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Abstract  
 
In this work, we examine the dynamical behaviour of the “single mass-springs” model for earthquake 
subjected to the strength due to the up flow of magma for the period of volcanism, considering the 
fractional viscous damping force, the fractional weakening friction and fractional power law of elastic 
force. The numerical simulation method used in this paper is that of Grünwald-Letnikov based on the 
generalization of the classical derivative, and the approximately analytical solution obtained by the 
harmonic balance method. The results have shown that the fractional-order derivative can affect the 
dynamical properties of fault rock, which is characterized by the equivalent damping coefficient and 
the equivalent stiffness coefficient. Moreover, the amplitude-frequency equation for the steady-state 
solution was established. It appears that the resonant amplitude and resonant frequency are strongly 
dependent on the fractional-order damping r, fractional-order friction q, the fractional deflection 𝛼, 
the nonlinear stiffness coefficient and the fractional viscous coefficient. We have also shown that, the 
recurrence time of an event, the duration time of an event and the slip size of an earthquake can be 
controlled by the fractional-order derivative, the fractional-order deflection and the magnitude of 
the magma strength. The model allowed us to better interpret the earthquake as a stick-slip motion. 
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1. Introduction 
 

An earthquake is a ground shock resulting from the sudden release of energy accumulated by the stresses on the 



rocks [Kanamori, 2001]. The breaking along a fault provokes this release of energy. Most earthquakes come from 
pre-existing faults or new breaks in the rocks that make up the earth’s crust, along which rocks overlap each other. 
As the rock is stretched, potential energy builds up. Eventually, it becomes so large that it is suddenly released in 
the form of earthquakes. The seismic waves move away from the source of the earthquake, causing shaking on the 
surface of the earth, also called ground acceleration. During a seism, the potential energy stored in the earth’s crust 
is released and can produce heat, cracks, and deformations. The seismic energy is radiated in the form of seismic 
waves. This radiated energy is defined by [Choy and Boatwright, 1995]. In the mechanics of faulting, we still ignore 
the specific laws which control the released energy during an earthquake [Bizzarri, 2012]. Indeed the energy stored 
in the earth’s crust can be controlled by dynamic friction [Bhattacharya and Rubin, 2014], pore fluid pressure [Scholz, 
1990], thermal pressurization [Bizzarri, 2011] and brittle-ductile fracture rheology [Wang, 2013]. To understand 
more the earthquake dynamics and other phenomena that appeared during an earthquake, some authors used the 
fractional calculus method [El-Misiery, 2006; Pelap et al., 2018; Tanekou et al., 2018]. 

Fractional calculus has been extensively studied in recent years and many results have been given: Baleanu et 
al. in [2010] Caputo and Fabrizio in [2015], Atangana et al. in [2016], Podlubny in [2009], Torres and Malinowska in 
[2012], Kilbas et al. in [2006], Petras in [2011], Tanekou et al. in [2018], Pelap et al. in [2018], and others. In the last 
decade, the fractional calculus mainly received attention due to its essential role in modelling the anomalous 
dynamics of various processes related to complex systems in several fields of science and engineering. Fractional 
differential equations have found many applications in physics, control engineering, and sig[al processing [Miller 
and Ross, 1993, Oldham and Spanier, 1974; Laskin, 2002; Baleanu and Golmankhaneh, 2009; Chung, 2015; Eslami, 
2016]. Fractional derivation has a particular advantage for the mechanical modelling of materials whose behaviour 
is called viscoelastic, such as rubbers, gums, and rocks [Bagley and Trovik, 1984; Koeller, 1985; Bagley and Calico, 
1991; Bohdana, 2007; Ali, 2012]. The materials that preserve the memory of a past deformation and whose behaviour 
is said to be viscoelastic, the fractional derivatives are naturally introduced them [Mohammad and Yousef, 2017]. 
The seismic fault being made up of the viscoelastic rocks, its modelling will not be done without introducing the 
fractional derivative. Also, the earthquake occurs throughout the fault and not at a given point of the fault, the 
whole-order derivative having a local character will not be appropriate for earthquake modelling, hence the use of 
the fractional derivative. Since earthquake is only the result of past deformations (load phase of the fault), for its 
excellent, we will use an instrument that will take into account past events [Hong et al., 2018]. Given all this, the 
fractional derivation is introduced naturally because it has a memory effect. Several scientists had already studied 
this memory effect, so from 1979 to 1983, Dieterich and Ruina introduced a state variable θ in their model Dieterich 
[1979; 1984] and Ruina [1983], this variable θ was interpreted as a function of the history of sliding [Pomeau and Le 
Berre, 2011]. Well after this memory effect has been studied by Kostic et al. [2013] through the temporal delay τ 
introduced in the friction term. 

