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Abstract  
 
This paper investigates the characteristic of the ionospheric delay and forecasting using 
modified statistical Holt-Winter method over Malaysia. This was carried out by using dual 
frequency GPS Ionospheric Scintillation and TEC Monitor (GISTM) receivers installed at the 
National University of Malaysia (UKM) (geographic coordinates 2.55°N, 101.46°E and 
geomagnetic coordinates 7.10°S, 174.05°E), and Langkawi national observatory (Langkawi) 
(geographical coordinates 6.19°N, 99.51°E and geomagnetic coordinates 3.39°S, 172.42°E), 
during 2011. In this work, the Holt-Winter forecasting method is modified to provide a better 
forecasting result over Malaysia. The diurnal, monthly, and seasonal variations of actual 
ionospheric delay have been analyzed and compared with forecasted ionospheric delay. Based 
on the results, the diurnal variability of ionospheric delay was maximal mostly between 12:00–
17:00 LT, and minimal nearly at 05:00 LT. The maximum monthly ionospheric delays occurred 
in October, which is attributed to the geomagnetic storm disturbance that caused increase in 
ionospheric delay. The lowest seasonal ionospheric delay occurred in the summer and the 
highest was during the equinox. The maximum ionospheric delay on a quiet day was around 
41.9 TECU, while it reached up to 86.6 TECU during the geomagnetic storm. The Holt-Winter 
method exhibited the highest difference between the measurements and the forecasts in 
March, with an error of 6%. Hence, the modified Holt-Winter method forecast ionospheric 
delay effectively during quiet and disturbed periods over Malaysia.. 
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1. Introduction 

 
The Earth’s ionosphere is the ionized region of the upper atmosphere consisting of different ionized layers (D, 

E, and F). The electron concentrations reach their highest values at F layer, which is largely affects the radio waves 
propagation. The Total Electron Content (TEC) is an important ionospheric parameter measuring the total number 



of electrons in a column of one square meter cross section along the path from satellite to receiver [Langley, 2000; 
Abdullah et al., 2009]. The ionospheric TEC is a notable source of error that disrupts the accuracy of the global 
positioning system (GPS) signals passing from the satellite to the ground by changing the velocity of the propagated 
signals causing ionospheric delay. The ionospheric delay changes with the consideration of factors including the user 
location, the elevation angle, the time of day, the seasons of the year, and the solar cycle. During high solar activity, 
the delay can generate vertical errors in the range of 5 and 15 m, and it can reach up to 100 m in particular conditions 
[Klobuchar, 1991]. In the low latitude and equatorial regions, the variations of the TEC are recognised to be high 
when compared with other regions such as mid-latitude and high-latitude. The ionospheric delay in equatorial 
regions is subject of day-to-day variability and is a challenging problem for ionospheric modelers [Kumar et al., 
2016]. Therefore, investigation the ionospheric delay and identification of the precise and accurate forecasting 
model of transionospheric propagation errors are essential for precise measurements and further contributes 
valuable information to satellite and space probe navigation, space geodesy, radio astronomy and other applications. 

A number of empirical models have been developed to effectively forecast ionospheric delay variability at various 
regions worldwide, such as the Bent model [Bent et al., 1975], Global Ionospheric Maps (GIMs) [Mannucci et al., 
1998], and the International Reference Ionosphere (IRI) model [Bilitza, 2001], which is widely used in different 
scientific areas and continuously developed and updating. Generally, the ionospheric delay error correction for 
single frequency GPS receivers is done using the broadcast model, with the accuracy ranging from 50% to at most 
60% [Klobuchar, 1996]. Further techniques have been developed for ionospheric prediction purposes such as the 
Autoregressive Moving Average (ARMA) method, and the autocovariance that is used in forecasting the TEC time-
series in various stations over Europe, demonstrating a precision forecast in the mid latitudes [Krankowski et al., 
2005; Stanislawaka and Zbyszynski, 2002]. Furthermore, the autocovariance forecasting procedure was used to 
forecast ionospheric delay in disturbed conditions with acceptable precision [Stanislawska and Zbyszynsk, 2001; 
Stanislawska and Zbyszynsk, 2002]. A number of researchers have used self-consistent and neural network models 
for forecasting the TEC over the equatorial region [Williscroft and Pool, 1996; Oyeyemi et al., 2006; Habarulema et 
al., 2009, Klimenko et al., 2011]. Later, Suwantragul and other researchers demonstrated the application of the Holt-
Winter method in forecasting the ionospheric delay over Chiang Mai in Thailand using the GPS-TEC measurements 
[Suwantragul et al., 2003]. Five-day forecasts were generated by the Holt-Winter method and compared with the 
observed data. The method was determined to be capable of predicting ionospheric delays and thus enhancing 
positional accuracy up to 50%. Since the study of the ionospheric delay and forecasting is a new subject in the 
equatorial region, particularly in Malaysia, a precious model has become essential. Therefore, the study of 
ionospheric error and forecasting is very important and could help in representing the model error of the data 
assimilation, which is useful for improving ionospheric models, it is also important to identify and select a suitable 
model in order to provide GPS data correction to GPS users and to improve the accuracy performance of GPS 
positioning as well as to assist the future development of satellite-based augmentation system (SBAS) in Malaysia. 

