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Abstract  
 
The aim of this study is to estimate reliable velocities along with their realistic uncertainties 
based on a robust time series analysis including analysis of deterministic and stochastic (noise) 
models. In the deterministic model analysis part, we use a complete station motion model 
comprised of jump effects, linear and nonlinear trend, periodic components, and post-seismic 
deformation model. This part also consists of jump detection, outlier detection, and statistical 
significance of jumps. We perform the deterministic model analysis in an iterative process to 
elevate its efficiency. In the noise analysis part, first, we remove the spatial correlation of 
observations using the weighted stacking method based on the common mode error (CME) 
parameter. Next, a combination of white and flicker noises is used to determine the stochastic 
model. This time series analysis is applied for 11-year time series of 25 permanent GNSS stations 
from 2006 to 2016 in the northwest network of Iran. We reveal that there is a nonlinear trend in 
some stations, although most stations have a linear trend. In addition, we found that a 
combination of logarithmic and exponential functions is the most appropriate post-seismic 
deformation model in our study region. The result of the noise analysis shows that the spatial 
filtering reduces the norm of post-fit residual vector by 19.34%, 17.51%, and 12.44% on average 
for the east, north, and up components, respectively. Furthermore, the uncertainties obtained 
from the combination of white and flicker noises at the east, north, and up components are 5.0, 
4.8, and 4.4 times greater than those of the white noise model, respectively. The results indicate 
that the stations move horizontally with an average velocity of 36.0 ± 0.3 mm/yr in the azimuth 
of 52.66° NE which is compatible with velocities obtained from MIDAS. We obtained the vertical 
velocity of most stations in the range of -5 to 5 mm/yr. However, in three stations of GGSH, 
ORYH, and BNAB, which are in the proximity of Lake Urmia, the vertical velocities are estimated 
to be -80.9 mm/yr, -50.6 mm/yr, and -11.4 mm/yr, respectively. Moreover, we found that these 
three stations possess large periodic signal amplitudes in all three coordinate components as 
well as a nonlinear trend in the up component. 
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1. Introduction 
 

Development of Global Navigation Satellite Systems (GNSSs) such as GPS, GLONASS, and BeiDou have 
provided a rich source of spatial dataset with global coverage. Position time series of permanently operating 
ground stations have many applications among which the monitoring of the movement of the Earth’s crust is the 
most important. In addition, the time series can be used to study crustal deformation, plate tectonic motions 
[e.g., Kogan and Steblov, 2008; Tobita, 2016; Graham et al., 2018], seismic processes [e.g., Burgmann et al., 2002; 
Williams, 2003b], postglacial rebounds [e.g., Larson and van Dam, 2000; Nocquet et al., 2005; Sella et al., 2007; 
Argus et al., 2014; Bogusz et al., 2019], land uplift rates [e.g., Ostanciaux et al., 2012; Bogusz et al., 2019], and 
national terrestrial reference frames realization [e.g., Bevis and Brown, 2014]. 

To achieve reliable results in the aforementioned applications, a detailed time series analysis is required. The 
time series analysis includes the analysis of deterministic and stochastic (noise) models. In the deterministic 
model analysis, the aim is to determine the optimal functional model for the station motion. This motion model 
is comprised of four main parts: trend, jumps, periodic components, and post-seismic deformation model. 
Although most studies consider a linear trend, in some areas such as active ice sheets or active volcanoes a 
nonlinear trend may be more appropriate than a linear one [Bevis and Brown, 2014]. Another effective parameter 
in the motion model is the jump effect. The main sources of the jump are instrument source due to equipment 
changes and seismic source due to strong earthquakes [Wdowinski et al., 1997; Williams, 2003b; Williams et al., 
2004; Gazeaux et al., 2013; Bruni et al., 2014; Bevis and Brown, 2014; Amiri-Simkooei et al., 2019]. If the jumps 
are not taken into account in the time series analysis, the parameters of the station motion model, such as the 
velocity of the stations, will be biased [Williams, 2003b; Bruni et al., 2014; Montillet et al., 2015]. 