Recent experimental observations have shown that inhomogeneous micro media manifest nonlinear elastic 
behaviour [Guyer and Johnson, 2000] which cannot be explained by the classical theory of nonlinear elasticity 
proposed by Landau and applicable to homogeneous and crystalline media. The nonlinear mesoscopic elasticity 
was introduced to describe the properties of such materials, which include most types of rocks, concrete, bones, 
some damaged metals and composites, etc. [Adams, 1998; Guyer and Johnson, 1999]. They all share the characteristic 
of being complex structures or of presenting micro defects like cracks, grain boundaries, dislocations, etc. [Van Den 
Abeele et al., 2000]. The heterogeneity manifests itself through nonlinear effects in both quasi-static and dynamic 
acoustic experiments. Concerning quasi-static testing, the dependence of strain on stress (or the opposite) is a 
multivalued function, and the constitutive equation shows a hysteresis loop with memory properties [Guyer and 
Johnson, 2000; Scalerandi et al., 2008]. Recently an energy harvesting system with fractional-order viscoelastic 
material has been studied by Cao et al. [2014] and Kwuimy et al. [2015]. They showed that the fractional order 
property of the material enhances high-energy chaotic motion as well as inter-well periodic oscillation.  

Active fault near the potentially active volcanoes can be destabilized during the volcanic eruption. Complex 
interactions between fluids and rocks may generate long-period ground vibrations that precede and accompany 
eruptions. Volcanic eruptions require a flow of magma and/or aqueous fluids through rock, and there is potential 
for long-period seismic signals to provide valuable information on changes in the location, velocity, and types of 
fluids (e.g., gas, magma, bubbly magma) under volcanoes. However, such analysis requires understanding potential 
source mechanisms of the ground oscillations and the characteristics of the resulting signals [Julian, 1994]. There 
are numerous potential sources of the pressure disturbance required to trigger resonance including an earthquake, 

Christian Foka Fogang et al.

2



a new crack network connection, shock waves from “choked” flow [Morrissey and Chouet, 2001], or bubble 
coalescence leading to a rising gas slug [Cruz and Chouet, 1997]. These are all credible sources of LP-events, which 
decay after seconds or tens of seconds. However, tremor requires a disturbance that is sustained for minutes or 
even months and thus precludes transient resonance triggers such as earthquakes. Sustained resonance could be 
caused by the continued formation of shock waves or gas slugs however these seem to require exceptional 
circumstances and do not explain the near-ubiquity of tremor during volcanic eruptions of all styles and 
compositions [Julian, 2000]. If fluid flows through a crack induced oscillations in the conduit walls, this could be a 
source of sustained seismicity, lasting as long as the flow continued at a sufficient speed. 

Julian [1994] explored this tremor mechanism using an approach similar to [Pedley, 1980] for blood flow through 
collapsible arteries. Julian set up a lumped-parameter model involving the two-dimensional flow of an 
incompressible Newtonian fluid through a slot-like constriction with two movable walls (Figure 1). At each end of 
the constriction, the conduit is wide in such a way that it can be considered to be a fluid reservoir with constant fluid 
pressure despite oscillations of the constriction. Each wall is modeled as a mass, whose motion is controlled by a 
spring representing the elasticity of the country rock, and dashpot for inelastic effects and radiation damping. 
Separation of the walls changes as a function of time only, and thus the walls of the constriction are always parallel. 

Viscous damping plays a significant role in the frictional strength and stability of tectonic faults. Some authors 
[Bizzarri, 2012a; Dragoni and Santini, 2015] consider that viscosity plays a role in causing seismic radiation to 
release strain energy during faulting. Bizzarri and Cocco [2006] revealed that the melting of rocks and fault gouge 
is likely to occur even with the inclusion of the thermal pressurization of pore fluids. When fluids are present in 
faults, thermal pressurization can play a significant role in earthquake rupture and also results in resistance on the 
fault plane [Wang, 2013]. When melting occurs, the rheological behavior of the fault zone no longer obeys the 
Coulomb-Amonton-Mohr formulation [Bizzarri, 2011] and during the co-seismic phase, all of the strain accumulated 
during the inter-seismic duration does not recover [Namiki et al., 2014]; a fraction of this strain remains as a result 
of viscous relaxation, in that a viscous rheology is needed to describe the rupture processes of an earthquake. The 
frictional strength increases with the depth as a function of the pressure, whereas the viscous strength decreases 
with the depth as a function of the temperature; consequently, rocks deform ductility beyond the depth known as 
the brittle-ductile transition [Burgmann and Dresen, 2008]. The rheology of the lower layer may not be a simple 
Newtonian viscosity [Freed et al., 2006] and is commonly modeled using Maxwell or Burgers bodies [Haberland, 
1981], which respond to a sufficiently slow deformation as a fluid-like material, i.e., permanent displacement can 
remain without accumulation of elastic energy and shallow mantle viscosities can become as low. The viscosity 
description is mentioned in more detail by Wang [2017a, b].  

Rocks of earth’s crust present an anomalous elastic behaviour, and earthquakes are complex systems with long-
memory, and some of their faults have fractal properties. It is fair to claim that fractional-order derivative and 
fractional power-law are very efficient for earthquake modelling. In this paper, we assume that the friction forces 
have fractional-order derivatives, while the elastic properties of the rock fault are modelled by using fractional 
order power law as discussed by Cvetivanin [2009], Lewis and Monasa [1981] and Lee [2002]. 

3

Fractional earthquakes under magma flow

Figure 1. The lumped parameter model of Julian [1994] for the generation of tremor by flow induced oscillations. Fluid 
flows from one reservoir to another (each with constant fluid pressure) via a slot of length L. The walls of the 
constriction each have a mass M, a stiffness k, and a damping constant A. 
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The present paper is organized as follows. The next section presents the preliminaries on the fractional power 
law. Section 3 presents the physical system and the corresponding mathematical model. In Section 4, the resonance 
of the fractional-order system is analytically studied by the harmonic balance method. The numerical results are 
presented in Section 5. The last section is the conclusion. 
 