In this research, the Holt-Winter method is modified and implemented to forecast ionospheric delay accurately. 
The variations in the diurnal, monthly and seasonal ionospheric delay were estimated from the GPS Ionospheric 
Scintillation and TEC Monitor (GISTM) receiver and compared with the ionospheric delay forecast using the 
statistical Holt-Winter method over the UKM and Langkawi stations. Besides the differences in ionospheric delay 
observed during geomagnetic storm disturbances were investigated. 

 
 

2. Data and method of analysis 
 
The GPS-TEC data utilized in this work were inferred from the dual-frequency GISTM receivers installed at UKM 

station (geographic coordinates 2.55°N, 101.46°E and geomagnetic coordinates 2.55°N, 101.46°E), and Langkawi 
station (geographic coordinates 6.19°N, 99.51°E and geomagnetic coordinates 3.39°S, 172.42°E) in 2011. The GISTM 
receiver is capable of tracking up to 11 GPS signals at both L1 (1575.42 MHz) and L2 (1227.6 MHz) frequencies. A 
50 Hz measurement was used at the amplitude and phase, and a 1 Hz measurement was used for the divergence of 
satellite’s code/carrier. The GPS data was analysed using an elevation angle greater than 20° because the GPS signal 
suffers from significant fluctuations due to the multipath effect [da Silva and Camargo, 2010], this multipath effect 
appears with a small elevation angle. The lock time shows the amount of time the receiver was restricted to the 
carrier phase on L1 and L2 (L1, L2 lock time), the measurement data for L1 and L2 are restricted for over 240 seconds 
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(4 minutes). This time is required by the GISTM receiver for the detrending High Pass Filter (HPF) to reinitialise when 
the lock to the carrier phase is lost. The application of a dual-frequency pseudorange and carrier phase allows us 
the slant TEC (STEC) through the line of sight. The GISTM receiver provided the STEC data every 60 seconds, the 
STEC was determined from the Receiver Independent Exchange (RINEX) format observation files obtained from 
the GISTM. The GPS RINEX files were processed using the analysis software for GPS-TEC developed by Gopi Seemala 
at Boston College’s Institute for Scientific Research [Seemala and Valladares, 2011]. The software is available online 
at http://seemala.blogspot.com. The GPS-TEC analysis software uses the phase and code measurements for both L1 
and L2 frequencies in order to calculate the relative STEC values. Then the absolute values of STEC are obtained by 
including the differential satellite biases published by the University of Bern and the receiver bias that is calculated 
by minimizing the TEC variability between 02:00 and 06:00 LT [Doherty et al., 2004; Habarulema et al., 2013]. The 
bias free TEC is given in ASCII files together with the time, elevation angle, azimuth angle, IPP-longitudes and IPP-
latitudes parameters. The VTEC is computed by averaging the TEC for individual satellites in view. The converted 
VTEC in meter unit is termed as vertical ionospheric delays [Abe et al., 2017]. Additionally, the ionospheric delay 
was approximated using Eq. (1) as shown below 

 