Regarding the periodic part of the motion model, it is worth mentioning that the main periodic components 
observed in the GNSS time series are annual and semi-annual periodic signals [Blewitt and Lavallee, 2002; Dong 
et al., 2002; Klos et al., 2018; Jiang et al., 2018], the GPS draconitic year period with the length of about 351.4 days 
and its higher harmonics, i.e., 351.4 / 𝑛, 𝑛 = 1,2,3,..., [Amiri-Simkooei et al., 2007; Ray et al., 2008; King and 
Watson, 2010; Santamaria-Gomez et al., 2011; Wang et al., 2012; Amiri-Simkooei, 2013; Bogusz and Klos, 2016; 
Allahverdi-zadeh et al., 2016; Amiri-Simkooei et al., 2017], the period of Chandler wobble with the length of 
about 432 days [Bogusz and Klos, 2016; Bogusz et al., 2016; Amiri-Simkooei et al., 2017; Klos et al., 2018], the 
quarterly period [Bogusz and Klos, 2016], and the period of about 122 days [Amiri-Simkooei et al. 2017]. 

To complete the motion model, a post-seismic deformation model should also be taken into account to model the 
post-seismic deformation. A seismic cycle can be divided into three parts including inter-seismic slip, co-seismic 
slip, and post-seismic slip. A seismic jump is a co-seismic slip and its following motion is a post-seismic slip. To 
model a post-seismic decay motion, exponential function [Nikolaidis, 2004], logarithmic function [Bevis and Brown, 
2014; Itoh and Nishimura, 2016; Wu et al., 2019] or a combination of them [Tobita, 2016; Klos et al., 2019] can be used.  

In the noise analysis, the aim is to determine an optimal stochastic model for estimating realistic uncertainties. 
For this purpose, the spatial [Wdowinski et al., 1997; Nikolaidis, 2004] and temporal [Langbein and Johnson, 1997; 
Zhang et al., 1997; Mao et al., 1999; Williams, 2003a; Langbein, 2004; Williams et al. 2004] correlations of GNSS 
position time series are investigated. Two usual methods to study the spatial correlation are the stacking method 
[Wdowinski et al., 1997; Nikolaidis, 2004; Marquez-Azua and De Mets, 2003; Wdowinski et al., 2004; Wang et al., 
2012; Jiang et al., 2018] and the Empirical Orthogonal Function (EOF) method [Teferle et al., 2008]. In the branch 
of the EOF method, the Principal Component Analysis (PCA) method [Dong et al., 2006; He et al., 2015; Liu et al., 
2015; Borghi et al., 2016; Gruszczynski et al., 2018; Birhanu et al., 2018; Wu et al., 2019; Tan et al., 2020] and the 
Karhunen-Loeve Expansion (KLE) method [Dong et al., 2006] can be mentioned. In the stacking method, the 
Common Mode Error (CME) parameter is calculated to remove the spatial correlation between the stations. This 
error is caused by uncorrected environmental loading effects, GPS satellite orbit biases, systems errors, and other 
unmodeled residual errors [He et al., 2015].  
The temporal correlation is studied in both frequency and time domains. The methods on the frequency domain 
are the ones that require the definition of the power spectrum, as the methods based on the power-law process, 
whereas the methods based on the time domain find the temporal correlation between data using such as auto-
covariance and auto-correlation function [King et al., 1995; Zhang et al., 1997; Hackl et al., 2011; Borghi et al., 
2016; Barzaghi and Borghi, 2018]. In the frequency domain, the Maximum Likelihood Estimation (MLE) method 
[Langbein and Johnson, 1997; Zhang et al., 1997; Mao et al., 1999; Williams, 2003a; Williams et al., 2004; 
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Langbein, 2004; Teferle et al., 2008; Langbein, 2008; Santamaria-Gomez et al., 2011; Wang et al., 2012] and the 
Variance Component Estimation (VCE) method [Amiri-Simkooei et al., 2007; Amiri-Simkooei, 2009; Amiri-
Simkooei, 2016] are commonly applied. Similar to most geophysical phenomena, the noise in the GNSS time 
series is represented via power spectrum relation as follows [e.g., Agnew, 1992; Mao et al., 1999; Williams, 2003a; 
Williams et al., 2004; Santamaria-Gomez et al., 2011]: 

       (1) 
 
where 𝑓 is the temporal frequency, 𝑃0 and 𝑓0 are normalized constants, and 𝑘 is the spectral index [Agnew, 1992]. 
The spectral index, 𝑘, usually varies from -3 to 1, where 𝑘 = 0 and 𝑘 ≠ 0 represent the white and power-law 
(colored) noises, respectively. In the special cases, the integer spectral indices 𝑘 = -1 and 𝑘 = -2 indicate the 
flicker and random walk noises, respectively [Williams et al., 2004; Santamaria-Gomez et al., 2011]. While the 
white noise implies the total independence, a power-law noise shows a temporal correlation between the data.  