 
2. Power law in the non-linear elastic material 
 

Nonlinear elastic deformation of damaged rocks and other brittle materials is well-established by observations 
at various scales [Johnson et al., 1996; Lockner and Stanchits, 2002; Basaran and Nie, 2004]. Distributed rock damage 
in the form of cracks, joints, and other internal flaws develops as part of the rock formation and can increase 
significantly during tectonic loading. Several experimental studies under conditions of brittle deformation revealed 
that the elastic parameters strongly depend on the extent of the damage, leading to vanishing effective elastic 
modulus at significant stresses just before failure [Johnson et al., 1996; Hamiel et al., 2004]. For flexible material, 
Debnath [2003] reported that the stress-strain law of elasticity theory could be generalized using fractional order 
power law. In their study of the deflection of a cantilever beam made of a Ludwick type material under one 
concentrated vertical load at the free end, Lewis and Monasa [1981] experimentally obtained for the nonlinear part 
of a stress-strain relationship 𝜎 = 66.500𝜀⁰.⁴⁶³ (𝜎 being the stress and 𝜀 the strain] by measuring the deflection at 
the free end. In Refs. [Lewis & Monasa, 1981; Lee, 2002; Shatarat et al., 2009; Bank et al., 2010], various fractional-
order power laws were experimentally obtained for the stress-strain relation of different flexible materials. 
The elastic force with a fractional-order power law in the flexible material is given by [Cvetivanin, 2009]:  

             (1) 

 
where 𝑘1, 𝑘3 and 𝛼 are, respectively, the linear and nonlinear stiffness coefficient and the fractional-order. There are 
many materials for which the fractional-order 𝛼 is larger than 1 and not an integer. The negative nonlinear stiffness 
coefficient (𝑘3 ≻ 0) models a hardening nonlinearity, and (𝑘3 ≺ 0) models a softening nonlinearity [Miller, 2005].  
 
 
3. Mathematical model 
 

The model (see Figure 2) considered here consists of a slider with a mass m connected to a rigid pulling rod 
moving at a small constant velocity V by a linear spring with a constant 𝑘� and the nonlinear viscous damping 𝐶�. 
The block is connected to the wall conduit by a spring with a constant 𝑘� subjected to the magma thrust strength 
defined by [Pelap et al., 2016]: 

    (2) 

Figure 2. Springs-block model of an earthquake subjected to the magma thrust strength [Pelap et al., 2016].



The friction force 𝐹� between the block and the surface is a function of the instantaneous velocity of the block 
concerning a characteristic velocity 𝑉�. The equation of motion with nonlinear viscous damping via the fractional-
power law of the velocity is given by the following expression: 
 

                 (3) 
 
where 𝑥 denotes the position of the block measured with respect to the position where the sum of the elastic forces 
on the block is zero, sgn(.) is the sign function. 𝑘 and 𝜀 are respectively the nonlinear stiffness coefficient, and the 
fractional-order,𝐶� and 𝐶1 are respectively the viscous damping coefficient and the nonlinear damping coefficient, 𝑞 
and 𝑟 are the fractional-order derivatives and 𝑦 denotes the displacement of the wall conduit with mass 𝑀, defined as: 
 

        
(4)

 
 
𝐹�(𝑑�𝑥/𝑑𝑡�/𝑉�) is the fractional-order weakening friction force define as: 
 

            
(5)

 
 
where 𝐹� represents the friction force amplitude along the dry fault (𝐹� is the force that enables the block to resist 
the movement induced by tectonic plates under dry conditions) and 𝜙(𝑥) designates a continuous function for 𝑥≥0 
that vanishes for large values of 𝑥 and satisfies two conditions, namely, 𝜙(0)=1 and 𝜙'(0)=‒1, wherein the prime 
denotes differentiation with respect to the argument and the second condition expresses the velocity-weakening 
effect of the friction [De Sousa Vieira, 1992]. By integrating Equation (4), we obtained: 
 

     
(6) 

 
The fractional-order derivative is introduced to the damping force in Equation (3) due to the fact that many 

materials or devices exhibit obvious visco-elasticity, which could be precisely modelled by fractional-order 
derivative. 

According to Stokes’ law, the damping coefficient 𝐶� of a sphere of radius R in a fluid of viscosity 𝜐 is given by 
𝐶�=6𝜋𝑅𝜈 [Kittel et al., 1968]. The viscosity, 𝜐, of a fault zone depends upon the temperature, pressure, water content, 
SiO2 content, rock types, etc. Spray [1993] showed that the calculated values of 𝜐 for friction melts are low and 
decrease with increasing temperature. In general, 𝜐 lies in the range 1015 Pa.s and 1020 Pa.s when the temperature 
varies from 500° C to 1200° C. Savage and Lachenbrush [2003] mentioned that for a seismogenic zone with a 
thickness of 14 km, the viscosity on the bottom is (0.31 - 3.12)*1020 Pa.s. Obviously, the values for lower crustal 
materials from Savage and Lachenbrush [2003] are higher than those for upper crustal materials from Spray [1993]. 
The parameter R is almost the dimension of the deformed volume around a rupturing fault. Based on stick-slip 
behaviour and elastic rebound theory of a fault, Turcotte and Schubert [1982] estimated the value of R. Their values 
of R are in the range 750 m to 7500 m when the average displacement on a fault is 5 m, the stress drop is 10-100 MPa, 
and the shear modulus is 30 GPa. The average value of the stiffness coefficient for numerous faults is about 4:6×1014 
N/m [Wang, 2012; Wang, 2017a]. Hence, the value of 𝐶� lies in the range 10-8 to 10-6 for 𝜐 of 102 to 1015 Pa.s. The 
parameters adopted in this study are regrouped in the Table 1.  

