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Abstract  
 
Being one of the potentially important hydrous phases of the lower mantle, it is important to study 
the properties of phase H to understand the structure and composition of the mantle. The crystal 
structure, elastic modulus, and seismic wave velocity of phase H under different Fe concentrations 
(0, 12.5, 25, 100 at%) at 16–60 GPa were calculated by the first-principles simulation. The density 
of phase H linearly increases with increasing Fe concentration. The iron concentrations of 35.5–84.3 
at% lead to densities matching the mantle density profile at different depths of the Earth. The 
effects of Fe on different elastic constants show varying tendencies. The K value increases with the 
Fe concentration, while the G value decreases. The values for Vp and Vs increase almost linearly 
with the rise in pressure. The Vp and Vs values decrease with increasing Fe content. The wave 
velocities of the pure-Mg phase H and Fe-bearing phase H are close to the typical velocity of the 
Earth at 500–1400 km depth. The FeOOH-AlOOH-MgSiH2O4-FeSiH2O4 system may be responsible 
for the observed seismic properties of LLSVP in the Earth’s lower mantle. The quantitative effect of 
Fe on the density, elastic moduli (K and G), and wave velocities (Vp and Vs) are listed as fitted 
equations. These results help to infer the Fe concentration and structure of the deep Earth.  
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1. Introduction 

 
Water plays an important role in the evolution and dynamics of Earth due to its strong influence on the physical 

and chemical characteristics of the Earth materials. The phase H and the solid solution formed by phase H with 
�-phase AlOOH (phase H+�-AlOOH) are considered to be the most potential hydrous phases present under the deep 
lower mantle conditions [Ohtani et al., 2014; Ghosh and Schmidt, 2014; Nishi et al., 2018, 2019]. Iron is abundantly 



found in the mantle, usually as the substitute for magnesium in mantle minerals. It was found that the incorporation 
of iron in silicate minerals modifies their crystal structures and physical properties [Liu et al., 2010; Tsuchiya and 
Tsuchiya, 2009; Higo et al., 2006; Hazen et al., 2000; Ganskow et al., 2010; Jacobsen et al., 2004; Okuda et al., 2019; 
Zhang et al., 2019]. The variation in the iron concentration within the mantle transition region may significantly 
contribute to the observed high-velocity anomalies in addition to the temperature effect of the cold subducting slab 
[Ringwood and Irifune, 1988; Y. Higo et al., 2006] Thus, the properties of the bearing-Fe phase H under high pressure 
are important to understand the structure and composition of the mantle. It is well-known that the first-principles 
methods successfully simulate the Earth and planetary materials at high pressures and temperatures [Gillan et al., 
2006; Wentzcovitch and Stixrude, 2010; Jahn and Kowalski, 2014]. This study calculated the crystal structure, elastic 
moduli, and seismic wave velocity of phase H with varying Fe concentrations (0, 12.5, 25, 100 at%) under 16–60 GPa 
by first-principles methods to understand the structure and composition of the mantle.  

 
 

2. Simulations details 
 
The First-principles simulation was performed using density functional theory (DFT) [Hohenberg and Kohn, 

1964; Kohn and Sham, 1965] and the plane wave pseudopotiential method, as implemented in the CASTEP codes 
[Clark, et al., 2005]. Ultrasoft pseudopotentials [Vanderbilt, 1990] were used to model electron–ion interactions 
with a plane-wave energy cutoff of 1000 eV. The generalized gradient approximation (GGA) with PBE 
parameterization [Perdew, et al., 1992] was used to describe exchange-correlation interactions. A convergence 
criterion of 5 × 10-7 a.u. for total energy was used in the self-consistent-field calculations. A 4 × 6 × 4 Monkhorst Pack 
grid of k-points was adopted for sampling the Brillouin zone of the phase H unit cell with MgSiO4H2, FeSiO4H2, and 
AlAlO4H2. Supercell were constructed for understanding the effect of different Fe contents (12.5 and 25at%). So K-
points in those supercells are sampled by a different mesh, which is equivalent to that for the unit cell in reciprocal 
space. All structure parameters and atomic coordinates are fully relaxed to a static configuration (0K) and 16-60GPa 
using BFGS geometry optimization algorithms. The elastic constants were determined by stress-strain relations 
[Karki et al., 2001]. The magnitude of the applied strains was 0.01 and the linear relation was ensured to be enough 
for this strain range. For ferrous iron (Fe2+) in this work, we consider the high spin ferromagnetic state (spin 
momentum S=4/2) during the calculation [Zhang and Oganov, 2006; Li et al., 2005; Hsu et al., 2011, 2012]. The 
benchmark calculations can be seen in the previous works [Liu et al., 2017, 2018]. 

