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Abstract  
 
North-west Himalayas and its adjoining regions have been experiencing deadly earthqaukes from 
time to time and are home for a large portion of population of Indian subcontinent. Knowledge of 
regional path attenuation and site parameters are prerequisite while attempting seismic hazard 
studies towards minimizing damages during future earthqaukes for a region. Present work focuses 
on the determination of path attenuation and site characteristics of earthqaukes recording stations, 
located in the north-west Himalayas and its adjoining regions, within India. It is done using two-
step generalized inversion technique. In the first step of inversion, non-parametric attenuation 
curves are developed by constraining attenuation to be a smooth decaying function with hypocentral 
distance. Qs = (105 ± 11)f (0.94 ± 0.08) as S wave quality factor is obtained indicating that the region is 
seismically active having high degree of heterogeneities in the crustal medium. In the second step 
of generalized inversion, site amplification curve, at each recording station, is computed as the ratio 
of site spectral amplitude of horizontal and vertical components. In addition, based on Horizontal 
to vertical spectral ratio (HVSR) method, predominant frequency of each recording station is 
calculated. Values of predominant frequencies based on HVSR and generalized inversion are found 
matching for each of the recording station. Based on obtained predominant frequency, site class of 
101 recording stations, which at present are absent, are determined in this work. Determined path 
attenuation as well as site parameters can be collectively used for developing regional ground motion 
models and subsequently for seismic hazard studies for the selected region. 
 
Keywords: Earthquake; Path attenuation characteristics; Quality factor; site characteristic; 
Generalized Inversion; HVSR. 
 
 

 
 
1. Introduction 

 
The Himalayan arc, extending approximately 2500km between Kashmir and Arunachal Pradesh within India, is 

one amongst the most seismically active regions across the globe. High level of seismic activity of this region can be 
understood based on induced damages witnessed primarily during 4 great earthquakes (EQs) including 1897 Shillong 



EQ, 1905 Kangra EQ, 1934 Bihar-Nepal EQ and 1950 Assam EQ, which occurred in the last 120 years. Based on 
seismotectonic characterization, the entire Himalayan belt was subdivided into three distinct segments namely; the 
North-western, the Central and the Eastern Himalayas [Bungum et al., 2017]. The Himalayan region and its foothills, 
within India come under seismic zone IV and V as per IS 1893: [2016], indicating regions of high to very high seismicity. 
Therefore, the necessity of precise seismic hazard assessment of this region is of great importance. 

Intensity of ground shaking during an EQ, at a particular site is a collective effect of source, path and site parameters. 
Source parameters include magnitude, fault mechanism, stress drop and rupture process. On the other hand, path 
parameters account for the reduction in the energy of seismic waves (called attenuation of seismic waves) during its 
propagation in the medium. Attenuation of seismic waves is caused due to scattering of elastic waves in the 
heterogeneous medium and anelasticity of the earth medium, and is measured in terms of a dimensionless parameter 
known as quality factor (Lay and Wallace, 1995). Another important parameter which influences the nature of ground 
motion during an EQ is the site parameter. It accounts for the modification in amplitude, frequency content and 
duration of the incoming seismic wave by subsurface medium. The determination of aforementioned EQ parameters 
at regional level is important for the development of region specific synthetic ground motion models, which can further 
be used for region/site specific seismic hazard assessment [Baro et al., 2018]. Above EQ parameters are estimated in 
this work from regional ground motion records using an inversion approach based on generalized inversion method 
[e.g. Andrews, 1986; Castro et al., 1990; Oth et al., 2009].  

In order to understand the ongoing seismicity of various regions within India, the Government of India had installed 
a number of EQ recording stations in different parts of the country. All these recording stations and corresponding 
ground motion records, since 2004, are handled by PESMOS (Program for Excellence in Strong Motion Studies). At 
present, PESMOS manages EQ records from 300 recording stations which are distributed in the northern and north-
eastern parts of India as well as in the Andaman and Nicobar Islands [Kumar et al., 2012]. Thus, PESMOS is considered 
as the most significant resource of ground motion records in India. Along with ground motion data, PESMOS provides 
information regarding magnitude and localization of EQs. However, it must be highlighted here that PESMOS database 
is lacking in terms of accurate information about subsurface for majority of recording stations [Kumar et al., 2012; 
Harinarayan and Kumar, 2018]. Site class (SC) given by PESMOS is based on physical description of surface materials 
and local geology following Seismotectonic Atlas of India (GIS 2000) and Geological Maps of Indian [GSI, 1998] and 
hence not based on actual field investigation (Kumar et al. 2012). In the absence of accurate information about local 
soil, utilizing EQ records from PESMOS database for region specific seismic studies is a major challenge. Subsurface 
exploration studies on some of the recording stations in north-west Himalayas by Pandey et al. [2016a; b] had 
highlighted the above limitation in SC given by PESMOS. There are recording stations which are classified to be located 
on rock site as per PESMOS but were found to be located on soil sites by Pandey et al. [2016a; b]. In another work, 
Harinarayan and Kumar [2018] attempted site classification of 90 recording stations of PESMOS located in the north-
west Himalayas and reported mismatch with respect to SC given by PESMOS. 

In the present study, EQ records from PESMOS recording stations located in the north-west Himalayas and its 
foothills within India (including the states of Himachal Pradesh, Uttarakhand, Punjab, Haryana and New Delhi), are 
analysed for estimating path attenuation and site characteristics separately. It is done based on two-step generalized 
inversion (GINV) of the S-wave Fourier spectra (hereafter referred to as GINV). In the first step, attenuation curves are 
developed using a non-parametric inversion approach [Castro et al., 1990; Oth et al., 2008] considering 207 ground 
motion records from 69 recording stations. In the conventional generalized inversion method [Andrews, 1986; Hartzell, 
1992], the second step of inversion calculates both site and source spectra, by inverting the S-wave (or Coda wave) 
spectra, corrected for the path parameter. This method, however, requires one or more reference sites (usually rock 
sites) in-order to remove the trade-off between the source and the site parameters [Andrews, 1986]. In the absence of 
subsoil information for a majority of recording stations managed by PESMOS as highlighted above, identifying 
reference site is not possible. For this reason, the site parameters are evaluated in the second step of inversion using 
a non-reference generalized inversion approach [Joshi et al., 2010; Harinarayan and Kumar, 2017b] based on 341 
ground motion records from 86 EQs recorded at 101 recording stations. Further, obtained site terms are compared 
with the one calculated from horizontal to vertical spectral ratios (HVSR), based on the same S-wave window as used 
earlier in GINV analysis.  

This study is one of its kinds, which systematically evaluates path attenuation and site parameters using a larger 
set of regional grounds motion records. Available studies on attenuation characteristics of north-western Himalayas 
are in fact based on few EQ records from limited recording stations. Sharma et al. [2015] determined the frequency 
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independent S-wave quality factor (Qs) for Delhi region using the coda normalization method based on ground motion 
records from 9 recording stations. In another study, Negi et al. [2015] estimated Qs for the Garhwal Himalayas (western 
part of Uttarakhand) using extended coda normalization method based on 40 ground motion records from 8 recording 
stations. Using a similar method as done by Negi et al. [2015], Singh et al. [2012] estimated Qs for the Kumaun Himalayas 
(eastern part of Uttarakhand) based on ground motions from 23 EQ events from 9 recording stations. In another study, 
Mukhopadhyay et al. (2014) estimated Qs for the Uttarakhand region using Multiple Lapse Time Window Analysis 
(MLTWA) method considering ground motions from 30 EQ events from 5 recording stations. Results of the 
aforementioned studies will be discussed in conjunction with those from the present study.  