 

Parameters Units
Fault stiffness, 𝑘� and 𝑘� 𝑃𝑎 / 𝑚
Nonlinear Fault stiffness, 𝑘 𝑃𝑎 / 𝑚�
Rock’s viscosity, 𝜐 𝑃𝑎.𝑠
Viscous damping coefficient, 𝐶� = 6𝜋𝑅𝜐 𝑃𝑎.𝑠 / 𝑚
Nonlinear damping coefficient, 𝐶1 𝑃𝑎.𝑠 / 𝑚�
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Table1. Parameters used in this paper. 
 

In this study, we adopted 𝑘� = 100 𝑀𝑃𝑎/𝑚, 𝐹₀ = 16.8 𝑀𝑃𝑎 and 2𝜋  = 5𝑠 consistent with [Bizzarri, 2012 b; 
Wang, 2018].  

Before proceeding with the analysis, let us introduce the dimensionless variables [De Sousa Vieira, 1992] 𝑈 = 𝑘�𝑥/ 
𝐹₀ and 𝜏 =  so that the equation of motion Equation (3) can be written in the following dimensionless form: 
 

  
(7)

 

where  
 
and 𝜆=𝐶₁𝐹₀�⁻¹/(𝑚𝑘�)�/². 
 

The value of 𝜈 must be much smaller than 1 because of 𝑉≈10⁻¹⁰𝑚.𝑠⁻¹. Since the value of 𝜈 mainly influences the 
recurrence time between two events, and can only makes a very small influence on the pattern of time variations 
in velocity and displacement of events. In order to study long-term earthquake recurrence, there must be numerous 
modelled events with clear and visualized time functions of displacement and velocity for an event in the 
computational time period. If 𝜈 = 10⁻¹⁰ is considered, the recurrence time of events is very long and thus the duration 
time of an event is much shorter than recurrence time. This makes the time function of an event displayed in the 
long-term temporal variation in slip looks like just a step function for the displacement and an impulse for the 
velocity [Wang, 2018]. Hence, in order to get fine visualization a larger value of 𝜈 is necessary. The value of 𝜈𝜏 is 
usually very small during an event and cannot influence the rupture because of very tiny value of 𝜈. Numerical test 
shows that when 𝜈 > 10⁻², the value of 𝜈𝜏 is not small during an event and can influence the rupture [Wang, 2018]. 
Hence, 𝜈 = 10⁻² is taken in this study. 

Increased interest in stick-slip instability was renewed during the late 1970s through laboratory rock experiments 
to understand earthquake rupture processes. Dieterich [1978], Perrin et al. [1995], Rice [1983], Bizzarri and Cocco 
[2005, 2003], and others used these experiments to formulate constitutive laws capable of describing the frictional 
stresses when rocks are sheared against each other or over a surface. 

The fault behaviour strongly depends on the fault constitutive model used. Therefore, in the following text, we 
use the velocity-weakening frictional force given by [Carlson and Langer, 1989a, 1989b]:  
 

    
(8) 

 
 
4. Amplitude-frequency of the system 
 

In this section, we used the method of harmonic balance to investigate the frequency response of the Equation (7). 
Several analytical techniques are available for the analysis of dynamics of systems with fractional derivative and 
fractional power law, such as the residual harmonic balance method, multiple time scales method and the homotopy 
method [Leung et al., 2012; Xiao et al., 2013]. In this part, we will focus on the weak displacements of the block. (i.e) 
(𝑑𝑈/𝑑𝜏≺≺𝜈�), the function 𝜙 � � will be developed in the linear approximation in terms of the Taylor series 
according to Langer and Tang [Langer and Tang, 1991] as follows:  

Velocity of the driving plate, 𝑉 𝑚 / 𝑠
Characteristic scale velocity, 𝑉� 𝑚 / 𝑠
Static friction, 𝐹0 𝑃𝑎
Mass of Wall conduit, 𝑀 𝑘𝑔 / 𝑚²
Mass of slider, 𝑚 𝑘𝑔 / 𝑚²
Fractional-order, 𝛼, 𝜀, 𝑞 and 𝑟 //

√𝑚/𝑘�

√𝑘�/𝑚𝑡

𝑙 = √𝑘�/𝑘�, 𝜔₀ = √𝑘�/𝑚, 𝛽=𝑘𝐹₀�⁻¹/𝑘��,𝑒₀ = 𝐹�𝜔₀²/𝑀𝐹₀,𝜂=𝐶�/√𝑚𝑘�,Ω=𝜔�/𝜔₀

𝑑𝑈 
𝑑𝜏

1 
𝜈�
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(9)

 
 