 
 

3. Results 
 
The Fe-bearing phase H structures were constructed by Tschermak substitution of Mg2+ by Fe2+ in the Mg end-

member phase H. The three Fe-bearing phase H (FeSiO4H2 (Pure-Fe, 100at%), Mg0.75Fe0.25SiO4H2 (High-Fe, 25at%), 
and Mg0.875Fe0.125SiO4H2 (Low-Fe, 12.5at%)) were built and simulated in this work. The Mg end-member phase H 
(MgSiO4H2) (Pure-Mg) and Al end-member phase H (Al2O4H2) (Pure-A) were cited from the previous works [Liu et 
al., 2017, 2018] for understanding the effect of Fe on the crystal structure and elastic properties.  

 
 
3.1 Crystal structures of phase H under high pressure 
 
The lattice constants of phase H under varying Fe concentrations are listed in Figure 1 and Table 1. For 

comparison, the results of pure-Al phase H are also provided in the Figure 1.  
The lattice constants a and b of the pure-Al phase H are far smaller than those of the pure-Mg and Fe-bearing 

phase-H. However, the lattice constant c of the pure-Al phase H is higher than those of the other four phases. The 
values of a and b increase with an increase in the Fe concentration, although the value of c decreases. Compared to 
the results of pure-Mg phase H, the increase in the values of a and b of the phase H with 12.5, 25, and 100 at% Fe 
concentrations are 0.34% and 0.67%, 2.90% and 0.20%, and 0.38% and 1.58%, respectively. Also, the reduction in 
the value of c is 0.13%, 0.28%, and 2.66%, respectively, for the above Fe concentrations. Obviously, the effect of Fe 
on the value of a is maximum. The lattice constant differences between the pure-Al phase H and pure-Mg phase are 
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Structure and elasticity of Fe-bearing Phase H

Figure 1. Figure 1 The lattice constants of the Phase H under high pressure.
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Table 1. The crystal and elastic properties of Phase H at high pressure.

Cell parameters Elastic property

P(GPa) a(Å) b(Å) c(Å) Density(g/cm3) K(GPa) G(GPa) Vp(km/s) Vs(km/s)

FeSiO4H2 (100at% Fe)

16 4.250 2.706 4.785 4.53 264.6 126.5 9.78 5.29

24 4.210 2.674 4.746 4.66 297.2 134.3 10.11 5.37

32 4.175 2.646 4.712 4.78 328.9 142.1 10.41 5.45

40 4.146 2.619 4.682 4.90 360.1 149.6 10.69 5.53

48 4.117 2.595 4.656 5.00 390.4 156.0 10.94 5.58

56 4.091 2.574 4.633 5.11 420.0 162.2 11.16 5.64

60 4.078 2.563 4.622 5.15 434.6 164.4 11.26 5.65

(Mg0.75Fe0.25SiO4H2) (25at% Fe)

16 4.205 2.770 4.698 3.84 249.8 135.1 10.59 5.93

24 4.164 2.738 4.653 3.96 280.4 143.3 10.92 6.02

32 4.128 2.709 4.614 4.07 309.7 151.0 11.21 6.10

40 4.095 2.683 4.580 4.17 338.6 159.0 11.49 6.18

48 4.066 2.660 4.548 4.26 368.1 166.0 11.76 6.24

60 4.027 2.627 4.506 4.40 408.9 175.1 12.08 6.31

Mg0.875Fe0.125SiO4H2 (12.5at% Fe)