Similar to path attenuation studies, very few studies on the determination of site characteristics from EQ records 
exist for this region. Nath et al. [2002] computed site terms using the aftershocks of the 1999 Chamoli EQ, obtained 
from 5 recording stations located in the Uttarakhand region. Similarly, Sharma et al. [2014] estimated site parameters 
for the Garhwal region of Uttarakhand using EQ records in context with generalized inversion and HVSR. In another 
work, Harinarayan and Kumar [2017] reported a comparative study on site characteristics that were computed using 
EQ records from Tarai region of Uttarakhand using multiple analytical approaches. Similarly, Harinarayan and Kumar 
[2018] computed site parameters for recording stations in the north-west Himalayas in terms of predominant frequency 
(fpeak) alone using Horizontal to vertical spectral ratio (HVSR) based on the response spectra of the entire accelerogram.  

 
 

2. Study area 
 
Present study area includes the states of Himachal Pradesh, Uttarakhand, Punjab, Haryana and New Delhi. 

It covers an area between 28º N to 34º N latitude and 75.8º E to 80.5º E longitude. According to 2011 Census, this 
region has a population of 96 million. From seismicity point of view, major seismotectonic features of the study area 
consist of three north-dipping thrust systems such as the Main Central thrust (MCT), the Main Boundary thrust 
(MBT) and the Himalayan frontal thrust (HFT) [Valdiya, 1981]. The MCT and the MBT run parallel to each other 
within north-western Himalayan region and were produced during the Cenozonic shortening [Malik and Nakata, 
2003]. The HFT is the youngest active thrust separating the Himalayan region and the Indo-Gangetic alluvial plain 
[Kumar et al., 2009]. The HFT, the MBT and the MCT so far have generated numerous major EQs in this region 
[Philip et al., 2014]. Other tectonic features include the Jhelum Balakot fault, the Drang thrust, the Lesser Himalayan 
Crystalline Nappes, the Jammu thrust, the Vaikrita thrust, the Karakoram fault, the Jwala Mukhi thrust, and the 
Ramgarh thrust. As a result of the presence of above mentioned seismic sources, the region has been experiencing 
repeated EQs. Two most damage inducing EQs in the region in the last 120 years include 1905 Kangra-Himachal 
Pradesh EQ (Ms=7.8) [Ambraseys and Douglas, 2004] and 2005 Muzzafarbad-Kashmir EQ (Mw=7.6) [Avouac et al., 
2006]. Both of these EQs had caused large number of casualties as well as damage to property. 1905 Kangra EQ 
killed more than 20,000 people and caused 15cm uplift in Dehradun region located 250km from the epicentre 
[Ambraseys and Bilham, 2000]. The 2005 Muzzafarbad-Kashmir EQ claimed more than 80,000 lives and caused 
extensive damages to buildings in Jammu and Kashmir regions [Kamp et al., 2008]. The 2005 Muzzafarbad-Kashmir 
EQ also triggered several landslides along the Jhelum and Neelum valleys in Kashmir region [Kamp et al., 2008]. 
Recent moderate EQs of 1991 Uttarkashi (Mw=6.8) and 1999 Chamoli (Mw=6.6) had occurred on the MCT [Harbindu 
et al., 2014]. The 1991 Uttarkashi EQ damaged 100,000 houses claiming 769 lives and triggered several landslides 
in the Uttarkashi region [Kayal, 1996]. The 1999 Chamoli EQ caused a huge landslide in Gopeshwar situated less than 
2km north-west of Chamoli city [Sarkar et al., 2001]. This EQ also caused shaking in Chandigarh and Delhi, located 
far away from the epicentre [Mundepi et al., 2010]. Based on the discussion, a clear understanding about the seismic 
status of the region and damaging characteristics of a seismic event can be developed. Findings from present work 
will be very helpful in arriving at accurate seismic hazard values towards minimizing future EQ induced damages. 

 
 

3. Database 
 
Ground motion records used in this study consist of three components accelerograms obtained from PESMOS 

database (http://www.pesmos.com/). The instruments used for recording EQs consist of internal AC-63 GeoSIG 
triaxial force balanced accelerometers and GSR-18 GeoSIG 18 bit digitizers with external GPS [Kumar et al., 2012]. 
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Further, ground motion recordings are done in trigger mode during each EQ with a sampling rate of 200 per second. 
For the present analysis, ground motion records of EQs happened between 2004 and 2017 in the earlier discussed 
region, as available on PESMOS are used. For estimating site characteristics, 341 ground motion records from 86 EQs, 
with magnitudes ranging from Mw=2.3 to 5.8 and having focal depths ranging from 2 to 80km are used. Further, 
these ground motion records were recorded at 101 recording stations, located in the hypocentral distance range of 
9 to 355km. Coordinates of each of the recording stations, used in this work are listed in Table 1. Further, details of 
EQs used for estimating site characteristics are summarized in Table 2.  

For estimating path attenuation however, only those EQs which are recorded in at least two recording stations 
within which at least one recording station is located within hypocentral distance equal to or less than a reference 
distance (section 4.2 for further details) are considered in the analysis. Thus, out of 341 ground motion records 
which are used for estimating site parameters as mentioned earlier, only 207 ground motion records satisfy the 
above mentioned reference distance criteria are used in determining path attenuation. Thus, the database for 
estimating path attenuation consists of 207 ground motion records from 32 EQs having magnitude in the range of 
3.1 to 5.5(Mw), with focal depths in the range of 3 to 55km and hypocentral distance in the range of 9 to 200km, 
recorded at 69 recording stations. Table 3 summarizes the details of the dataset used for estimating path attenuation. 
In addition, Figure 1 shows source-to-recording station path of the dataset used in the present study for estimating 
path attenuation.  

Figure 1. Map of the region under study with EQs (stars), recording stations (triangles), and paths (solid-lines).



3.1 Data processing  
 
Before a ground motion record is used for path attenuation or site characteristics determination, it is processed. 

All the EQ records are corrected by removing the baseline by a 5% cosine taper and a band-pass filtering using a 
Butterworth filter, between frequency range of 0.25Hz and 15Hz. Later, S-wave portion of the accelerogram is 
separated. The beginning of S-wave arrival is manually picked based on visual inspection. Time window duration of 
S-wave portion of the accelerogram is determined starting from 0.5s before the beginning of the S-wave and ending 
when 90% of the total seismic energy of the EQ record is reached [Bindi et al., 2009; Ameri et al., 2011]. Typical 
lengths of the S-wave time windows to be used for further analysis vary from 4 to 15s. For some of the records, where 
the S-wave window length obtained is longer than 15s, it is fixed to 15s in order to minimize coda wave energy in the 
analysing time window (Oth et al. 2008). Later, from the extracted windows, the Fourier amplitude spectra is 
calculated for each EQ record which is smoothened by applying the Konno and Ohmachi [1999] algorithm, with the 
smoothing parameter (b) as 20. Further, signal to pre-event noise (all having equal window length) ratio (SNR) for 
all the ground motion records is computed (similar to Wang et al. 2019). Figure 2 shows the example of SNR calculated 
for two ground motion records. Ground motion records with SNR≥5 [Ameri et al., 2011] are only considered for 
further analysis. At the end of the signal processing the ground motion waveforms are then used for the determination 
of path and site parameters based on two separate inversion procedures as described in the later sections. 
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Figure 2. Signal to noise ratios (black crosses) vs frequency for typical two records (a: Recording station CHP-Event: 
19/August/2008; b: Recording station PTH-Event: 19/September/2009). The median value of SNR for each frequency is 
indicated by black dots. 

a) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
b) 



4. Path attenuation  
 
In the first step of inversion, path attenuation curves (path attenuation in logarithmic scale versus hypocentral 

distance) are developed using a non-parametric approach where attenuation is constrained to decay smoothly with 
hypocentral distance. Detailed discussion can be found in following sub-sections. 