Owing to this model of friction, the dimensionless equation, Equation (7) becomes 
 

              
(10)

 
 

The solution of the governing equation, Equation (10) is found in the form: 

           (11) 
 
𝐴� and 𝜙 are amplitude and phase respectively. Considering, Equation (11) for each term of Equation (7), one 
obtains: 
Definition [Podlubny, 1999] of the fractional derivatives allows us to obtain the expression of 𝐷�𝑈 
 

 
(12)

 
 
where 

             
(13)

 
 

      
(14)

 
 

Although the integrals Equation (14) cannot be evaluated in closed form for a general interval, we can evaluate 
them using the contour integration, when the steady-state response is of interest: 𝜏 → � [Leung and Guo, 2011; 
Leung et al., 2012; Xiao et al., 2013], where 
 

       

(15)

 
The approximation leads to 

(16)
 

 
with Ψ(𝜏)=Ω𝜏‒𝜙(𝜏) 

     
(17)

 
 

(18)

 

             (19) 
Where  

      

(20)

 
 



The nonlinear stiffness term is evaluated neglecting higher-order term as follows: 

               (21) 

 
The right-hand side of Equation (21) can be decomposed in a Fourier series according to 

     (22) 
 

Where 𝑎� and 𝑏� are defined as:  

              (23) 

          (24) 

  (25) 
 

Where 𝐵(𝑥, 𝑦) denotes the beta function. 
 
One obtains finally  

  (26) 
 

The nonlinear viscous term is given as follows: 

         (27) 
 

The right-hand side of Equation (36) can be rewritten as: 

    (28) 
 

With Θ = Ψ+𝑟𝜋/2. Equation (28) has the same form as Equation (21). Therefore Equation (28) can be written in 
the form: 

         (29) 
wher.   

   
(30) 

 
Substituting thes e previous transformations into Equation (10), we obtain the following first-order differential 

equations: 
 

       
(31a)

 

       
(31b)

 
 

With  

              
(32a)

 

(32b) 
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After one development and simplification, Equation (31) becomes: 

     (33a) 
 
 

    
(33b)

 
 
Where: 

    
(34a) 

(34b)
 

 
We define the parameters 𝐶�� and 𝑘�� as the equivalent linear damping coefficient and the equivalent linear 

stiffness coefficient respectively.  
In the integer model (𝑞 = 1, 𝑟 = 1), the equivalent linear damping coefficient and the equivalent linear stiffness 

coefficient are given by Equation (35). 

     
(35) 

 
Based on Equation (34), it could be found that the fractional-order derivatives, and and the fractional damping 

coefficient 𝜂 are all significant in system dynamics. The fractional damping coefficient 𝜂 is linear with an equivalent 
linear damping and equivalent stiffness in this system. Moreover, it could be found that the equivalent linear 
damping and stiffness coefficients are also associated with the excitation frequency. The equivalent linear damping 
and linear stiffness coefficient versus the fractional-order derivatives 𝑞 and 𝑟 are shown in Figure 3. It appears in 
this figure that, the equivalent linear damping coefficient 𝐶�� is little and the equivalent stiffness coefficient 𝑘�� is 
more significant when the fractional-order derivative 𝑞 → 1. These results are remarkably different from the general 
consideration in most literature, where the fractional-order derivative was only considered as a special damping 
force.  

Now we study the steady-state solution, which is more important and meaningful in vibration rock. For steady-
state response, = 0 and = 0, Equation (33) becomes 
 

    
(36)

 
 
The amplitude and the phase in the steady-state are given by the follow equations:  

  (37a) 
 

(37b)
 

 
The potential energy stored in the rocks surrounding fault is given by: 

 

            
(38)

 
 

𝑑𝐴� 
𝑑𝜏

𝑑𝜑 
𝑑𝜏



The maximum energy stored is given as: 
 

             
(39)

 
 

Equation (37a) is an implicit equation for the amplitude of the response as a function of the frequency 𝛺 and the 
amplitude of the forcing term 𝑒₀: it is called the frequency-response equation. The Newton-Raphson algorithm is 
used to solve it in order to obtain the amplitude response curves 𝐴�(Ω) which are plotted in Figures 4-12 for three 
different values of the parameter. 𝑞, 𝑟, 𝛼, 𝜀, 𝛽 and 𝜂 respectively. In these figures, the response amplitude presents a 
maximum (infinite response) for Ω = Ω�. We recognize such behavior as a resonance phenomenon and one can 
notice that the parameters 𝑞, 𝑟, 𝛼, 𝜀, 𝛽 and 𝜂 have a real effect on the amplitude of such oscillatory states. 

The behaviour of amplitude-frequency is represented in Figure 4, where the comparison between the analytical 
and the numerical response frequency of the model is shown. We notice that both curves have approximately the 
same profiles; therefore; we can conclude that the harmonic balance method chose to solve our problem is 
appropriate.  

To analyze the effect of the parameters on the response system, the amplitude-frequency and stored energy-
frequency curves are shown in Figures 5 - 7, 9 - 11.  

From the observation of amplitude-frequency and energy-frequency curves in Figure 5, 6, one find that the 
resonance amplitude 𝐴�(Ω�) system decreases when the fractional order and the fractional damping coefficien 𝜂 
increase. This is due to the increase of the equivalent linear damping coefficient. This shows that in the specific 
condition of the earth’s crust, the stored energy in the rock can be controlled by the viscosity.  