According to Zhang et al. [1997], Williams et al. [2004], Teferle et al. [2008], Santamaria-Gomez et al. [2011], 
Bogusz and Kontny [2011], Wang et al. [2012] and Klos et al. [2018], the power-law noise considerably affects the 
velocity uncertainties. This is while the use of a pure white noise model would lead to an underestimation of 
the uncertainties (optimistic uncertainties). The definition of an optimal stochastic model substitutes optimistic 
values of uncertainties with realistic ones.  

The main purpose of this study is to implement a robust time series analysis to estimate the reliable velocities 
and their realistic uncertainties of the permanent stations located at the northwest of Iran. Prior to this work, 
several studies have been conducted to estimate the velocity field and crustal deformation based on the GNSS 
observations in Iran [e.g., Nilforoushan et al. 2003; Vernant et al. 2004; Masson et al. 2007; Khorrami et al., 
2019], and especially in its northwestern area [e.g., Masson et al. 2006; Djamour et al., 2011; Rizza et al., 2013]. 
It is important to note that no time series analysis has been implemented in these studies. Moreover, most of 
them are either based on the permanent observations with a short time span or the campaign observations. 
Here, in contrast to previous studies, a complete time series analysis is performed to estimate velocities and 
their uncertainties. We utilize 11-year (a long time span) observations of permanent GNSS stations from 2006 
to 2016. We attempt to achieve the optimal station motion model in the study area by determining the nonlinear 
trend and post-seismic deformation models. In the next section, input data used in this study are introduced. 
Time series analysis is described in details in Sect. 3. Numerical results are given in Sect. 4. Finally, conclusions 
are presented in Sect. 5.  
 
 
2. Data 
 

In this study, we use daily position time series of 11-year GPS observations at 25 permanent stations in the 
northwest network of Iran (Figure 1) in the time span from 2006 to 2016. These stations are a part of the Iranian 
Permanent GPS Network (IPGN). The IPGN consists of 133 permanent GPS stations established by the National 
Cartographic Center (NCC) of Iran since 2005 (Figure 2). Due to population distribution, seismicity, and 
distribution of active faults, in three parts of Iran namely the Tehran network in the central Alborz area, the 
Khorasan network in the northeast of Iran, and the Azerbaijan network in the northwest of Iran, the IPGN 
stations are denser than the other parts (Figure 2). 
To produce the time series, the GPS observations with the intervals of 30 seconds have been processed by the 
NCC using GAMIT/GLOBK 10.6 software package [Herring et al., 2015] in the International Terrestrial Reference 
Frame 2014 (ITRF2014) [Altamimi et al., 2016]. It should be mentioned that the observations stored at 23 
International GNSS Service (IGS) stations, shown in Figure 3, have also been used in the processing. The daily 
time series of station positions consists of the east, north, and up components along with their standard 
deviations. 
To investigate earthquake effects on the station motion, earthquake data in the northwestern area of Iran and 
its surrounding are used. These data have been collected by the Iranian Seismological Center (IRSC), which are 
available from http://irsc.ut.ac.ir. According to the earthquake data, 19 earthquakes with the magnitude of 
higher than 5 have occurred in the study region during 2006-2016 (Figure 4). 

𝑃��𝑓� = 𝑃0 �   ��� �₀
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Figure 1. The location of stations in the northwest network of Iran.

Figure 2. The location of IPGN stations (http://ncc.org.ir).  

http://ncc.org.ir
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Figure 4. The distribution and magnitude of earthquakes with the magnitude of higher than 5 occurred in northwestern 
area of Iran and its surrounding (http://irsc.ut.ac.ir). 

Figure 3. IGS stations used for GPS observation processing (http://ncc.org.ir).  

http://irsc.ut.ac.ir
http://ncc.org.ir


3. Time series analysis 
 

As mentioned earlier, the time series analysis is performed in two parts: deterministic model analysis and noise 
analysis. In the section, we describe our methodology for these parts in detail.  
 