 
 
4.1 Methodology 
 
Following Castro et al. [1990], observed spectral amplitude [Uij(f,Rij)] of the horizontal portion of the 

accelerogram (obtained as the root mean square average of the east-west and north-south components), of EQj at 
recording station “i”, and at a particular frequency “f” can be modelled linearly as: 

 
 

             lnUij (f,Rij) = lnMj (f) + lnA(f,Rij) (1) 

 
Here, Mj (f) is a scalar, which is governed by the magnitude of the EQ (one value for each EQ), A(f,Rij) is the 

attenuation function which is independent of the magnitude of the EQ. In Eq. (1), A(f,Rij) incorporates both geometric 
spreading and anelastic attenuation variation with hypocentral distance. Moreover, A(f,Rij) in Eq. (1) is not limited 
to a particular functional form, instead, is assumed to decay smoothly with hypocentral distance (Rij) and take the 
value A(f,R0) = 1 at a reference distance (R0) [Castro et al., 1990; 1996; 2003]. Representation given by Eq. (1) has no 
factor representing site effect separately, and thus site effect is contained in both  and. Any rapid undulations in 
A(f,Rij) are assumed to be due to the absorbed site effects (Oth et al. 2008). Two weighing factors, W1 and W2 are 
incorporated in the Eq. (1) following Castro et al. [1990]. W1 is used to smoothen the path attenuation curve by 
supressing the undulations and thereby transferring any absorbed site effects in A(f,Rij) to Mj(f). Further, W2 is used 
to impose A(f,R0) = 1 constraint, as mentioned earlier. The value of W1 is chosen such that the site effects in the term 
A(f,Rij) are supressed but the change in the attenuation characteristics with hypocentral distance can be clearly 
observed [Oth et al. 2008]. 

Eq. (1) can be expressed as a linear system of the form Ax = B, where B is the data vector having the term 
lnUij (f,Rij), x is the vector having model parameters [lnMj (f) and lnA(f,Rij)], and A is the system matrix that relates x 
and B. The matrix formulation of Eq. (1) after incorporating the weighting factors W1 and W2 (Castro et al. 1990) 
takes the form as follows: 

 
 
 
 
 
 
 
 
(2) 

 
 
 
 
 
 
 

The hypocentral distances of the data set are discretized into number of bins of equal widths and the value of 
A(f,Rij) is computed for each bin. The width of the bins is selected such that there are sufficient numbers of data points 
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1 0 0 . …. 1 0 0 . …. ln A1 ln U11

0 1 0 . …. 1 0 0 . …. . .

. . . . …. . . . . …. . .

1 0 0 . …. 0 1 0 . …. . = ln Uij

. . . . . 0 1 0 . …. ln A10 .

. . . . . . . . . . . ln M1 0

. . . . . . . . . .

w1 0 0 . …. . . . . …. . 0

-w2/2 w2 -w2/2 . …. . . . . …. . 0

0 -w2/2 w2 -w2/2 …. . . . . …. . 0

. . . . …. . . . . …. ln MN .

(A) (X) (b)



in every bin. Figure 3 shows the number of EQ records in each bin of the present data set. It can be observed from 
Figure 3 that there are very less EQ records available beyond hypocentral distance of 115km. For this reason, EQ 
records with hypocentral distance up to 115km are only considered for the determination of path attenuation 
curve. This hypocentral distance range from 15 to 115km is divided into 11 bins (10 km wide). Further, constraint 
A(f,R0) = 1 is applied at R0 = 15 km [Bindi et al. 2004], irrespective of the frequency. Further, path attenuation 
curves are computed separately for each frequency, solving Eq. (2) in a least square sense, using singular value 
decomposition method [Menke, 1989]. For each bin, path attenuation curves are computed at 18 frequencies 
ranging from 0.5Hz to 15Hz (see Table 4). 

4.2 Spectral attenuation with distance  
 
Variation of lnA(f,Rij) with hypocentral distance, obtained from the above analysis, for selected frequencies is 

depicted in Figure 4. Based on Figure 4, a general trend in which path attenuation curves exhibit decay with 
hypocentral distance up an hinge distance of 105km can be observed. The change in the attenuation rate in 
correspondence of the hinge distance can be clearly detected especially at lower frequencies (<5.5 Hz). The 
enhancement of the ground motion beyond 105 km might be do to the reflection of S waves at the Moho 
discontinuity [Oth et al., 2011; Saikia et al., 2016]. Bindi et al. [2004] and Oth et al. [2011] reported a similar trend 
in the attenuation curves for the Umbria Marche and Japan regions respectively. Oth et al. [2011] attributed that 
behaviour to the combined effect of reflected or refracted wave arrivals from Moho in Japan. For the north-west 
Himalaya, presence of the Moho, based on Teleseismic receiver function analysis, was reported by Saikia et al. [2016]. 
However, detailed study in this direction is required and is beyond the scope of the present work. After observing 
the attenuation curves at different frequencies as given in Figure 4, it can be concluded that for the present study 
region, higher frequency content (>5.5Hz) of seismic wave, decays more rapidly between the source and the site in 
comparison to lower frequency content. This observation is consistent with the findings by Castro et al. [2003] for 
Guadeloupe (France) and Oth et al. [2011] for Japan.  
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Figure 3. Distribution of hypocentral distances in the data set.



In order to assess the stability of the inverted path attenuation curves, bootstrap analysis [similar to Wang et al., 
2018] is performed at each of the selected frequency points. 17 number of ground motion recordings (which accounts 
for approximately 8% of the total number of the ground motion records considered for analysis) are removed 
randomly from the data base, and the remaining ground motion records are considered as a new data set used for 
inversion. The above discussed procedure is repeated 100 times and inversion (discussed in section 4.1) is carried 
out for each of the 100 bootstrap samples. Figure 5 shows the inverted path attenuation curves obtained from 100 
bootstrap analysis. It can be observed from Figure 5 that the deviation from the path attenuation curve obtained 
considering the entire data set is significantly small, indicating that the path attenuation curves obtained from 
inversion are stable. 
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Figure 4. S wave spectral attenuation versus hypocentral distance. Note that ln A(f,R0) at reference distance is zero.

Figure 5. S wave spectral attenuation versus hypocentre distance for 4 typical frequencies. The dark line shows the 
attenuation curve obtained using the total ground motion records considered in the study. The grey lines 
represents the attenuation curves obtains from 100 bootstrap samples.



4.2.1 Quality factor (QS) estimation 
 
In order to estimate, attenuation curves within the hypocentral distance in the range 15km to 105km, (where a 

monotonic decrease of ln A(f,Rij) with hypocentral distance is observed in Figure 4 is considered. Each of the 
attenuation curves shown in Figure 4 is modelled in terms of geometric spreading [G(f,Rij)] and quality factor (Qs) 
[as per Castro et al. 1996] as:  

 

              
(3)

 
 
 
Where, f is the frequency under consideration and � is the mean shear wave velocity in the crustal medium 

which is taken as 3.5km/s for the study area after Mukhopadhyay and Kayal, [2003]. It has to be noted here that a 
trade-off exist between Q� and G(f,R) given in Eq. 3 [Oth et al. 2011]. For this reason it is difficult to derive a reliable 
estimate of  and  simultaneously.  Moreover, the parts of the attenuation curves are more likely to be dominated by 
direct wave propagation as stated by Oth et al. [2011]. For this reason, in the present study the discussion is restricted 
to the estimation of Q� considering G(f,Rij) =1/Rij [in accordance with Parvez et al., 2012 for this region]. Detailed 
discussion on the determination of Q� is given below. 