From Figure 7, the resonance amplitude 𝐴�(Ω�) changes with increasing the fractional - order r. This is very clear 
in Figure 8b which represents the resonance amplitude versus the fractional-order r. In this figure, the resonance 
frequency Ω� of the fractional-order system decreases with increasing the fractional-order r. This is very clear in 
Figure 8a which illustrates the resonance frequency Ω�. This is due to the decrease of the equivalent linear stiffness 
coefficient. Figure 9 and Figure 10 show the effect of the fractional power deflection and the fractional power viscous 
on the amplitude-frequency and the stored energy. 

From the observation of the amplitude response and the stored energy-frequency in Figure 9, one finds that the 
resonance amplitude increases and the resonance frequency decreases with increasing the fractional power 𝛼. This can 
be due to the increase of the equivalent nonlinear stiffness and the equivalent nonlinear viscous damping coefficients. 
The increasing fractional power 𝜀, increase the resonance amplitude of the system (Figure10). This may be due to the 
decrease in the equivalent nonlinear damping coefficient. The effects of the nonlinear stiffness coefficient on the 
amplitude-frequency are shown in Figure 11 and it appears on this figure that the resonance frequency increases and 
the resonance amplitude decreases with increasing the nonlinear stiffness coefficient. The amplitude decrease can be 
for the reason that the equivalent nonlinear damping coefficient increases with the nonlinear stiffness coefficient. 
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Figure 3. Equivalent linear stiffness coefficient (a) and equivalent linear damping coefficient (b) versus the fractional-
order r and q represented in the contour lines in (q, r) plane with Cp = 10 MPa, Ω=0.9, l = 0.5, 𝜈�⁻¹ = 0.39.
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Figure 4. Comparative analysis between analytical and numerical for frequency-response curve Am (Ω) with the 
parameters r = 1.0, q = 1.0, 𝛼 = 3.0, 𝜀 = 3.0, l = 0.5, 𝜈�⁻¹ = 0.39, Cp = 10 MPa, e0 = 0.119.

Figure 5. Effect of the fractional-order q on the amplitude response (a) and the maximum energy stored in the rock (b) as 
a function of the excitation frequency with Cp = 50 MPa.s, k 1 MPa/m, Fm = 1 MPa, C1 = 1MPa.s. Other parameters 
are as given in Figure 4. It appears that increasing the order of the fractional-order q results in a decrease in the 
resonance amplitude of vibration and the resonance stored energy.

Figure 6. Effect of the linear viscous damping coefficient on the Amplitude response of the system (a) and the maximum 
energy (b) as a function of the excitation frequency. Other parameters are as given in Figure 5. It appears that 
increasing the viscous damping coefficient results decrease in the amplitude of vibration.



Figure 12 illustrates the effect of the resonance frequency Ω� (Figure 12 a) and the resonance amplitude (Figure 12 b). 
The amplitude response curves 𝐴�(𝑞) and 𝐴�(𝑟) are plotted in Figure 13. The resonance phenomenon is observed 
in this figure. 

In the earthquake analogy; the resonance phenomenon can be explained by the fact that the rock of earth crust 
has stored much energy which created the news fissures that involve news small faults. In the sandblaster zone, the 
water can up flow through this fissure to provoke the liquefaction phenomena.  
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Figure 7. Effect of the fractional-order (damping term) on the amplitude response of the system (a) on the maximum 
energy (b) as a function of the excitation frequency. Other parameters are as given in Figure 5. It appears that 
increasing the fractional-order (damping term) results a variation in the resonance amplitude of vibration and 
decrease in the resonance frequency. 

Figure 8. Resonance frequency (a) and the amplitude resonance (b) versus fractional-order r. Other parameters are as 
given in Figure 5.
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5. Numerical results 
 

There are many numerical methods for fractional-order differential systems, including computation in time or 
frequency domains. The numerical formula for the fractional derivative used here is [Petras, 2011; Podlubny, 1999; 
Tanekou et al., 2018] 

          
 

(40) 
 

In this 𝐿� is the memory length, ℎ is the time integration step, 𝑡� = ℎ𝑘 and 𝐶�⁽�⁾ are the binomial coefficients 
satisfying the following relations: 

      
 

(41) 

Figure 9. Amplitude response of the system (a) and stored energy (b) as a function of the excitation frequency. Other 
parameters are as given in Figure 5. It appears that increasing the fractional power deflexion results a increase 
in the amplitude of vibration and an decrease in the resonance frequency.

Figure 10. Amplitude response of the system (a) and the stored energy (b) as a function of the excitation frequency. Other 
parameters are as given in Figure 5 It appears that increasing the fractional power viscous damping results 
decrease in the amplitude of vibration.
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Figure 11. Effects of the nonlinear stiffness coefficient on the steady amplitude versus excitation frequency. Other 
parameters are as given in Figure 5.

Figure 12. Resonance frequency (a) and the amplitude resonance (b) versus nonlinear stiffness coefficient. Other 

parameters are as given in Figure 5. 

Figure 13. Behavior of the amplitude versus the fractional-order r (viscous case) (a) for q = 1 and versus the fractional-
order q (fractional friction case) (b) for r = 1. With Ω = 0.5 and other parameters are as given in Figure 5.