(1)  
 

where 𝐼�� , is the ionospheric delay in metres, with the carrier frequencies f1 = L1 and f2 = L2. 
The Holt-Winter method is a statistical short-term method that utilises mathematically recursive functions to 

forecast ionospheric delay trend behaviour [Makridakis et al., 1982]. It uses a time-series with repeated trend and 
a seasonal pattern to make the forecasting on the assumption that the future will follow a similar pattern. The 
exponential smoothing function method is used to minimise the data fluctuations of the time-series to offer a 
clearer point of view of the time-series. Moreover, it can forecast values of future data in the time series by giving 
the best way to derive accurate readings. Three smoothing constants or weights, including 𝛼, 𝛽 and 𝛾 are suitable 
for a certain period in updating the components. Basically, 𝛼, 𝛽 and 𝛾 are used to be 0.2 in the basic Holt-Winter 
equations. The Holt-Winter method includes the Multiplicative and Additive seasonal models. The Multiplicative 
model is the smoother and more reliable model for forecasting in the equatorial region over Malaysia when 
compared with the Additive model [Elmunim et al., 2015]. Therefore, the Multiplicative model was used in this 
research. In order to improve the accuracy of the method, the Holt-Winter method equations were modified by 
identifing some certain smooth coefficients values and added them to the equations. The smooth coefficients 
founded were 0.9, 0.1, and 0.1 for 𝛼, 𝛽 and 𝛾, respectively. The method was modified and tested in UKM and Langkawi 
stations, resulting in more accurate forecasts than the basic equation results. The Holt-Winter (Multiplicative) 
method equations are as follows:  

 
 

                                                                        (2) 
 

            𝑏𝑡 = 𝛽 (𝐿𝑡.       − 𝐿𝑡‒1) + (1+ 𝛽)𝑏𝑡‒1 (3) 
 

(4) 
 

   𝐹𝑡 = (𝐿𝑡‒1+ 𝑏𝑡‒1)𝑆𝑡‒1 (5) 
                                                               

𝐹𝑡+𝑚 = (𝐿𝑡 + 𝑏𝑡𝑚)𝑆𝑡‒𝑠+𝑚 (6) 
 

 
where 𝐿𝑡 is the level; 𝑏𝑡 is the trend; 𝑆𝑡 is seasonal; 𝑌𝑡 is the VTEC, while t is the time period for the 𝐿𝑡, 𝑏𝑡, 𝑆𝑡 and 𝑌𝑡  
components; 𝐹𝑡 is the forecasting value of a period ahead; 𝐹𝑡+𝑚, is the forecasting period. The smoothing coefficients 
𝛼(0.9), 𝛽(0.1), and 𝛾(0.1) are the level, trend and seasonal, respectively; m is the forecast period and s is the seasonal 
duration. The seasonal initial value and the levels of the seasonal duration are determined using Eqs. (7) and (8) 
below. 

𝐼�� = 40.3𝑉𝑇𝐸𝐶� 1�²² − 1�¹² �

�� ��𝑆𝑡 = 𝛾          +(1− 𝛾)𝑆𝑡‒𝑠

𝐿𝑡 = 𝛼          (𝑌𝑡 − 𝑆𝑡‒1) + (1− 𝛼)(𝐿𝑡‒1 + 𝑏𝑡‒1)�� ��⁻¹
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                                                                   (7) 

 
 

                                                    (8) 
 

 
where S1 is the initial value of the seasonal component; Y1 and L1, are the initial values of the VTEC and the level, 
respectively; Ls is the level of seasonal duration s. 

In order to make the forecast, the data of three days were used to forecast the following day. The Mean 
Absolute Percentage Error (MAPE) was utilised to define the error between the forecast results and the actual 
data in order to investigate the accuracy and validate the effectiveness of the method using the formula in Eq. 
(9) below:  

 
 

                                      (9) 
 

 
                                 (10) 

 
 

where n is the total observed value; PEt the percentage error; Ft the forecast value for period t; Yt represents the 
actual value. Considering that MAPE values less than 10% indicate that the method gives a highly accurate 
forecast, a range between 10–20% indicates that the method gives a good forecast, a range between 20–50% 
indicates a reasonable forecast, and lastly a range greater than 50% indicates that the method gives an inaccurate 
forecast [Lewis, 1982]. 