For each of the 17 selected frequencies (see Table 4), Eq. (3) is linearized by taking logarithm on both sides and 
corrected for the effect of G(Rij) as given in Eq. (4).  

 

            
(4)

 
 
Rearranging Eq. (4) gives: 

 

           
(5) 

 
Ascribed to Castro et al. [2003], Eq. (5) is written in the form;  

 
           a(R) = -m R (6) 

 
Where a(R) and m are given as; 

 
             a(R) = ln A(f,Rij) - lnG(Rij) (7) 

 
 

              
(8) 

 
Where, m in Eq. (6) represents the slope between a(R) and R which for each of the selected 17 frequencies, is 

calculated based on a linear least-square fit. Further, Q� values are estimated for each of the selected frequencies 
by substituting the value of m in Eq. (8). Table 4 list the values of m and Q� respectively. In order to develop the 
frequency dependent relationship of the form; Q� = Q0 fn, above estimated values of Q� are fitted as a function of 
frequency using a power law. In this expression, Q0 is the Q� at 1Hz frequency and n is the frequency dependent 
coefficient, which is approximately equal to 1 and varies with heterogeneity of the medium [Aki, 1980]. Variation 
of Q� versus f as illustrated in Figure 6 gives the following correlation for the northwest Himalayas as;  

 
                Q� = (105 ± 11) f(0.94 ±0.08) (9) 

A(f,Rij) = G(f,Rij) �e            �-π � f � R�� Q��

ln A(f,Rij) = lnG(Rij) -         Rij
-π � f Q��

ln A(f,Rij) - lnG(Rij) =         Rij
-π � f Q��

m = -π � f Q��
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It has to be emphasised here that the Q� estimated in the present study is based on the assumption of G(f,Rij) = 

1/Rij, and Eq. 9 is only valid under this assumption. 
Values of Q0 and  (in the expression Q� = Q0 fn)are attributed to the level of tectonic activity and degree of medium 

heterogeneity respectively, present in the region. Aki, [1980] concluded higher values of  for tectonically active 
regions in comparison to that of stable regions. Similarly, low value of Q0 (<200) is an indication of larger degree 
of heterogeneities in the medium [Joshi, 2006]. The values of n (= 0.94) and Q0 (= 105), obtained in this study indicate 
that the present study region is tectonically active, characterized by higher degree of heterogeneities. Previous 
study by Kumar et al. [2005] also reveals a higher degree of heterogeneity in the crustal medium of north-west 
Himalayas based on studying the lapse time dependence of the Coda Q (QC) in the frequency range 1.5Hz to 18 Hz.  

 
 
4.2.2 Comparison with regional and global attenuation characteristics  
 
As previously discussed, numerous studies exist where path attenuation of different parts of the present study 

area were attempted in the past. Comparison of present results with those obtained by the previous researchers for 
the north-west Himalayas and Delhi region is attempted as shown in Figure 7. It can be seen from Figure 7 that the 
attenuation curve obtained in the present study falls in between existing attenuation curves for the different parts 
of the north-west Himalayas as given in the literature [Kinnaur, Kumar et al. 2009; Kumoan, Mukhopadhyay et al. 
2010; Garhwal regions, Negi et al. 2015; and Delhi, Sharma et al. 2015]. It has to be highlighted here that the database 
for the present study also includes EQ records from Kinnaur, Kumoan, Garhwal regions of the north-west Himalayas 
as well as from regions in and around Delhi. For this reason, the value of Q0 and n obtained in the present study 
reflects an average attenuation characteristics of regions encompassing north-west Himalayas up to Delhi region 
within Indian boundary as shown in Figure 7.  

Furthermore, the attenuation results obtained in this study is compared with some typical results obtained 
globally in terms of attenuation characteristics and tectonic setting as shown in Figure 8. Literature suggests low 
values of Q� for tectonically active regions [e.g. Kato Japan region, Yoshimoto et al. 1993; East central Iran, Mahood 
et al., 2009; Egypt, Abdel, 2009; Umbria–Marche region, Lorenzo et al., 2013] and South eastern Tibet Wang et al., 
2018]. Similarly, relatively high values of Q� were reported for tectonically stable areas [e.g. Baltic Shield, Kvamme 
and Havskov, 1989; Central South Korea, Kim et al., 2004 and South Eastern Korea, Chung and Sato, 2001]. It can be 
observed from Figure 8 that the obtained relation Q� = (105) f(0.94) for the present study region complies with similar 
relations obtained for other tectonically active regions. 
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Figure 6. Frequency dependence of the quality factor QS.
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Figure 7. Comparison of QS values of North West Himalaya with those obtained from parts of North West Himalaya 
and Delhi region (Compared relations for Qs versus frequency are as follows: Garhwal-Kumouan Himalaya: 
QS = 175f 0.833 [Mukhopadhyay et al. 2010]; Kinnaur Himalaya: QS = 86f 0.96 [Kumar et al. 2014]; Garhwal 
Himalaya: QS = 151f 0.84 [Negi et al. 2015]; Delhi and NCR region: QS = 98f 1.07 [Sharma et al. 2015].

Figure 8. Comparison of QS values of this study with regions of different tectonic settings of the world (Compared 
relations for Qs versus frequency are as follows: Kato region - Japan: QS = 83.33f 0.73 [Yoshimoto et al. 1993]); 
East Central Iran: QS = 52.63f 1.02   [Ma’hood et al. 2009]; North East India: QS = 96.8f 1.03 [Padhy and Subhadra, 
2010]; Main Land Gujarath: QS = 118f 0.65 [Chopra et al. 2011]; Egypt: QS = 143f 0.85 [Abdel, 2009]; Koyna Region 
India: QS = 71f 1.32 [Sharma at al., 2007]; Umbria-Marche Italy: QS = 40f 1.33; South Central Alaska: QS = 96f 1.06 
[Dutta et al. 2004]; South Eastern Region of Tibet: QS = 151.2f 1.06 [Wang et al. 2018]. 



5. Site effects 
 
As highlighted earlier, site characteristics of the recording stations are determined in the second step of 

inversion, which is discussed in this section. These are estimated based on both inversion and HVSR methods in this 
work and are compared. Detailed discussion on the GINV and HVSR is given in the subsequent sections. 

 
 
5.1 GINV 
 
GINV was originally developed by Andrews [1986] by improvising spectral ratio method of Borcherdt (1970). 

Since then, various forms of this technique have been developed and used for estimating the seismic site 
characteristics by various researchers [Castro et al., 1990; Boatwright et al., 1991; Oth et al., 2008 etc.]. Methodology 
used in the present study for estimating site characteristics is as follows; 

As per Andrews, [1986], the Fourier amplitude of the S-wave portion of the accelerogram [U(f)ij] of the jth EQ, 
recorded at the ith recording station, can be represented in the frequency domain as the product of source term 
[S(f)j], path attenuation [A(f)ij] and site term [G(f)i] as; 

 
  U(f)ij = S(f)j A(f)ij G(f)i (10) 

 
The path attenuation term can be removed from the spectral content of the record following Andrews, (1986) as;  

 
(11) 

 
The value of A(f)ij in Eq. (10) can be estimated using Eq. (3) and above calculated Q� (refer to Eq. 9). Further, Eq. 