15

Fractional earthquakes under magma flow

Therefore, the numerical solution of the fractional differential equation 0𝐷�� 𝑥(𝑡) =𝑓(𝑥,𝑡) using Equation (40) is 
finally given by the following equation: 
 

          
(42)

 
 

Based on the above investigations, the equation of motion Equation (7) can be decomposed into a set of lower 
degree equations:  
 

      

(43)

 
 

For simulation purposes, we will use a numerical solution of Equation (43) obtained by using Equation (42), 
which leads to the equations in the following form: 

       

(44)

 
 

In which, 𝑘 = 1,2,3,...𝑁 = 𝜏� /ℎ, 𝜏� is a simulation time and the initial conditions are:𝑈(0), 𝑧(0). By combining the 
two first equations of the above system Equation (44), we obtain: 
 

             
(45)

 
 

Equation (43) has been solved numerically with initial conditions (𝑈(0), 𝑧(0)) = (0,0)and the step integration 
ℎ = Δ𝜏 = 0.001. 

Figures 14, 15, and 16 show the numerical simulations of the temporal variations in slip displacement and slip 
velocity of the slider in which 𝜈�⁻¹ = 0.39, 𝑙 = 0.5, 𝜀 = 3.0, 𝑒0 0.6, Ω = 0.9, 𝛼 = 3.0. It appears on these figures that system 
exhibited stick-slip motion (slider moves with “adhesion” to the rough surface).  

In Figure 14 we see that the amplitude of slip displacement and slip velocity in the integer model are smaller than 
those in the fractional model, this can be because decrease the fractional-order derivative 𝑞 can increase the block 
acceleration, thus increasing the stored energy in the rock as mentioned in Figure 5. We also remark that decreasing 
the fractional-order derivative increases the recurrence of the earthquake and reduce the recurrence time of the 
earthquake. This is because frictional force can decrease with decreasing fractional-order derivative. The 
displacement along a fault is controlled by the fault rheology [Bizzarri, 2009; Rathbun and Marone, 2010].  

Fractional derivative can have some interesting consequences, including one or more repeats slip events or 
“aftershocks” (Figure 14), these “aftershocks” are caused by re-rupturing the same surface instead of stress transfer 
to an adjoining part of the fault.  

In our model, the introduced fractional-order 𝑞 in the weakening friction should play the same role as the 
parameter of the fault rheology. As specified above, fractional-order derivative replaces the state variable 𝜃 
incorporated in the Dieterich-Ruina friction law [Ruina 1983] which is usually interpreted as a function of the sliding 
history and the fault’s age [Pomeau and Le Berre, 2011]. The decrease of recurrence time with decreasing fractional-
order could have significant implications. In the earthquake analogy, the increase of recurrence slip and decrease 
of recurrence time might indicate that in the specific conditions of the earth’s crust, it is more difficult to produce 
large earthquakes along a fault when it becomes more mature. This implicates that seismic hazard is higher for a 
young fault than a mature one. 



Increasing the fractional power deflection diminishes the values of the slip size of displacement and the velocity 
of the slider (Figure 15). This can be for the reason that increase the fractional power𝛼  decreases the potential 
energy stored in the rock’s fault. This result is consistent with this presented on the (Figure 8). 

It appears in Figure 16 that the values of the displacement and the velocity with high viscosity are smaller than 
those with low viscosity because viscosity can decrease the amplitude of vibration. The viscous effect on slip and 
the velocity of the model is consistent with that mentioned by the system’s response (Figure 7). Also, the presence 
of viscosity results in smaller velocities of sliders than the absence of viscosity. We can also see that the loading time 
of the earthquake decreases with increasing viscosity and the duration time of an event increases. This suggests that 
viscosity can cause slow earthquakes or creep of faults. The viscous effect on the model is consistent with that 
mentioned by Wang [2007] who applied the model to study the difference in ground motions between the northern 
and southern segments of the Chelungpu fault generated by the 1999 Chi-Chi, Taiwan, Ms 7.6 earthquake. 

Figures 17 and 18 illustrate numerical simulations of the phase portrait. We remark that when the magma 
strength 𝑒0 is wider than a specific value, the stick-slip motion can be suppressed and the system exhibits unstable 
slip-slip motion. The phase portrait displays the periodic or chaotic motion when the fractional-order derivative 𝑞  
(Figure 17) and fractional power 𝛼 (Figure 18) vary. In this situation, the earthquake cannot occur, and only creeping 
may happen. In addition, the size of the phase portrait increases with an increase of 𝑞 (Figure 17) and decreases with 
an increase of 𝛼 (Figure 18).  
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Figure 14. Simulation of stick-slip events for Cp = 10 MPa.s and 𝛼 = 3.0. (a) Slip versus time. (b) Slip velocity versus time.
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Following the above results, it would be more interesting to examine the effects of fractional order derivative and 
fractional deflection on earthquake recurrence time and on the slip size of an earthquake. 

Slip size is defined as the slip distance Δ = 𝑈(𝑡�) ‒ 𝑈(𝑡�) between the initial time 𝑡� and final time 𝑡� for each slip 
event. Figures 19 and 20 show the numerical computing slip size of the fault and the recurrence time of earthquake 
as a function of 𝑞 (Figure 19) and of 𝛼 (Figure 20).  