 
 

3. Results and discussion 
 
In the equatorial regions, the diurnal variations on quiet days normally vary according to photoionization 

production and the recombination losses associated with local solar radiation. The diurnal variation of the 
ionospheric delay at UKM and Langkawi stations during a typical quiet day on 12 May 2011, where the Kp ≤ 1, 
has been plotted to illustrate the comparison between actual delay (GPS-TEC) and forecast (Holt-Winter) at 
UKM and Langkawi stations and is shown in Figure 1. The ionospheric delay is displayed on the vertical axis in 
TECU unit, and local time (LT) is displayed on the horizontal axis in hours. Malaysia’s local time is eight hours 
ahead of universal time (UT). The diurnal pattern of the ionospheric delay observes an obvious single peak. It 
exhibits a steady increase from morning to a post-noon maximum between 12:00-17:00 LT and then drops to 
reach a minimum during sunrise at 05:00 LT. Adewale et al. [2011] investigated the diurnal variation of the TEC 
over Lagos stations in Nigeria. They observed peaks from 15:00 to 17:00 LT, and the minimum at 06:00 LT. The 
diurnal variation at Bangkok, Thailand, reported by Arunpold et al. [2014], was observed with the trending peak 
occurring in the post-noon time period between 14:00 and 18:00 LT during 2011. Therefore, this indicates that 
the peaks of ionospheric delay are associated with the smaller chemical losses at the higher altitudes and the 
production of solar radiation during the post-noon time [Kelly et al., 1996]. The diurnal behaviour of the actual 
and forecast ionospheric delays at UKM and Langkawi stations generally demonstrate a good agreement. The 
Holt-Winter method underestimates the agreement between the actual ionospheric delay during the early 
morning time. The ionospheric delay at UKM station was slightly higher than Langkawi station. The maximum 
ionospheric delay at UKM station reached up to 41.9 TECU while at Langkawi station it reached 40.9 TECU. The 
lower value of the ionospheric delay was 4.7 TECU at both UKM and Langkawi stations.  

 
 
 

𝑆1=     , 𝑆2 =      , ... , 𝑆𝑠 =�¹ �� �² �� �� ��

𝐿𝑠 =      (𝑌1+ 𝑌2 + ��� + 𝑌𝑠)¹ �

MAPE =     � ⃒ 𝑃𝐸𝑡 ⃒ ¹ �
� 

�=1

𝑃𝐸𝑡 =�         � × 100𝑌� ‒ 𝐹� 𝑌�



3.1 Monthly variation  
 
The hourly monthly mean of ionospheric delay variations at UKM and Langkawi stations are illustrated in Figure 

2 and Figure 3, respectively. In general, it can be observed that the overall actual and forecast ionospheric delays at 
both stations are comparable in monthly patterns during the year. The ionospheric delays begin to steadily increase 
from February to reach a maximum during March and April, and then slightly decrease until August before increasing 
again in September, October, and November. The Holt-Winter method shows a good agreement in the monthly 
variations with the actual GPS-TEC. The forecast trends were nearly comparable to the GPS-TEC at both the Langkawi 
and UKM stations, except during the peak hours in the post-noon time, which showed a slight underestimation in 
March, September, October, and November at UKM station and in March, July, August, and October at Langkawi 
station. Compared to the Langkawi station, the UKM station recorded higher ionospheric delays during March, August, 
September, and October. Considering the results obtained, it can be observed that the highest ionospheric delays 
occurred in the equinoctial months, which are March, April, September, October, and November, whereas the lowest 
ionospheric delays occurred in the solstice months of January, June, and July. Similar findings over India, Thailand, 
Kenya, Uganda, and Ethiopia were stated by various researchers [Bhuyan and Borah, 2007; Kenpankho et al., 2011; 
Olwendo et al., 2012; Arunpold et al., 2014; Tariku, 2015a; Tariku, 2015b; Panda et al., 2015; Kumar et al., 2016]. 
They reported that the maximum monthly variation was in March and the minimum was during June and July. The 
highest monthly diurnal peak at both Langkawi and UKM stations was 69.5 TECU, which was likely influenced by 
geomagnetic disturbances in October, whereas the comparable peak during quiet periods was 32.3 TECU.  
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Figure 1. Figure 1. The hourly diurnal variation of the actual (GPS-TEC) and forecast (Holt-Winter) ionospheric delay during a quiet 

day at UKM and Langkawi stations.
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Figure 2. The monthly variation of the actual (GPS-TEC) and forecast (Holt-Winter) ionospheric delay at UKM station.

Figure 3. The monthly variation of the actual (GPS-TEC) and forecast (Holt-Winter) ionospheric delay in Langkawi station.