(11) can be linearized [as per Andrews, 1986] by taking natural logarithms on both sides giving; 
 

ln UA(f)ij = ln S(f)j + ln G(f)i (12)   
 
For a particular recording station, let: ln S(f)j = sj(f), ln G(f) = g(f) and ln UA(f)j = dj(f), Eq. (12) in accordance with 

Joshi et al. (2010) and following the notations of Menke, [1989] in the matrix form can be written as; 
 

 
 
 
 
 
 
 
 
 
 

(13) 
 
 
 
 
 
 
 
 
 

UA(f)ij =         S(f)j G(f)i
U(f)ij 
A(f)ij 
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1 0 … 0 …... 0 0 0 1 0 … 0 s1(f1) d1(f1)

0 1 0 …... 0 0 0 0 1 … 0 : :

: : : : : : : : : :

: : : : : : : : : :

0 0 0 1 0 0 … 0 0 0 … 1 s1(fn) d1(fm)

sn(f1) =

:

For nth earthquake sn(fn) dn(fm)

0 0 … 0 … 1 … 0 1 0 … 0 g(f1) dn(fm)

0 0 … 0 … 0 1 … 0 0 1 … 0 g(f2) :

: : : : : : : : : : :

: : : : : : : : : : :

0 0 … 0 … 0 0 … 1 0 0 … 1 g(fm) dn(fm)

← 1st event → ← nth event → ← Site effect →

1 2 … m 1 2 … m 1 2 … m



Eq. (13) represents a purely under-determinate system since there are (n + 1) × m unknowns for “m × n” data 
(here m is the number of sample frequency and  is the number of EQs recorded at a particular recording station). 
In this work, Eq. (13) is solved using Moore-Penrose matrix inversion procedure (minimum norm inversion) given 
by Penrose, [1955] to determine g(f) for each of the recording stations.  

 
 
5.2 HVSR 
 
HVSR method is an extension of Nakamura, (1989) technique, which is widely used to assess the subsoil 

characteristics using recorded ambient noises. Nakamura, (1989) technique is based on the assumption that the 
soil amplification effects are retained only in the horizontal component whereas the source and the path effects are 
maintained both in vertical as well as horizontal components of ground motion. Hence, the ratio of horizontal and 
vertical components gives an estimate of site amplification. Lermo and Chavez-Garccia, [1993] extended Nakamura, 
(1989) technique to S-wave part of the accelerograms and studied the theoretical basis of the technique by numerical 
modelling of SV waves. Later, HVSR method was applied to EQ recordings worldwide [Luzi et al., 2011; Yaghmaei-
Sabegh and Tsang, 2011; D’Alessandro et al., 2012; Harinarayan and Kumar, 2017a, b, 2018 etc.] to obtain the site 
characteristics.  

Comparative studies between HVSR and other methods of evaluating site parameters reported by Field and 
Jacob, [1995], Parolai et al. [2004], Shoji and Kamiyama [2002], Harinarayan and Kumar, [2017b] etc. show that, HVSR 
can provide good and reliable estimate of predominant frequency. However, above literatures also point out 
discrepancies in amplification levels obtained from HVSR and other methods. In order to compare the site 
amplification functions obtained from HVSR and GINV methods, same S-wave portion of the accelerogram is used 
in HVSR as well as in GINV in this paper. HVSR curve for each recording station is determined [similar to Harinarayan 
and Kumar, 2018] using the following steps; 

1) Calculate the response spectra considering 5% damping, for all the three components (north-south, east-west 
and vertical) of ground motion records. 

2) Obtain the geometric mean of the two horizontal response spectra components (H) using  Eq. (14) given below; 
 

   H = (HEW × HNS)0.5 (14) 
 
3) Calculate the ratio of H to V (H/V). 
 
Where, HEW and HNS are the response spectrum of the horizontal east-west and north-south components 

respectively and V is the response spectrum corresponding to vertical component of ground motion. Then, the 
HVSR at each of the recording station can be estimated as; 

 

       
(15) 

 
Here, Ni is the number of events recorded at recording station “i” and (HVSR)i indicates the average HVSR value 

for a particular recording station “i”. The fpeak is the value of frequency corresponding to a maximum value of HVSRi 

(denoted by Apeak) at the recording station “i” which is also known as the predominant frequency of the recording 
station. 

 
 
5.3 Site parameters  
 
Site spectral amplitude (SSA) curves are developed using GINV for the horizontal (GINV H) and the vertical 

(GINV V) components separately. Figure 9 (a-f) shows typical amplification curves obtained for GINV H (indicated 
by dashed lines) and GINV V (indicated by firm lines) for 6 typical recording stations based on present analysis. In 
general, obtained amplification values from GINV H are higher than GINV V for all frequencies (see Figure 9a-f). 

(HVSR)i = 
Ni

H 
V

Ni 

i=1
�
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A typical observation (from Figure 9a-f) for both GINV H and GINV V is that the high level of amplitude is observed 
at high frequencies. For given recording stations, a clear and distinct peak in the SSA curve can be observed (e.g. 
JAMI, BAR, GHA and SND in Figure 9a-f). Moreover, the peaks of the GINV V component are at frequencies higher 
than that for the GINV H component. Based on obtained GINV H and GINV V, site amplification factor (H/V) is 
estimated (denoted by GINV H/V) as the ratio of GINV H to GINV V. Results of GINV H/V curves are compared with 
those estimated using HVSR method for a total of 101 recording stations. Figure 10(a-i) shows the comparison in 
terms of H/V obtained from HVSR (indicated by dashed lines) and GINV H/V (indicated by firm line) for a typical 9 
recording stations from the present analyses. A general observation which can be drawn from Figure 10(a-i) is that 
both HVSR and GINV H/V show similar H/V patterns for all recording stations in the selected frequency range. 
Similar observation is drawn for each of the 101 recording stations.  

Identification of the value of fpeak from GINV H/V curve is carried out in accordance with Ren at al. [2018], who 
classified GINV H/V curves into three categories. In the first category, GINV H/V curves have only one peak and the 
frequency at the peak is classified as fpeak. In the second category, GINV H/V curves have more than one peak and 
the smaller peak is classified as fpeak. In the third category, GINV H/V curves appears flat, indicating peak is 
unidentifiable. Site classification is not attempted for recording stations having flat GINV H/V curves. Based on the 
above discussion fpeak for all the recording stations are identified in this study.  For each recording station, values 
of fpeak obtained from GINV H/V and HVSR methods exhibit 1:1 (see Figure 11) matching (typical observations can 
be made from Figure 10a-i).  However, there is difference in terms of Apeak values obtained based on GINV H/V and 
HVSR. Apeak values obtained using HVSR are found to be higher in comparison to those obtained using GINV H/V. 
Similar observations were also reported for other regions [Sharma et al., 2014; Field and Jacob, 1995]. Values of fpeak 
obtained using GINV H/V and HVSR are tabulated in Table 1 respectively. Similarly, the values of Apeak obtained 
using GINV H/V and HVSR are tabulated in Table 1 respectively.  
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Further, based on the values of fpeak obtained using H/V curves, each of the 101 recording stations are classified 
following NEHRP (BSSC, 2000) site classification scheme. NEHRP classifies a site based on 30m average shear wave 
velocity (VS30). The range of fpeak values corresponding to the range of VS30 values for different NEHRP site classes 
is calculated using Eq. (16) following Kramer [1996] with depth of soil column considered as 30m.  

 
          fpeak = 

Vz/
4H

(16) 
 
Where, Vz is the shear wave velocity, H is the thickness which is considered as 30m in this study following NEHRP 

site classification scheme. The ranges of fpeak for various SC are tabulated in Table 5. Based on the values of  fpeak 

obtained using H/V earlier for each of the 101 recording stations, SCs are proposed as listed in Table 1. Based on SC 
determination from this work, it can be summarized that out of total 101 recording stations, 2, 10, 29, 33, and 27 
numbers of recording stations belong to NEHRP SC A, B, C, D and E respectively. 