16 4.199 2.775 4.685 3.72 245.3 142.0 10.80 6.18

24 4.156 2.742 4.640 3.84 276.8 151.0 11.15 6.27

32 4.120 2.714 4.600 3.95 306.9 158.6 11.45 6.34

40 4.088 2.687 4.565 4.05 335.9 166.2 11.73 6.41

48 4.058 2.664 4.533 4.15 364.3 173.1 11.98 6.46

60 4.019 2.631 4.491 4.28 405.6 182.3 12.31 6.53

MgSiO4H2 (Pure-Mg)

16 4.190 2.779 4.672 3.62 242.1 148.9 11.04 6.42

20 4.169 2.762 4.648 3.68 257.8 152.8 11.21 6.45

24 4.149 2.747 4.626 3.73 11.53 6.52

28 4.130 2.732 4.605 3.79 288.2 161.1 11.68 6.56

32 4.113 2.718 4.586 3.84 303.2 164.9 11.81 6.58

36 4.096 2.704 4.568 3.89 317.5 168.2 11.95 6.61

40 4.081 2.692 4.550 3.94 332.7 171.9 12.08 6.64

44 4.066 2.679 4.534 3.98 347.0 175.4 12.20 6.66

48 4.051 2.668 4.518 4.03 361.3 178.4 12.31 6.68

52 4.038 2.656 4.502 4.07 374.9 181.8 12.41 6.69

56 4.025 2.645 4.488 4.12 388.2 184.3 12.52 6.71

60 4.012 2.635 4.474 4.16 402.0 187.1 11.04 6.42

Al2O4H2 (Pure-Al)

16 4.108 2.793 4.622 3.76 266.8 178.0 11.58 6.88

20 4.091 2.778 4.598 3.81 281.8 183.8 11.76 6.94

24 4.075 2.764 4.577 3.87 296.7 188.8 11.91 6.98

28 4.060 2.751 4.556 3.92 311.4 194.3 12.06 7.04

32 4.045 2.738 4.537 3.98 326.0 198.4 12.19 7.06

36 4.031 2.725 4.519 4.02 340.1 203.0 12.32 7.10

40 4.018 2.713 4.502 4.08 354.2 207.8 12.45 7.14

44 4.005 2.702 4.485 4.12 368.0 212.0 12.56 7.17

48 3.993 2.691 4.469 4.17 382.1 216.0 12.68 7.20

52 3.981 2.680 4.454 4.22 395.4 219.9 12.78 7.22

56 3.970 2.670 4.440 4.26 409.2 223.9 12.89 7.25

60 3.959 2.660 4.426 4.30 423.2 227.8 13.00 7.28



1.6%, 1.07%, and 0.77% for a, b, and c, respectively. Thus, the effect of Al on the lattice constant is smaller compared 
to that of Fe. Nishi et al. [2018] measured the lattice constant of pure-Mg phase H using the multi-anvil apparatus 
under 300–1300K temperature and 34–60 GPa pressure. The comparative results at a temperature of 300K are listed 
in Figure 1. The calculated value of c is almost the same as the experimental result. However, the values of a and b 
are larger than those in the results as the use of GGA causes under-binding in the calculations. At the same time, 
the calculated changes in the lattice constants with pressure are consistent with the experimental results [Nishi et 
al., 2018].  