In the year 2011, a number of moderate geomagnetic storms occurred. August and September were characterised 
by a number of medium storms. Sub-major geomagnetic storms occurred on 6 August and 26 September, with 
minimum values of Dst around -113 nT and -103 nT, respectively. These moderate events did not significantly affect 
the diurnal GPS-TEC and therefore the forecast trends. However, the geomagnetic storm that occurred on 25 to 26 
October had a major impact, the details of which will be described in later sections. 

In order to validate the forecasting method, the MAPE is used to measure the forecasting errors and determine 
the forecasting method performance. The diurnal hourly average of MAPE variations, as well as the monthly MAPE 
averages at UKM and Langkawi stations are shown in Figure 4 and Figure 5, respectively. The maximum MAPE for 
all the months of 2011 was observed during morning time between 00:00 LT and 07:00 LT, for both stations where 
the MAPE value was around 8%. In Figure 4 (b) it can be seen that in UKM station the MAPE’s maximum monthly 
average was observed in January, March, and September with a value of about 5.8%, while the minimum was in April 
and December at around 2.2%. At Langkawi station, the MAPE’s maximum monthly average was observed in 
January, March, and July with a value of about 6%, while the minimum was observed in April and December with 
a value of about 1.7% as shown in Figure 5 (b).  
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Figure 4. The diurnal hourly average of MAPE variation (a) and the monthly MAPE average (b) at UKM station.



3.2 Seasonal variation  
 
To investigate the seasonal variation of ionospheric delay, the diurnal variation of seasonal mean values were 

calculated for all days of the season, where the seasons are described as summer (May, June, July, August), winter 
(January, February, November, December), and equinox (March, April, September, October). The seasonal actual 
and forecast ionospheric delay variations at UKM and Langkawi stations are given in Figure 6. It can be depicted that 
the maximum value of ionospheric delay was observed during the equinox, where this is due to the sun shines 
directly over the equatorial region during the equinoctial months causing a strongest ionization over the ionosphere. 
The minimum ionospheric delay value was observed during the summer, and that is could be due to unequal heating 
of the two hemispheres. It is produced by the transport of the neutral constituents from summer to winter 
hemisphere (hot to cold), which reduces the recombination rate in winter compared to the summer and leads to a 
relatively increase of electron concentration in the winter than the summer. Moreover, the change of the direction 
of the neutral wind is another possible cause for this seasonal phenomenon. A meridional component of neutral 
wind apparently blows from the summer to the winter hemisphere that can reduce the ionization crest value during 
the summer solstice where it blows in an opposite direction to the plasma diffusion process originating from the 
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Figure 5. The diurnal hourly average of MAPE variation (a) and the monthly MAPE average (b) at Langkawi station.



magnetic equator. Consequently, during the equinox meridional wind blows from the equator to polar regions 
causing a high ionization crest value. Other researchers like Galav et al. [2010], Asmare et al. [2014], and Kumar et 
al. [2016] studied the seasonal variation in the Indian region, and they found that the maximum seasonal variation 
occurred during the equinox while the minimum value was in summer. In this research, the maximum seasonal 
ionospheric delay was observed in equinox at approximately 54.2 TECU at UKM station and 47.6 TECU at the 
Langkawi station and dropped down to a minimum of 4.7 TECU at both stations. In summer, the maximum 
ionospheric delay reached up to 35.2 TECU at UKM station and 33.3 TECU at Langkawi station, while it reached a 
minimum of 1.9 TECU at both stations. Generally, the Holt-Winter method exhibited good agreement with actual 
GPS-TEC for all seasons and in both stations, except for a slight underestimation around 1.9 TECU which was 
observed in the peak hours of the summer season at Langkawi station.  
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Figure 6. The seasonal variation of the actual (GPS-TEC) and forecast (Holt-Winter) ionospheric delay at UKM and Langkawi stations.



The MAPE of the hourly mean seasonal variation at UKM and Langkawi stations are shown in Figure 7 (a) and 
(b), respectively. The highest value of MAPE observed in the summer, with values reaching up to 5.7% and 5.9% at 
UKM and Langkawi stations, respectively. The maximum value of MAPE observed in 04:00 LT at UKM station and 
in 08:00 LT at Langkawi station. The averages of the seasonal MAPE values at UKM and Langkawi stations are shown 
in Figure 7 (c). During the summer, we found that MAPE was 3% at UKM station and 4.3% at Langkawi station, while 
in equinox it was 1.9% and 2.4% at UKM and Langkawi stations, respectively. Generally, Langkawi station had a 
comparatively higher value of MAPE than UKM station. 
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Figure 7. The seasonal variation of MAPE value at UKM station (a) and Langkawi station (b) and the seasonal MAPE average at UKM 

and Langkawi stations (c).