 
 
5.4 Empirical correlation between fpeak and VS30 
 
SCs for the recording stations, as discussed in section 5.3, are done assuming the depth of overburden to be 30m 

following NEHRP site classification scheme. In actual site however, this depth of overburden, whose response is 
observed in Figure 10 may vary from 30m. Thus, in order to check the suitability of Kramer [1996] correlation 
between f and Vz (Eq. 16) for the present study area, assuming 30m soil column depth, comparison of Vs30 values 
obtained as per Eq. (16) and VS30 determined based on in-situ tests for typical recording stations which are the part 
of present database is done. Pandey et al. [2016a, b] determined VS30 for 8 recording stations in Tarai region of 
Uttarakhand and 19 recording stations in Delhi region based on in-situ Multichannel Analysis of Surface Wave 
(MASW) tests. All these 27 recording stations are part of present 101 recording stations. VS30 [obtained from Pandey 
et al., 2016 a, b] and fpeak (as per present work) for above 27 recording stations are listed in Table 6. These values of 
VS30 and corresponding fpeak are presented in Figure 12. Another set of values of VS30, assuming 30m as soil column 
depth, as obtained from Eq. (16), for same 27 recording stations are also presented  in Figure 13 with corresponding 
fpeak which is used earlier to determine SC (section 5.3). Comparison of two set of data in Figure 11 clearly indicates 
that VS30 values in absence of actual subsoil depth information, as obtained from can be used for SC determination 
for the present study area.  

Another correlation based on VS30 as per Pandey et al., [2016a,b] and fpeak from present work, as available for 
above mentioned 27 recording stations is attempted as shown in Figure 13. In absence of any functional form of 
correlation between the two in literature, following empirical correlation is obtained based on highest R2 value as; 
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Figure 9. (a-f) Site spectral amplitude curves obtained using GINV for horizontal component and vertical component.



 
log fpeak = (1.5 ± 0.18)(logVS30) - (3.3 ± 0.5) (17) 

 
 
It has to be highlighted here that Eq. (17) is applicable for sites having fpeak in the range 1.8 to 6Hz and VS30 in 

the range 198m/s to 565m/s. 

17

Path and Site Characteristics



 
 
 

 
 

Nelliparanbil Hareeshkumar Harinarayan and Abhishek Kumar

18



 
 
 

19

Path and Site Characteristics

Figure 10. (a-i) Horizontal to vertical ratio curve obtained using GINV and HVSR method.
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Figure 11. Comparison of the value fpeak obtained from Horizontal to Vertical Spectral Ratio and Generalized Inversion 
methods.

Figure 13. Vs30 as a function of fpeak (a) and Apeak (b) of GINV method for recording stations at Delhi and Tarai region of 
Uttarakha.

Figure 12. Comparison of VS30 for 27 recording stations as per Pandey et al., (2016a, b) and based on Kramer [1996].



6. Conclusion 
 
In the light of on-going seismicity and catastrophic damages witnessed during earlier EQs, of path attenuation as 

well as site characterization of PESMOS handled EQ recording stations, located in the north-west Himalayas and 
adjoining area of is attempted. Dataset for the analysis consists of ground motion records from EQs happened between 
2004 and 2017. Entire analysis is done based on two-step inversion. While determining path attenuation in first step, 
a kink in path attenuation curve at 105km hypocentral distance is observed. Referring to similar observations from 
other regions, presence of Moho discontinuity is proposed in the region. However, such finding must be validated 
based on detailed study which is beyond the scope of present work’s objective. Further, based on attenuation curve 
obtained till 105km hypocentral distance and over wide range of frequencies (0.05-15Hz), Qs = (105 ± 11)f (0.94 ± 0.08) is 
obtained for the present study area, clearly indicating that the region is heterogeneous and seismically active. It has 
to be highlighted here that dataset used in present analysis covers a much larger range of ground motion records in 
the analysis in comparison to earlier studies attempted for some part of present study area. 

In absence of proper geological information of PESMOS recording stations as highlighted by numerous recent 
studies, predominant frequency of each of the 101 recording stations are calculated based on GINV as well as HVSR 
and are found matching for all the stations. Based on predominant frequency values for each recording station, SCs 
of 101 recording stations located within present study area, are proposed. Based on proposed site class, out of total 
101 recording stations, 2, 10, 29, 33, and 27 numbers of recording stations are found belonging to NEHRP SC A, B, 
C, D and E respectively. It has to be highlighted here that unless the SC of recording station is known, ground motion 
records from a recording station cannot be used confidently for development of regional ground motion prediction 
equation or for region specific ground response analysis. 

Both path attenuation and site characteristics, determined in the present work, are the key factors in developing 
regional ground motion models and are important inputs for seismic hazards studies. Without proper knowledge 
of above two parameters on regional level, suitability of developed ground motion prediction equation as well as 
seismic scenario to capture correct seismicity will be debatable.  

 
 

Acknowledgement. The authors would like to thank the INSPIRE Faculty program by the Department of Science and 
Technology (DST), Government of India for the funding project ‘‘Propagation path characterization and determination of 
in-situ slips along different active faults in the Shillong Plateau’’ ref. no. DST/INSPIRE/04/2014/002617 [IFA14-ENG-
104] for providing necessary funding and motivation for the present study. 

 
 

Reference 
 

Ambraseys, N. and R. Bilham (2000). A note on the Kangra Ms= 7.8 earthquake of 4 April 1905, Current Science, 
79(1), 45-50. 

Abdel-Fattah A.K. (2009). Attenuation of body waves in the crust beneath the vicinity of Cairo Metropolitan area 
(Egypt) using coda normalization method, Geophys J. Int., 176(1), 126-134. 

Aki, K., (1980). Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet 
Inter., 21, 50–60. 

D’Alessandro C., L.F. Bonilla, D.M. Boore, A. Rovelli and O. Scotti (2012). Predominant-period site classification for 
response spectra prediction equations in Italy, Bull. Seismol. Soc. Am., 102(2), 680–695. 

Ameri, G., A. Oth, M. Pilz, D. Bindi, S. Parolai, L. Luzi and G. Cultrera (2011). Separation of source and site effects by 
generalized inversion technique using the aftershock recordings of the 2009 L’Aquila earthquake. Bull. of 
Earthq. Eng., 9(3), 717-739. 

Andrews, D.J. (1986). Objective determination of source parameters and similarity of earthquakes of different size, 
Earthq. Source Mechanics, 259-267. 

Borcherdt, R.D. (1970). Effects of local geology on ground motion near San Francisco Bay, Bull. Seismol. Soc. Am., 
60(1), 29-61. 

Banerjee, S. and A. Kumar (2017). Determination of seismic wave attenuation for the Garhwal Himalayas, India, 
Geosci. Res., 2(2), 105–126. 

21

Path and Site Characteristics



Baro, O., A. Kumar and A.S. Zadeh (2018). Seismic hazard assessment of the Shillong Plateau, India,  Geomatics 
Nat. Hazards and Risk, 9(1), 841-861. 

Bilham, R., K. Larson and J. Freymueller (1997). GPS measurements of present-day convergence across the Nepal 
Himalaya, Nature, 386(6620), 61. 