 

3.1 Deterministic model analysis  
 

3.1.1 Jump detection  
 

One of the important parameters affecting the analysis of the GNSS time series is the jump in the data [Borghi 
et al., 2012]. If the time of equipment change and earthquake is known, then the epoch of jump occurrence is known. 
In addition, the jumps can be detected using visual (manual) and mathematical (automated) methods [Goudarzi et 
al., 2013; Gazeaux et al., 2013]. In our case, there is no a-priori information regarding stations. Hence, we detect all 
jumps using the mathematical methods. 

Most mathematical methods relying on comparing the mean values obtained from two adjacent windows that 
move on the time series data [Riley, 2008; Montillet et al., 2015]. In this study, for three components (east, north, 
and up) in each epoch, two 90-day windows including the previous and next data of that epoch are considered. 
Next, a separate linear model is fitted to each window via the weighted least-squares (WLS) method. Using these 
linear models, two values for each component are computed at the mentioned epoch. These computational values 
are compared with the observed value at the mentioned epoch and their maximum difference is calculated. If this 
difference is more than three times the standard deviation of data, the epoch is considered as a jump candidate. It 
should be noted that in the epochs which are close to the beginning or end of time series, the length of the 90-day 
intervals is reduced to the available epochs. Consequently, neglecting the source of jump occurrence, the jumps 
are detected using the developed method.  
 
 

3.1.2 The station motion model  
 

After detecting the jump epochs, the station motion model at the time 𝑡 for each component, like 𝑦 component, 
can be written as follows:  
 

                  
(2)

 
 
where 𝑦₀ is the initial value, 𝑣� is the velocity, 𝐻(𝑡 ‒ 𝑡��) is the Heaviside step function, 𝑛� is the number of jumps with 
the magnitudes 𝑔� occurring at epochs 𝑡��, the coefficients of 𝑠� and 𝑐� describe the 𝑝 th periodic signal with the 
angular velocity 𝑤�, and 𝑟 denotes the residuals or noise.  

The first two terms of Eq. (2) indicate the linear trend of station motion with a constant velocity. In this study, 
we also consider a nonlinear trend in the motion model (third term). For this purpose, various nonlinear functions 
such as polynomials, exponential, and logarithmic functions, as well as their various combinations are investigated 
to obtain the most appropriate function. The fourth term represents the jump effect, where the number of jumps, 
𝑛�, and their occurrence time, 𝑡��, are determined in the jump detection step. Note that the magnitude of jumps, 
𝑔�, is unknown. Two strategies can be adopted to consider the jump effect in Eq. (2). In the first strategy, called 1-
component method, the detected jumps of each component are considered only for the motion model of the same 
component [Bruni et al., 2014], while in the second method, called 3-component method, the detected jumps of 
each component are also considered for the motion models of the other two component [Gazeaux et al., 2013].  

The fifth term demonstrates the periodic part of time series. Although as mentioned earlier, there are many 
signals in GNSS time series, we consider four main periodic components namely annual, semi-annual, draconitic 
year (351.4 days), and second draconitic harmonic (175.7 days). The reason for this is that the temporal correlation 
in the time series is strictly correlated to the functional model, and the spectral index, 𝑘, decreases when more 

𝑦(𝑡) = 𝑦₀ + 𝑣�𝑡 + nonlinear trend + � 𝑔�𝐻(𝑡‒𝑡��) +� [𝑠� sin(𝑤�𝑡) + 𝑐� cos(𝑤�𝑡)] 
+ post‐seismic deformation + 𝑟(𝑡)

�� 
�₌₁

�� 
�₌₁
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periodic signals are introduced [Amiri-Simkooei et al. 2007; Davis et al. 2012; Bogusz and Klos, 2016; Barzaghi and 
Borghi, 2018]. 

To model the post-seismic deformation in Eq. (2), we investigate three various models to find the best post-
seismic deformation model [Altamimi et al., 2016; Klos et al., 2019]. These models are defined as follows:  

 

(3)

 
 

 
where 𝐴� and 𝐵� are the magnitudes of logarithmic and exponential functions, respectively, 𝑛� is the number of 
influential earthquakes on each station, and, 𝑇log and 𝑇exp are decaying time constants. 𝛥� is the elapsed time after 
the earthquake which is defined as: 
 

    𝛥� = 𝑡 ‒ 𝑡��       for 𝑡 >  𝑡�� 
(4) 

𝛥� = 0               for 𝑡 ≤  𝑡�� 
 
where 𝑡�� is the earthquake epoch. There is a subtlety here in that determination of decaying time constants 𝑇log 
and 𝑇exp are significant when trying to estimate only the post-seismic deformation function. Nevertheless, according 
to Bevis and Brown [2014], if this function is applied as a part of the station motion model in Eq. (2), then the results 
will not be sensitive to these parameters and the unknowns will well be estimated by considering the constant 
values for them.  
 