3.3 Disturbed period  
 
The geomagnetic storm occurred between 25 and 26 October 2011 (24 to 25 October in UT) was classified as an 

intense or major storm, were the Dst value reveals a sharply decrease to -136 nT and the Kp index reachs its 
maximum to 7 approximately. The diurnal variation of the actual ionospheric delay during the disturbed days from 
23 to 28 October 2011 at UKM and Langkawi stations are shown in Figure 8. The geomagnetic storm commenced 
on 25 October and significantly increased the ionospheric delay from 15:00 LT until the next day at 04:00 LT. 

The peak in diurnal variation of the actual GPS-TEC was greatly enhanced on 25 October, when it reached up to 
86.6 TECU at UKM station and 80.9 TECU at Langkawi station. Comparing the diurnal ionospheric delay during the 
disturbed periods, even before and after the geomagnetic storm, with the quiet day of 12 May as discussed earlier 
in Figure 1, it was found that the ionospheric delay was less during the quiet day than the disturbed periods. During 
the disturbance of the geomagnetic storm, there is an input of energy into the polar ionosphere, which changes 
several thermospheric parameters, such as the composition, temperature, and circulation. When the composition 
changes it directly affects the electron concentration in the F2 region, and then the TEC, while the circulation 
spreads the heated gas to lower latitudes. Basu et al. [2007] reported that during major geomagnetic storms the 
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Figure 8. The daily variation of actual ionospheric delay (GPS-TEC) during 23–28 October 2011.



currents associated with inner magnetospheric electric field directed in the dusk-to-dawn direction can no longer 
shield the mid-latitude and equatorial latitudes from the high-latitude electric fields, and this leads to instantaneous 
penetration of electric fields from high latitude to the middle and the equatorial ionosphere. Consequently, the 
particle transport and the prompt penetration of the high-latitude electric field to lower latitude which travel 
equatorward with high velocities during the storm can cause an increase in the TEC value and the ionospheric delay. 

The diurnal variation of the actual ionospheric delay (GPS-TEC) during the geomagnetic storm disturbance is 
shown in Figure 9. The top panel corresponds to the ionospheric delay hourly variations at the UKM and Langkawi 
stations; the second panel corresponds to the southward component of the interplanetary magnetic field (IMF) Bz. 
The next two bottom panels correspond to different geomagnetic perturbation indices: the Kp and Dst indices, 
respectively. The Dst and Kp indices were obtained from the World Data Centre (WDC) Kyoto, Japan. 
http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html and the IMF Bz data was obtained from the OMNI database 
http://omniweb.gsfc.nasa.gov/form/dx1.html. During the days of geomagnetic storms, a significant increase in the 
diurnal variations of the ionospheric delay was observed at both stations. During the geomagnetic storm’s main 
phase on 25 October, the ionospheric delay reached up to 86.6 TECU. The geomagnetic storm, preceded by a sudden 
commencement event, occurred at 01:00 LT on 25 October (17:00 UT, 24 October). The IMF Bz turned sharply 
southward at 03:00 LT on 25 October (19:00 UT, 24 October), and attained a minimum value of -13 nT at 07:00 LT 
on 25 October (23:00 UT, 24 October), before gradually rising to reach its maximum value of 22 nT at 00:00 LT on 
26 October (16:00 LT, 25 October). The Kp index started to increase before the IMF Bz declined. Moreover, it 
continued to increase even when the IMF Bz attained its maximum positive value [Davis et al., 1997]. The Dst started 
to decrease from 05:00 LT on 25 October (21:00 UT, 24 October) and dropped to a minimum value of -137 nT at 
09:00 LT (01:00 UT) on 25 October. After the commencement of the geomagnetic storm, the Dst trend did not recover 
to its initial value until three days later. At high latitudes, the electric field penetration leads to the formation of 
ionospheric electron density irregularities in the equatorial region. Therefore, the greatest decrease in the Dst value 
was observed when the sudden intensification of the ring current occurred [Basu et al., 2007]. The positive value of 
the Dst mainly occurs due to the compression of the dayside magnetosphere during the initial phase of the 
geomagnetic storm, and the negative value is due to magnetic reconnection and the formation of the ring current 
during the main phase of the geomagnetic storm. Several studies have discussed the perturbations during a 
geomagnetic storm in diurnal variations [Rama Rao et al., 2009; Kumar et al., 2014]. Zou et al. [2013] used a GPS-
TEC to observe the same storm on 25 October 2011, and they reported that the ionospheric delay increased at a 
higher rate compared to that seen during the quiet time. This effect was more clearly observed at lower latitudes 
than at higher latitudes. Other researchers studied the effects of the same geomagnetic storm on 24–25 October 
2011 on the ionospheric TEC for two East African stations; they found that for both stations, the diurnal variations 
showed a decrease during the storm period [D’ujanga et al., 2013]. 