 
 
3.2 Density 
 
The densities of phase H are demonstrated in Figure 2 and Table 1. The densities of Fe-bearing and pure-Al 

phase H are larger than that of the pure-Mg phase H. The density increases with increasing Fe concentration. This 
is due to an increase in the total mass by the substitution of Mg with Fe atoms the rest is due to the smaller volume 
of the unit cell of Fe-bearing phase H. This is consistent with the previous result obtained for the effect of Fe on the 
density of the minerals [Yu et al., 2013; Liu et al., 2010]. The intrinsic mass difference between Mg and Fe gives a 
3.3% density difference at the Fe concentrations of 12.5 at%, 7.7at%, 25 at%, 24.4at%, and 100at%. The density 
increment of pure-Al phase H is 3.8%. This effect is equivalent to that observed at the Fe concentration of 14.7 at%. 
The result indicates the greater effect of Fe on the density of phase H compared to Al. 

Except for the pure-Fe phase H, the densities of the other phase H explored in this work are very lower than the 
density in the lower mantle. The density of the pure-Fe phase is the highest. The density of phase H containing 
enough Fe concentrations in different depths (the content of Fe is about 35.5–84.3 at%) would be very close to the 
mantle density. The results indicate that the existence of Fe-bearing phase H affects the structure of the mantle. 
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Figure 2. Density of Phase H and typical Earth’s density model PREM (Dziewonski and Anderson, 1981) and AK135 
(Montagner and Kennett, 1995) indicate the mode of the Earth’s density.



3.3 Elastic properties of phase H under high pressure 
 
The knowledge of the elastic properties of mineral and rock is important to understanding the lithospheric flexure, 

onset of brittle failure, and earthquake source [Aki and Richards, 1980]. Also, the elastic parameter of the minerals 
and its dependence on pressure are crucial for understanding the structure and composition of the Earth’s interior. 
The elastic constants of the four phase H (Pure-Fe, Pure-Mg, High-Fe, and Low-Fe phase) are shown in Figure 3. 
Phase H belongs to the P2/m space group symmetry. It has 13 independent elastic constants: C11, C22, C33, C44, C55, 
C66, C12, C13, C23, C15, C25, C35, and C46. Except for C35, all other constants linearly increase with pressure. The value 
of C35 decreases with increasing pressure, exhibiting negative values under the range of pressure studied in this work 
(16–60 GPa). The effects of Fe on the elastic constants are different. The values of C11, C12, C13, C23, and C25 increase 
with increasing Fe content, while those of C22, C44, C55, C66, C35, and C46 decrease. The values of C33 and C15 were the 
highest for pure-Fe phase H. These constants decrease with increasing Fe concentration for the other three phases.  
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Figure 3. The elastic constants of bearing-Fe Phase H.



Figure 4 and Table 1 show the change in the bulk modulus (K) and shear modulus (G) of phase H with pressure 
and Fe concentration. The pure-Al phase H has the largest G value among the five phases. The value of K for phase 
H increases with increasing Fe concentration while G decreases. The differences in the elastic properties of FeO6 and 
MgO6 octahedra lead to a change in the values of bulk and shear moduli for pure-Mg phase H and Fe-bearing phase 
H. According to the bulk modulus-volume systematics of the cation-anion polyhedra [Hazen and Finger, 1979], the 
bulk modulus of the Fe-bearing minerals increases with Fe concentration, which is demonstrated in this work. The 
results are in accordance with the ultrasonic experimental and first-principles simulated data for the effects of Fe 
on olivine, ringwoodite [Higo et al., 2006], and wadsleyite [Hazen et al., 2000; Liu et al., 2009] at high pressures. Nishi 
et al. [2018] presented the value of K for pure-Mg phase H to be 344.6 GPa at a pressure of 35GPa. Tsuchiya and 
Mookherjee [2015] found that the K value is 328 GPa at a pressure of 36GPa by GGA-DFT simulation. The value of 
K for pure-Mg phase H in this work was found to be 317.5GPa at a pressure of 36 GPa. The values obtained from the 
present and previous studies [Tsuchiya and Mookherjee, 2015] are slightly lower than the experimental result due 
to the under-binding effect resulting from the GGA-DFT simulation.  
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Figure 4. The elastic modulus of the Phase H.