Bindi, D., R.R. Castro, G. Franceschina, L. Luzi and F. Pacor (2004). The 1997–1998 Umbria-Marche sequence (central 
Italy): Source, path, and site effects estimated from strong motion data recorded in the epicentral area, J. 
Geophys. Res. B: Solid Earth, 109(B4). 

Bindi, D., F. Pacor, L. Luzi, M. Massa and G. Ameri (2009). The M w 6.3, 2009 L’Aquila earthquake: source, path and 
site effects from spectral analysis of strong motion data, Geophys. J. Int., 179(3), 1573-1579. 

BSSC, (2003). Building Seismic Safety Council, NEHRP recommended provisions for seismic regulations for new 
buildings and other structures, Report FEMA-450 (Provisions), Federal Emergency Management Agency 
(FEMA), Washington. 

Boatwright, J., J.B. Fletcher and T.E. Fumal (1991). A general inversion scheme for source, site, and propagation 
characteristics using multiply recorded sets of moderate-sized earthquakes, Bull. Seismol. Soc. Am., 81(5), 
1754-1782. 

Castro, R.R, J.G. Anderson and S.K. Singh (1990). Site response, attenuation and source spectra of S waves along the 
Guerrero, Mexico, subduction zone, Bull. Seismol. Soc. Am., 80(6A), 1481-1503. 

Castro, R.R., H. Fabriol, M. Bour and B. Le Brun (2003). Attenuation and site effects in the region of Guadeloupe, 
Lesser Antilles, Bull. Seismol. Soc. Am., 93(2), 612-626. 

Castro, R.R., F. Pacor, A. Sala and C. Petrungaro (1996). S wave attenuation and site effects in the region of Friuli, 
Ital,. J. Geophys. Res. B: Solid Earth, 101(B10), 22355-22369. 

Chung, T.W. and H. Sato (2001). Attenuation of high-frequency P and S waves in the crust of southeastern South 
Korea, Bull. Seismol. Soc. Am., 91(6), 1867-1874. 

De Lorenzo, S., E. Del Pezzo, and F. Bianco (2013). Qc, Q�, Qi and Qs attenuation parameters in the Umbria–Marche 
(Italy) region, Phys. Earth Planet Inter., 218, 19-30. 

Dutta, U., N. Biswas, A. Martirosyan, A. Papageorgiou and S. Kinoshita (2003). Estimation of earthquake source 
parameters and site response in Anchorage, Alaska from strong-motion network data using generalized 
inversion method, Phys. Earth Planet Inter., 137(1-4), 13-29. 

Geological Survey of India (GSI) (1998). Geological maps of India. Geological Survey of India, Kolkata. 
Harinarayan, N.H. and A. Kumar (2017 a). Site classification of the strong motion stations of Uttarakhand, India, 

Based on the model horizontal to vertical spectral ratio, Geotechnical Frontiers, 141-149. 
Harinarayan, N.H. and A. Kumar (2017 b). Seismic Site Classification of Recording Stations in Tarai Region of 

Uttarakhand, from Multiple Approaches, Geotech. Geol. Eng., 36(3), 1-16. 
Harinarayan, N.H. and A. Kumar (2018). Determination of NEHRP Site Class of Seismic Recording Stations in the 

Northwest Himalayas and Its Adjoining Area Using HVSR Method, Pure Appl. Geophys., 175(1), 89-107. 
Hartzell, S.H. (1992). Site response estimation from earthquake data, Bull. Seismol. Soc. Am., 82(6), 2308-2327. 
Hassani, B., H. Zafarani, J. Farjoodi and A. Ansari (2011). Estimation of site amplification, attenuation and source 

spectra of S-waves in the East-Central Iran, Soil Dyn. Earthquake Eng., 31(10), 1397-1413. 
IS 1893: Part 1–2016. Indian standard criteria for earthquake resistant design of structures - part 1, General 

Provisions and Buildings, Bureau of Indian Standards, New Delhi, India. 
Iwata, T., and K. Irikura (1998). Source parameters of the 1983 Japan Sea earthquake sequence, J. of Physics of the 

Earth, 36(4), 155-184. 
Joshi, A., M. Mohanty, A.R. Bansal, V.P. Dimri, R.K. Chadha (2010). Use of spectral acceleration data for determination 

of three-dimensional attenuation structure in the Pithoragarh region of Kumaon Himalaya, J. Seismol., 14(2), 
247-272. 

Joshi, A., (2006). Use of acceleration spectra for determining the frequency-dependent attenuation coefficient and 
source parameters, Bull. Seismol. Soc. Am., 96(6), 2165-2180. 

Kamp, U., B.J. Growley, G.A. Khattak, and L.A. Owen, (2008). GIS-based landslide susceptibility mapping for the 
2005 Kashmir earthquake region, Geomorphology, 101(4), 631-642. 

Kim, K.D., T.W. Chung and J.B. Kyung (2004). Attenuation of high-frequency P and S waves in the crust of 
Choongchung provinces, central South Korea, Bull. Seismol. Soc. Am., 94(3), 1070-1078. 

Konno, K. and T. Ohmachi (1998). Ground-motion characteristics estimated from spectral ratio between horizontal 

Nelliparanbil Hareeshkumar Harinarayan and Abhishek Kumar

22



and vertical components of microtremor, Bull. Seismol. Soc. Am., 88(1), 228-241. 
Kumar, A., H. Mittal, R. Sachdeva and A. Kumar (2012). Indian strong motion instrumentation network, Seismol. Res. 

Lett., 83(1), 59-66. 
Kumar, N., J. Sharma, B.R. Arora and S. Mukhopadhyay (2009). Seismotectonic model of the Kangra–Chamba sector 

of northwest Himalaya: Constraints from joint hypocenter determination and focal mechanism, Bull. Seismol. 
Soc. Am., 99(1), 95-109. 

Kumar, K.V., T.R. Martha and P.S. Roy (2006). Mapping damage in the Jammu and Kashmir caused by 8 October 2005 
Mw 7.3 earthquake from the Cartosat–1 and Resourcesat–1 imagery, Int. J. of Remote Sensing 27(20), 4449-
4459. 

Kayal, J.R., (1996). Precursor seismicity, foreshocks and aftershocks of the Uttarkashi earthquake of October 20, 
1991 at Garhwal Himalaya, Tectonophysics, 263(1-4), 339-345. 

Kvamme, L.B., J. Havskov (1995). Q in southern Norway, Bull. Seismol. Soc. Am., 79(5), 1575-1588, 1989. 
Lay, T., T.C. Wallace (1995). Modern global seismology, (58) Elsevier, 521. 
Lermo, J. and F.J. Chávez-García (1993). Site effect evaluation using spectral ratios with only one station, Bull. 