Figure 10 (a) shows the variations of ionospheric delay forecasting during the disturbed period from 23 to 28 
October 2011 for both the UKM and Langkawi stations. The vertical axis shows the ionospheric delay in TECU while 
the horizontal axis shows the hourly mean of the disturbed period days. The forecasting variations in disturbed 
period ranged from 3.8 – 80.9 TECU at the UKM station and from 2.8 – 80 TECU at the Langkawi station. In both 
stations, the maximum value for ionospheric delay forecasting was observed during the geomagnetic storm day, 25 
October. The percentage of the MAPE in Figure 10 (b) shows that the UKM station had a comparatively lower 
forecasting error than the Langkawi station. The maximum forecasting error for the UKM station was 7.3%, while 
it was 8% at the Langkawi station. The MAPE value was slightly higher during the disturbed period than the quiet 
period due to the increase of ionospheric delay during the intense geomagnetic storm that occurred on 25–26 
October. This increase affected the forecasting and led to a slightly higher forecasting error. 

However, based on the result of the ionospheric delay variability during the quiet and disturbed periods, it can 
be observed that there were no significant changes in the trends during these two periods. The same finding was 
presented by Habarulema et al. [2013], for their study of the African equatorial region; they observed two severe 
geomagnetic storm events which occurred in November 2004. Nonetheless, even a slight increase must be taken into 
consideration, as this has the effect of comparatively increasing the forecasting error compared with the results 
obtained during the quiet periods. Thus, this will lead to a slight decrease in the accuracy of the forecasting method 
during the disturbed periods. 
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Figure 9. The diurnal variation of ionospheric delay at UKM and Langkawi stations and the parameters of the IMF Bz component of 

the interplanetary magnetic field; the Kp index; and the Dst index of the geomagnetic activity.



4. Conclusion 
 
This research presents the variability of ionospheric delay and forecast using the statistical Holt-Winter method 

in Malaysia over UKM and Langkawi stations for the year 2011. The results show that the diurnal variability of 
ionospheric delay has minimum value during sunrise at 05:00 LT and maximum during the post-noon time mostly 
between 12:00–17:00 LT. The Holt-Winter method forecast displayed a good agreement, with a slight 
underestimation compared to the actual GPS-TEC observed in both UKM and Langkawi stations for the entire year. 
The maximum and minimum monthly ionospheric delay were observed on March and July, respectively. However, 
the ionospheric delay had a significant increase in October due to the geomagnetic storm effect. UKM station showed 
a higher ionospheric delay than Langkawi station. The ionospheric delay was lower during the summer season and 
higher during the equinox season. The maximum ionospheric delay forecast was observed during the geomagnetic 
storm day on 25 October in both stations. Comparing the MAPE values during quiet and disturbed periods, it can 
be observed that the MAPE in disturbed periods is slightly higher than the MAPE during quiet periods. However, 
since it is still less than 10% it is considered to be an accurate forecasting result. Langkawi station had a relatively 
higher MAPE than UKM station. The obtained results showed the effectiveness of the Holt-Winter method in 
forecasting ionospheric delay, providing good results in the diurnal, monthly and seasonal variations, and also 
during the disturbed period. These results could be useful in representing the model error using data assimilation. 
Consequently, this could be also useful for developing the regional ionospheric delay model for better understanding 
and forecasting over Malaysia. Besides it might help to improve the accuracy and the performance of GPS positioning 
in equatorial regions, and particularly in Malaysia. 
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Figure 10 (a) the variation for ionospheric delay forecast during the disturbed days (b) The MAPE’s variances during the disturbed 

days for both the UKM and Langkawi stations.
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