 

3.1.3 The outlier detection 
 

There are many methods to detect the outliers, which most of them are based on the post-fit residuals 𝐫� 
[Wdowinski et al., 1997; Nikolaidis, 2004; Yuan et al., 2007; Bogusz et al., 2015; Bogusz and Klos, 2016; Bogusz et 
al., 2016; He et al., 2017; Bogusz et al., 2019]. In this paper, we use the statistical index of the median as the central 
tendency and the statistical index of the interquartile range (IQR) as the dispersion [Riley, 2008; He et al., 2017; 
Bogusz et al., 2019].  

The equation for the outlier detection is as follows [e.g., Nikolaidis, 2004]: 
 

(5)
 

 
where 𝐿 is the length of intervals before and after each epoch and 𝑘 is the coefficient of IQR which is considered equal 
to 3 in this study [Bogusz et al., 2019]. For each epoch, these indices are calculated based on a one-year moving 
window where the epoch of interest is located at the center of the window (i.e., 𝐿 = 6 month).  
 
 

3.1.4 Iterative process  
 

Since the jumps and outliers affect each other, the deterministic model analysis calculations are accomplished 
in an iterative process. At each stage of the iteration, our calculations are: jump detection, estimation of the 
unknown parameters of station motion model using the WLS method, outlier detection, and inference test to 
identify statistically significative jumps. 

�� 
�₌1

Model 1: + � 𝐴� Log(1 +      )𝛥𝑡 
Tlog

�� 
�₌1

Model 3: + � 𝐴� Log�1 +      � +𝐵� (1 − exp (‒       ))𝛥𝑡 
𝑇exp

𝛥𝑡 
𝑇log

�� 
�₌1

Model 2: + � 𝐵� (1 − exp (‒       ))𝛥𝑡 
𝑇exp

‒𝑘 <                          <𝑘𝐫� ‒ median(𝐫��₊�) 
𝐼𝑄𝑅
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In the last step of the above calculations, a statistical significance test is used to recognize real jumps [Borghi 
et al., 2009]. After determining the unknown parameters such as the magnitude of 𝑗 th jump for east, north, and up 
components (𝑔��, 𝑔��, 𝑔��,), a jump vector at epoch 𝑡��, is defined as follows:  
 

    𝐠� = (𝑔��, 𝑔��, 𝑔��,) (6) 

We use the statistic 𝑧� = , where 𝑔� and 𝜎�� are norm of jump vector and its standard deviation, respectively. 
If obtained statistic is larger than the critical value of normal distribution at the 95% level of statistical significance, 
the intended jump is real.  

The iterative process is terminated when no outlier is detected in the post-fit residuals. After the iterative 
process, by considering the effects of post-seismic deformations for seismic jumps, the total station motion model 
is formed. As a result, the unknown parameters, the post-fit residual vector 𝐫� and its covariance matrix 𝐂𝐫� are 
obtained from the WLS method and based on the covariance matrix of the white noise.  
 
 

3.2 Noise analysis  
 

3.2.1 Spatial filtering  
 

After determining all the parts of the total station motion model and calculating the post-fit residuals and their 
standard deviations, the spatial correlation between the data is calculated using the CME parameter. The stacking 
technique is appropriate for small-scale regions and cannot be applied to large-scale networks [Mao et al., 1999]. In 
a GPS network containing stations with distances shorter than 500 km, where the CME parameter is evenly distributed 
over the region, Jiang et al., [2018] used the regional stack filtering method. Zhu et al. [2017] introduced the correlation 
weighted stacking filtering method for medium- and large-scale networks and applied it for CMONOC. 

He et al. [2017] indicated that the fundamental assumption for the spatial filtering in regional networks is that 
the CME parameter is uniformly distributed over the region. In regional GPS networks, the CME uniformity or non-
uniformity depends upon the network size and the environmental effects of the stations [e.g., Bogusz et al. 2015; 
He et al., 2015; Gruszczynski et al. 2016; He et al. 2017].  