Seismol. Soc. Am., 83(5), 1574-1594. 
Luzi, L., R., Puglia, F., Pacor, M.R. Gallipoli, D. Bindi and M. Mucciarelli (2011). Proposal for a soil classification 

based on parameters alternative or complementary to Vs30, Bull. Seismol. Soc. Am., 9(6),1877-1898. 
Ma’hood, M., H. Hamzehloo, G.J. Doloei (2009). Attenuation of high frequency P and S waves in the crust of the 

East-Central Iran, Geophys. J. Int., 179(3), 1669-1678. 
Mahajan, A.K., and S.K. Kumar (2004). Macroseismic field observations of January 26th, 2001 Kachchh earthquake 

and its seismotectonics, J. Asian Earth Sci., 23, 17–23. 
Menke, W. (2012). Geophysical data analysis: discrete inverse theory: MATLAB edition (Vol. 45). Academic press. 
Mukhopadhyay. S., J.R. Kayal (2003). Seismic tomography structure of the 1999 Chamoli earthquake source area in 

the Garhwal Himalaya, Bull. Seismol. Soc. Am., 93(4), 1854-1861. 
Mukhopadhyay, S., J. Sharma, E. Del Pezzo, and N. Kumar (2010). Study of attenuation mechanism for Garwhal-

Kumaun Himalayas from analysis of coda of local earthquakes, Phys. Earth Planet Inter., 180(1-2), 7-15. 
Mukhopadhyay, S., A. Kumar, A. Garg, E. Del Pezzo and J.R. Kayal (2014). The attenuation mechanism of S-waves in 

the source zone of the 1999 Chamoli earthquake,  J. of Asian Earth Sciences, 79, 446-454.  
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the 

ground surface, Railway Technical Research Institute, Quarterly Reports, 30(1). 
Nath, S.K., P. Sengupta and J.R. Kayal (2002). Determination of S-wave site response in the Garhwal Himalaya from 

the aftershock sequence of the 1999 Chamoli earthquake, Bull. Seismol. Soc. Am., 92(3), 1072-1081. 
Negi, S.S., A. Paul and A. Joshi (2015). Body wave crustal attenuation characteristics in the Garhwal Himalaya, India, 

Pure Appl. Geophys., 172(6), 1451-1469. 
Oth, A., D. Bindi, S. Parolai, D. Di Giacomo (2011). Spectral Analysis of K-NET and KiK-net Data in Japan, Part II: On 

Attenuation Characteristics, Source Spectra, and Site Response of Borehole and Surface Stations Spectral 
Analysis of K-NET and KiK-net Data in Japan, Part II., Bull. Seismol. Soc. Am., 101(2), 667-687. 

Oth, A., D. Bindi, S. Parolai and F. Wenzel (2008). S-wave attenuation characteristics beneath the Vrancea region in 
Romania: new insights from the inversion of ground-motion spectra, Bull. Seismol. Soc. Am., 98(5), 2482-
2497. 

Oth, A., S. Parolai, D. Bindi and F. Wenzel (2009). Source spectra and site response from S waves of intermediate-
depth Vrancea, Romania, earthquake, Bull. Seismol. Soc. Am., 99(1), 235-254. 

Pandey, B., R.S. Jakka and A. Kumar (2016a). Influence of local site conditions on strong ground motion 
characteristics at Tarai region of Uttarakhand, India. Nat. Hazards, 81(2), 1073-1089. 

Pandey, B., R.S. Jakka, A. Kumar and H. Mittal (2016 b). Site Characterization of Strong-Motion Recording Stations 
of Delhi Using Joint Inversion of Phase Velocity Dispersion and H/V Curve, Bull. Seismol. Soc. Am., 106(3), 
1254-1266. 

Parolai, S., D. Bindi, M. Baumbach, H. Grosser, C. Milkereit, S. Karakisa and S. Zünbül (2004). Comparison of different 
site response estimation techniques using aftershocks of the 1999 Izmit earthquake, Bull. Seismol. Soc. Am., 
94(3), 1096-1108. 

Parvez, I.A., P. Yadav, K. Nagaraj (2012). Attenuation of P, S and coda waves in the NW-Himalayas, India, Int. J. of 
Geosc., 3(01), 179. 

23

Path and Site Characteristics



Penrose, R. (1955). A Generalized Inverse for Matrices, Proc. Cambridge Phil. Soc., 51, 406-413. 
Philip, G., N. Suresh and S.S. Bhakuni (2014). Active tectonics in the northwestern outer Himalaya: evidence of 

large-magnitude paleoearthquakes in Pinjaur Dun and the Frontal Himalaya, Curr. Sci., 106, 211–222. 
Rao, N.P., P. Kumar, T. Tsukuda and D.S. Ramesh (2006). The devastating Muzaffarabad earthquake of 8 October 

2005: New insights into Himalayan seismicity and tectonics. Gondwana Research, 9(4), 365-378. 
Saikia, S., S. Chopra, S. Baruah, P.R. Baidya, and U.K. Singh (2016). Crustal imaging of the Northwest Himalaya and 

its foredeep region from teleseismic events, Geomat. Nat. Haz. Risk J., 7(4), 1265-1286. 
Sarkar, I., A.K. Pachauri and M. Israil (2011). On the damage caused by the Chamoli earthquake of 29 March, 1999, 

J. Asian Earth Sci., 19, 129–134. 
Sharma, B., P. Chingtham, A.K. Sutar, S. Chopra and H.P. Shukla (2015). Frequency dependent attenuation of seismic 

waves for Delhi and surrounding area, India, Ann. Geophys., 58(2), 0216. 
Sharma, J., S. Chopra and K.S. Roy (2013). Estimation of source parameters, quality factor (QS), and site 

characteristics using accelerograms: Uttarakhand Himalaya region, Bull. Seismol. Soc. Am. 104(1), 360-380, 
2013. 

Shoji, Y. and M. Kamiyama (2002). Estimation of local site effects by a generalized inversion scheme using observed 
records of “Small-Titan”, Soil Dyn. Earthq. Eng., 22(9), 855-864. 

Singh, C., A. Singh, V.S. Bharathi, A.R. Bansal and R.K. Chadha (2012). Frequency-dependent body wave attenuation 
characteristics in the Kumaun Himalaya, Tectonophysics, 524, 37-42. 

Srivastava, H.N., B.K. Bansal and M. Verma (2013). Largest earthquake in Himalaya: An appraisal, J. Geol. Soc. India., 
82, 15-22. 

Tripathi, J., P. Singh and M.L. Sharma (2014). Attenuation of high-frequency P and S waves in Garhwal Himalaya, 
India, Tectonophysics, 636, 216-227. 

Valdiya, K.S., (1984). Aspects of Tectonics, Focus on south-central Asia, Tata McGraw-Hill Publishing Company 
Ltd., New Delhi, 319. 

Yaghmaei-Sabegh S., (2014). Characteristics of near-source ground motions from the 2012 Varzaghan-Ahar double 
Earthquakes, Northwest of Iran. Nat. Hazards, 70, 1077–1097.  

Yoshimoto, K., H. Sato and M. Ohtake (1993). Frequency-dependent attenuation of P and S waves in the Kanto area, 
Japan, based on the coda-normalization method, Geophys. J. Int., 114(1), 165-174. 

Ren, Y., Y, Zhou, H. Wang and R. Wen (2018). Source Characteristics, Site Effects, and Path Attenuation from Spectral 
Analysis of Strong-Motion Recordings in the 2016 Kaikōura Earthquake Sequence, Bull. Seismol. Soc. Am., 
108(3B), 1757-1773. 

Wang, H., Y. Ren and R. Wen (2018). Source parameters, path attenuation and site effects from strong-motion 
recordings of the Wenchuan aftershocks (2008–2013) using a non-parametric generalized inversion technique, 
Geophys. J. Int., 212(2), 872-890. 

Wang, H., Y. Ren, R. Wen and P. Xu (2019). Breakdown of Earthquake Self-Similar Scaling and Source Rupture 
Directivity in the 2016–2017 Central Italy Seismic Sequence, J. of Geophys. Res.: Solid Earth, 124(4), 3898-3917. 

 

 

 

 

 

 

 

 

*CORRESPONDING AUTHOR: Abhishek KUMAR,  

Department of Civil Engineering,  

Indian Institute of Technology Guwahati, Assam, India,  

e-mail: abhiak@iitg.ernet.in 
© 2020 the Istituto Nazionale di Geofisica e Vulcanologia. 

All rights reserved

Nelliparanbil Hareeshkumar Harinarayan and Abhishek Kumar

24


