution over the error at higher reso-
lution.



integration in single precision. The upper bound 
also imposes limitations on the coarsest resolution 
that can be used to discretize the problem and fi-
nally on the time-step. On the other hand, to be 
the piston capable of containing enough fluid to 
run the simulation, a smaller piston section implies 
a large piston height, requiring a higher speed of 
sound that would affect the time step. A solution 
to the fluid column could be to make a horizon-
tal piston, parallel to the plane, but the junction 
with the hole would introduce disorder in the 
flow. The size of the piston has been chosen in or-
der to approximate a trade-off with the issues just 
mentioned. The piston has a squared section, 
0.005m wide and is 0.13m high. The plane has a 
side 0.12m long and the vent is a square hole 
placed in the middle. In order to avoid introduc-
ing disorder in the flux, the hole shape and size 
matches with the piston section. We use for the 
wall the same thermal parameters that we use for 
the fluid, and the thickness required by the dy-
namic boundary model is also sufficient to imple-
ment the absorbing conditions for the thermal 
model. The speed of sound is 40 m/s. We perform 
a convergence test using three levels of dis-
cretization: a low resolution with inter-particle 
distance DpLR = 1/512 m= 1.95 · 10-3 m, an Inter-
mediate resolution with DpIR= DpLR/1.5 = 1/768 m 
= 1.3 · 10-3 m, and a High Resolution with DpHR = 
DpIR/1.5 = 1/1024 m = 9.7 · 10-4 m. 

2) Results for BM3: For the flow dynamics, the model 
convergence can be assessed by looking at the ra-
dius of the emplacement. We take as objective the 
simulated time t = 144s the fluid is already spread 
enough to show a clear temperature profile, and 
artifacts due to the low resolution are yet to ap-

pear. We observe an over estimation of the em-
placement radius, being RBM3HR (144)=0.038 m 
and R(144)=0.027 m, probably due to discrepan-
cies between the numerical and analytical setup. 

Concerning the temperature profile, we perform a 
graphical comparison between the simulated profile, 
and the analytical and measured ones, as shown in 
Figure 10, where we plot the normalized temperature 
(T*=(T-Ta)/(T0-Ta)) with respect to the radius normalized 
by the current flow extension. In the two reference 
curves, the temperature at the vent is lower than the 
temperature specified in the problem data, which has 
been faced by setting a lower initial temperature of the 
simulated fluid. From a graphical estimation, the tem-
perature is chosen as the 93% of the normalized tem-
perature, that is 313.6 K. 

We can see that although the simulated solutions do 
not apparently match the reference, they qualitatively 
tend to those as the resolution is increased. The high 
mismatch in the shape of the profile can be due to an 
incomplete implementation of the thermal model for the 
boundary that is not described in Codonnier et al. [2016]. 
The width of the simulated curves comes from the par-
ticles marked as surface, not being distributed on an 
imaginary smooth surface, but rather being recognized 
at different heights. This is also cause of the double 
curve effect (more apparent in the green curve) that is 
due to the lower surface particles cooling down for 
both the effect of surface dissipation and ground trans-
mission. 

3) Simulation performance: BM3LR involves 30’550 
particles and a time step DtBM3LR = 1.97 · 10-5 s. 
1s of BM3LR evolution is simulated in around 15s 
on the same hardware used for the other bench-
marks. BM3IR involves 60’432 particles and a time 
step DtBM3IR = 1.31 · 10-5 s. 1s of BM3IR evolu-
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TABLE 3. Parameters for BM3.

Parameter Value Parameter Value

Density 886 kg/ m3 Convective heat transfer 2 W m-2K-1

Viscosity 3.4 Pa s Emissivity 0.96

Specific heat 1500 J kg-1K-1 Eruption temperature T0 42 °C

Bed slope 0° Ambient temperature Ta 20 °C

Effusion rate 2.2×10-8m3s-1 Thermal conductivity 0.15 W m-1 K-1



tion is simulated in around 134s. Finally, BM3HR 
involves 106’724 particles and a time step 
DtBM3LR = 9.83 · 10-6 s. 1s of BM3HR  evolution 
is simulated in around 267s. 

 
 

4. CONCLUSIONS AND FUTURE WORK 
 
We have presented the first three benchmark tests in-

troduced by Cordonnier et al. [2016] simulated using 
GPUSPH. They state that the main drawback of SPH is the 
Weakly Compressible formulation and therefore a tuning 
of the parameters is needed to improve the quality of the 
simulations. Following this reasoning we mainly acted on 
the speed of sound and the boundary model in order to 
find a good compromise among accuracy, stability and sim-
ulation time. We have shown that for BM1 we have a strong 
convergence, while for the two benchmarks cases involving 
a fluid injection, larger discrepancies with the analytical 
results are present, but, we have proven the existence of 
a convergent behavior in most of the cases, and that the 
errors can be mitigated choosing a proper resolution for 
the spatial discretization. We have also encountered some 
issues related to under-resolved conditions of the prob-
lem, and again we have seen that they can be eliminat-
ed using finer discretization. 

One main general improvement will be given by the 
introduction of an open boundary model. Although pis-
tons are quite easy to implement, we have seen that it is 
worth to develop a more sophisticated way to implement 
a constant flux, in order to obtain a cleaner flow and a 
more stable simulation. For our future work we will fo-
cus on the introduction of the inlet feature, which 

should lead to significant improvements on the results for 
BM2 and BM3.  

Anyway, the biggest obstacle to reproduce the BM3 test 
case has been the incomplete description of the problem 
setup from Cordonnier et al. [2016], with respect to the ther-
mal boundary conditions; while this can be partially solved 
referring to the tests from which the benchmark setup is 
taken [Garel et al., 2012]. We believe that more complete 
benchmarks should be developed.  

Cordonnier et al. [2016] also set up a fourth benchmark 
test (BM4), regarding experimental lava flow and the sim-
ulation involves realistic lava parameters. Before passing 
to real lava we need to be sure that the first three tests are 
reproduced in a good way that has been preliminary done 
here. We measured the performance of GPUSPH report-
ing the simulation times; which are around two orders of 
magnitude lower than what required by naïve imple-
mentations of the WCSPH method, as demonstrated by 
Hérault et al. [2010]. Further improvement will be sought 
in the next work introducing open boundaries, which will 
contribute to reduce the noise content within the simu-
lation and have simpler setups. The inlet will also give ad-
vantage in terms of performance and robustness. In fact, 
the high viscosity values that will be involved in BM4 re-
quire the adoption of the semi implicit integration 
scheme, recently introduced in GPUSPH [Zago et al., 2018]; 
in that case, we shown that the performances of the semi 
implicit scheme have a strict dependence on the number 
of particles involved in the simulation, then simpler ge-
ometries obtained substituting the piston structure with 
an open boundary will be more suited for the adoption of 
the semi implicit scheme. 
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