The values of K0, G0, and pressure derivatives of K and G (K� and G�) were calculated by linear fitting the change in 
the values of K and G of the phase H with increasing pressure. The values of K0 are 185.9, 189, 193, 204.4, and 211.7 
GPa, and that of G0 are 136.1, 128.7, 121.4, 113.6, and 161.9 GPa, respectively for pure-Mg, low-Fe, high-Fe, pure-Fe 
and pure-Al phase H. The values of K� are 3.63, 3.64, 3.61, 3.86, and 3.54, and that of G� are 0.87, 0.97, 0.91, 0.87, and 
1.12 for pure-Mg, low-Fe, high-Fe, pure-Fe, and pure-Al phase H, respectively. The pure-Mg and Fe-bearing phase H 
have similar values for K� and G�. However, they are different from the elastic moduli of pure-Al phase H. Nishi et al. 
(2018) found the K0 of pure-Mg phase H to be 204 GPa for the fixed value of K� = 4, and 167 GPa for K� = 5 by fitting 
the third-order Birch-Murnaghan equation of state. The GGA-DFT calculation [Tsuchiya and Mookherjee, 2015] 
returned the values of K0 and K� of the pure-Mg phase H to be 147GPa and 4.9, respectively. The calculated K0 value 
in this study is exactly between the experimental results, although larger than the previous GGA-DFT calculation. 
The value of K for the pure-Al phase H was found to be 219GPa at the fixed value of K� = 4 using the high-pressure 
experiment by San-FuruKawa et al. [2009], which is very close to the value of 211.7GPa obtained in this work.  

The wave velocities obtained from seismic observations, experimentation, and calculations reflect the 
composition and structure of the Earth. Based on the mass densities and elastic moduli, the compressional (Vp) 
and shear (Vs) wave velocities of phase H were calculated. The wave velocities of phase H under pressure are plotted 
along with the typical velocity structure of the Earth in Figure 5 and Table 1. The Vp and Vs values increase almost 
linearly with pressure. The pure-Al phase H has the highest values for Vp and Vs among the five phases, attributing 
to its high elastic modulus and low density., The values of Vp and Vs for the other four phases decrease with 
increasing Fe concentration. Compared to the wave velocity of pure-Mg phase H, the value of Vp for the phase H 
containing 12.5, 25, and 100 at% Fe decreases by 1.9%, 3.8%, and 6.9%, respectively, while that of Vs decreases by 
3.2, 6.7, and 9.9%, respectively. However, the values of Vp and Vs for the pure-Al phase increase by 4.3% and 8.0%, 
respectively. The change in wave velocity is attributed to the increase in density caused by the presence of iron in 
Fe-bearing phase H, and an increase in the values of K and G in pure-Al phase H.  
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Figure 5. Wave velocities of phase H and the typical density model of the Earth PREM [Dziewonski and Anderson, 1981] 
and AK135 [Montagner and Kennett, 1995] indicate the mode of the wave velocity of the Earth.



The wave velocity of pure-Al phase H is higher than that of the typical velocity structure of the Earth throughout 
the range of depths explored in this study. The wave velocities of pure-Mg and Fe-bearing phase H are close to the 
Earth’s typical velocity at the depths of 500–1400 km, which gradually decrease above 1400 km. The differences in 
the wave velocities for phase H with varying concentrations of Mg, Fe, and Al are useful for understanding the 
velocity structure and composition of the mantle. For instance, it may be inferred that the chemical heterogeneity, 
such as Fe-rich hydrous minerals, may be responsible for the formation of low-velocity zones in the mantle or other 
layers in the interior of the Earth. Thompson et al. [2017] showed that the iron-enriched solid solutions from the 
FeOOH-AlOOH-MgSiH2O4 system contributed to the observed seismic properties of large low-shear velocity 
provinces (LLSVP) in the Earth’s lower mantle. It is concluded from the results of this study that the FeOOH-AlOOH-
MgSiH2O4-FeSiH2O4 system is responsible for the observed seismic properties of LLSVP in the Earth’s lower mantle.  