Figure 19 reveals that the impact of fractional-order derivative in the magnitude of an earthquake is significant for 
a large value of 𝑞, while the fractional-order deflection affects the magnitude of the earthquake (Figure 20) very slowly.  

From the observation of Figure 19, one could remark the fractional-order 𝑞 affects the slip size of fault (Figure 
19a) and the recurrence of an earthquake (Figure 19b) considerably.  

We remark that increasing the viscosity decreases the stored energy of the rocks. This show that increasing 
viscosity can cause oscillation death, therefore, tends to suppress the seismic activity, high viscosity can produce 
non-volcanic tremors, silent slip or steady slip. Viscosity is responsible for the reduction of seismic radiation during 
seismic ruptures [Daub et al., 2011; Wang, 2017b], this behavior is most often observed in the lower crust 
“plastosphere” where rocks are deformed by flow and also in the fault segments that incorporate the clayey rocks. 
In these zones, slip is controlled by plastic, ductile or viscous yielding. The fractional viscous model can be used to 
model the earthquakes dynamics within the lower crust or within the upper mantle where rocks are deformed 
permanently without energy accumulation and the fractional power model can be used to model the rigid rocks of 
the upper crust. Our result can find its application in civil engineering: indeed, to build at the level of the faults and 
volcanoes active, one must have an idea of the fault behaviour in order to construct by taking into account the 
earthquake-resistant conditions. We know that when the oscillation frequency of the ground is near that of a 
building, there is resonance. 

Figure 15. Effect of fractional power (𝛼) on the displacement (a) and velocity (b) for q = 1.0 and Cp = 10 MPa.
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Figure 16. Effect of viscosity on the displacement (a) and velocity (b) for 𝛼 = 3.0 and q = 1.0.

Figure 17. Orbit in phase-space for numerical solution with parameters Ω = 0.9, 𝛼 = 3.0, 𝜀 = 3.0, 𝜈�⁻¹ = 0.1, Cp = 10 MPa, 

l = 0.5, e0 = 20.0, r = 1.0.
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Figure 18. Orbit in phase-space for numerical solution with parameters Ω = 0.9, q = 0.98, 𝜀 = 3.0, 𝜈�⁻¹ = 0.1, Cp = 10 MPa, 

l = 0.5, e0 = 20.0, r = 1.0.

Figure 19. Numerical results of the one-block system. (a) The slip sizein a one-block, (b) the loading time of block or 
recurrence time versus the order derivative q at 𝛼 = 3.0, 𝜈�⁻¹ = 0.1, 𝜂 = 0.41, l = 1.0, 𝛽= 0.2, 𝜆 = 0.2, e0 = 0.5, Ω 
= 1.5, r = 1.0.

Figure 20. Numerical results of the one-block system. (a) The slip sizein a one-block, (b) recurrence time versus the 
fractional-order deflection 𝛼 at 𝜈�⁻¹ = 0.1, 𝜂 = 0.41, l = 1.0, 𝛽= 0.1, 𝜆 = 0.1, e0 = 0.3, Ω = 1.5, q = 1.0, r = 1.0. 



6. Conclusion  
 

The dynamics of an improved one-dimension nonlinear spring-block model for earthquake with fractional 
viscous damping subjected to the strengths due to the motion of the tectonic plates and the up flow of magma is 
studied. The approximately analytical solution is obtained by the harmonic balance method. In the literature, the 
resonance amplitude is only affected by the linear and nonlinear damping coefficients, and the resonance frequency 
is only affected by the linear and nonlinear stiffness, contrarily, in this work the resonance amplitude and the 
resonance frequency are also affected by fractional-order derivative and the fractional power. It is because the 
fractional-order parameters can affect the linear and nonlinear equivalent damping coefficient and linear and 
nonlinear equivalent stiffness coefficient simultaneously. When 𝑞 ≠ 0, 𝑟 ≠ 0 and 𝜂 ≠ 0, fractional-order derivative 
𝑞 and 𝑟 will possess both the function of stiffness and the function of damping simultaneous. 

Our results show that resonant amplitude of rock vibration decreases with the increase of the order 𝑞 of the time 
derivative, the fractional viscous coefficient, fractional power deflection 𝛼 and the nonlinear stiffness coefficient 
𝛽 and increases with increasing fractional power 𝜀 of viscous damping. Note that the resonant frequency decreases 
with the increase of the order 𝑟 of the time derivative and increases with the increasing the fractional power 
deflection and the nonlinear stiffness coefficient. This resonance is responsible for the transition from creep to 
stick-slip-like behaviour [Perfettini and Schmittbuhl, 2001]. In our model, the resonance case (Ω=Ω�) is more 
interesting since stick-slip is observed, showing that the fractional-order parameters variations can destabilize the 
creeping fault. 

The model gives us an excellent interpretation of the earthquake as a stick-slip motion. We have shown that the 
recurrence time of the earthquake and the slip size of the fault can be controlled by the fractional-order, the 
fractional viscous coefficient, fractional power deflection and the magma strengths. These results may be hugely 
crucial in a dynamic system with the fractional-order derivative and power-law. Our model can be very useful for 
the system design and control of the dynamical response of a structure subjected to the ground vibrations by 
choosing suitable fractional-order parameters. 
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