 
 

4. Discussions 
 
Phase D (MgSi2O6H2) was discovered as a dissociation product of serpentine at pressures above 20 GPa [Liu, 

1987]. It has been considered as the most thermodynamically stable phase under the lower mantle conditions [Frost 
et al., 1998; Shieh et al., 1998]. It was discovered that phase D transforms into phase H at 44 GPa [Nishi et al., 2014]. 
Antigorite was found to transform the phase assemblage, including phase H, at pressures above 35–40 GPa 
corresponding to those in the upper part of the lower mantle [Nishi et al., 2015]. Therefore, phase H is an important 
mineral in the deep Earth. It was experimentally found that the Fe-bearing bridgmanite ((Mg0.85Fe0.15)SiO3) loses 
Fe and disproportionate to a nearly Fe-free MgSiO3 bridgmanite and an Fe-rich phase H at 95–101GPa pressure 
and 2200–2400K temperature [Zhang et al., 2014]. The spin transition of Fe in ferropericlase (Mg0.83Fe0.17)O at high 
pressures has profound implications on the structure and transport properties of the Earth’s lowermost mantle 
[Badro et al., 2003]. The high-pressure experiments showed that Fe2+ ions in the deep magma ocean disproportionate 
to form Fe3+ ions and metallic iron at high pressures. The reduced iron (metallic iron) sinks to the core and leaves 
an oxidized mantle that leads to the degasification of carbon dioxide and water from the mantle [Armstrong et al., 
2019]. Therefore, the concentration and state of Fe in phase H have important impacts on the structure and 
composition of the mantle and atmosphere. The quantitative effects of Fe on the density, elastic moduli (K and G), 
and wave velocities (Vp and Vs) of phase H were calculated and presented in Figure 6. The effects of Fe concentration 
on the density and value of K show an excellent linear relationship. There is a quadratic relationship between the 
concentration of Fe and the values of Vp and Vs. The effect of Fe concentration on the value of G varies accordingly. 
The fitted equations for the changes in the density, elastic moduli (K and G), and wave velocities (Vp and Vs) of 
phase H with Fe concentration are shown in Figure 6. The wave velocities from the seismic and geophysical 
observations reflect the structure of the Earth. Being one of the most important components of the mantle, the 
quantitative equations for the effects of Fe concentration from this study combined with the results from seismic 
and geophysical observations could provide information about the concentration of Fe in the deep Earth. This can 
be used to understand the role of Fe on the evolution of the Earth. For example, the Earth’s density mode shows that 
phase H containing 35.5–84.3 at% concentrations of Fe has a similar density to that of the mantle at different 
depths of the Earth. The formation energy (the enthalpy equal to the total energy at 0K) of phase H containing 12.5, 
25, and 100 at% Fe were calculated at 0 GPa to evaluate the formation of (Fe, Mg)SiO4H2 solution by the substitution 
of Mg with Fe. The values were found to be 14.066 eV, 28.193 eV, and 112.581 eV, respectively. The formation energy 
linearly increases with Fe concentration. The fitting equation can be described as Formation energy, E = 1.126 Fe% 
(E in eV, and Fe% in at%). The result shows that the formation of a solid solution of Fe-bearing phase H becomes 
difficult with increasing Fe concentration.  

Perhaps, it is not enough to consider the properties of materials at zero temperature to resolve most of the 
problems in the Earth and planetary sciences. The elasticity depends on the structure, pressure, temperature, and 
chemical composition. The elastic coefficients increase at most by a factor of five over the entire mantle pressure 
regime. However, the experimental or theoretical determination of the mineral properties at simultaneous pressure 
and temperature conditions in the geophysical magnitudes is still challenging. However, it is seen that the effects 
of temperature on the seismic observable physical properties of the material (density and wave velocities) are 
monotonically suppressed with increasing pressure [Karki,1999, 2015]. Therefore, the properties of phase H are 
calculated under high pressure in this work. The effect of temperature on the elasticity of phase H was inferred on 
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the basis of earlier studies [Wentzcovitch et al., 2010; Karki et al., 1999; Sinogeikin et al., 2003]. Wentzcovitch et al. 
[2010] evaluated the thermoelastic properties of MgSiO3 perovskite at high pressure and temperature using the 
first principles methods and quasi-harmonic calculations. Also, the pressure and temperature derivatives of K, G, 
Vp, and Vs (∂G/∂P, ∂Ks/∂P, ∂VP/∂P, ∂VS/∂P and ∂G/∂T, ∂K/∂T, ∂VP/∂T, ∂VS/∂T) were determined to be 4.8, 2.0, 0.06 
km/s/GPa, 0.026 km/s/GPa, and –0.021, –0.026, –0.0003 km/s/K, –0.0002 km/s/K, respectively. The pressure and 
temperature derivatives for K and G for MgO [Karki et al., 1999], an important component of the lower mantle, were 
found to be 4.15, 2.44, and –0.015, –0.0216, respectively. The temperature derivatives of K, G, Vp, and Vs for the Fe-
bearing ringwoodite ((Mg0.91Fe0.09)2SiO4) [Sinogeikin et al., 2003] were −0.021 GPa/K, −0.016 GPa/K, 0.00056 km/s/K, 
and 0.0004 km/s/K, respectively.  

Considering the effect of temperature on the seismic velocity of MgSiO3 perovskite and Fe-bearing ringwoodite 
((Mg0.91Fe0.09)2SiO4), the typical minerals of the deep Earth, it is seen that a temperature of 2000K. The temperature 
at 500–2000 km depths of the Earth is about 1800–2500K [Katsura, et al., 2010] on phase H leads to decrease of it 
seismic velocity in 0.4–1.2 km/s. The change in the seismic velocity of phase H caused by the temperature is less 
than 10%. Thus, the depth of phase H in the Earth reduces with temperature, which creates the demand for a higher 
concentration of Fe to match the mantle density profile. The specific effect of temperature on the properties of 
phase H would be evaluated in future works. 

5. Conclusion 
 
The crystal structure and elastic properties of phase H containing different Fe concentrations were calculated 

by the first-principles method to study the effect of Fe on minerals. The lattice constants a and b increase with Fe 
concentration, while the value of c decreases. Among the three lattice constants, the effect of Fe is predominant in 
a. The density of phase H linearly increases with Fe concentration. Except for the pure-Fe phase, the densities of 
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Figure 6. The changes of properties of phase H with Fe content. (The fitted formulas of effect of Fe content also list in the 
picture).



the other phases are far lower than the lower mantle density structure. The phase H containing 35.5–84.3 at% Fe 
meets the mantle density model at different depths of the Earth.  

The effects of Fe on the elastic constants show varying tendencies. The value of K for phase H increases with 
increasing Fe concentration, while that of G decreases. The result is in accordance with the general effect of Fe on 
the elastic properties of the mineral. The values of Vp and Vs of the phase H rise almost linearly with increasing 
pressure. The values of Vp and Vs decrease with increasing Fe concentration. The wave velocities of pure-Mg phase 
H and Fe-bearing phase H are close to the Earth’s typical velocity at the depths of 500–1400 km. The FeOOH-
AlOOH-MgSiH2O4-FeSiH2O4 system is responsible for the observed seismic properties of LLSVP in the Earth’s lower 
mantle. The quantitative effects of Fe on the density, elastic moduli (K and G), and wave velocities (Vp and Vs) of 
phase H were calculated and listed as fitted equations. These results can be used to infer the Fe concentration and 
structure of the deep Earth. However, further studies are needed to understand the effects of the concentrations of 
Fe and Al, and temperature on the properties of the mineral at high pressure and temperature. This work focused 
on the effect of Fe2+ and the effect of Fe3+ and its spin transition under high pressures shall be studied in the future 
to completely understand the structure and composition of the mantle. 
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