To calculate the CME parameter, a number of stations should be selected. The various criteria for the station 
selection can be found in Nikolaidis [2004], Teferle et al. [2008], Wang et al. [2012], Bogusz et al. [2015], and Zhu et 
al. [2017]. The daily value of the CME parameter is calculated using the weighted average or the mathematical 
expectation of the post-fit residuals of selected stations as: 

      
(7)

 
 
where 𝐸 is mathematical expectation, 𝑝 (𝐫��) is the probability of the post-fit residual of station 𝑗, 𝑛� is the number 
of selected stations, and 𝐫� is the post-fit residual vector of selected stations at 𝑡 epoch. The probability of the post-
fit residual of station 𝑗 is calculated from: 

     

(8)

 
 
where 𝜎² is the variance of data. It is important to note that we need at least three stations without gap to estimate 
the CME parameter for each day. Otherwise, the CME parameter is considered equal to zero. Having the CME vector, 
the spatially filtered post-fit residual vector 𝐫�� is obtained by removing the CME values from the 𝐫� vector as follows: 
 

         𝐫�� = 𝐫� ‒ CME (9) 
 

Hereby, 𝐫�� is calculated for the three coordinate components of all stations.  

𝑔� 
𝜎��

CME (𝑡) = 𝐸 (𝐫��) = �𝐫�� (𝑡) 𝑝 (𝐫��(𝑡))
�� 
�₌₁

𝑝(𝐫��(𝑡)) = 
�
�� 

�₌₁

1 
𝜎²

𝐫��(𝑡)

1 
𝜎²

𝐫��(𝑡)
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3.2.2 Definition of the stochastic model 
 

In the MLE method, optimal noise model is obtained from maximizing the following function [Langbein and 
Johnson, 1997]: 

               
(10) 

 
where 𝐫�� is the spatially filtered post-fit residual, 𝐂 is the covariance matrix of the data, 𝑛 is the number of epochs, 
and det is the determinant operator. If the noise is assumed to be a combination of both white and power-law noises, 
the covariance matrix is calculated as [Williams et al., 2004]: 
 

        𝐂 = 𝑎² 𝐈 + 𝑏²�  𝐉� (11) 
 
where 𝑎 and 𝑏� are the white and power-law noise amplitudes, respectively, 𝐈 is the 𝑛 × 𝑛 identity matrix, and 𝐉� 
is the corresponding covariance matrix of the power-law noise with the spectral index 𝑘 [Williams et al., 2004]. 
Most studies dealing with GNSS time series have demonstrated that the optimal noise model is a combination 
of white and flicker noises [Zhang et al. 1997; Mao et al. 1999; Calais, 1999; Bock et al., 2000; Williams, 2003a; 
Williams et al. 2004; Langbein and Bock, 2004; Amiri-Simkooei et al. 2007; Teferle et al., 2008; Langbein, 2008; 
King and Williams, 2009; Santamaria-Gomez et al., 2011; Wang et al., 2012; Amiri-Simkooei, 2016; Bogusz et al., 
2016; Birhanu et al., 2018; Li et al. 2019].  

After calculating the covariance matrix of flicker noise [Zhang et al., 1997], the full covariance matrix of data 
including the unknown coefficients of 𝑎 and 𝑏₋1 as well as 𝐫�� are substituted into Eq. (10). Finally, the MLE 
parameter and the unknown coefficients of 𝑎 and 𝑏₋1 are simultaneously determined using the downhill simplex 
method developed by Nelder and Mead [Press et al., 1992]. Finally, considering the full covariance matrix of data, 
all the unknowns of the total station motion model are estimated.  
 
 
4. Numerical results 
 

A summary of the time series used in this study is presented in Table 1 as well as the results of jump and 
outlier detection. To compare the 1-component method with the 3-component method, we utilized both two 
methods to estimate the velocities at all 25 stations. We found that the root mean square (RMS) of the 
differences in all three components is less than 1 mm/yr (0.65 mm/yr for the east component, 0.59 mm/yr for 
the north component, and 0.73 mm/yr for the up component). In this line, we found that if a jump occurs in only 
one component, the estimated jump magnitude (𝑔�) in the other two components will be very small. In this 
work, the final results are presented based on the 3-component method. The reason for this is that, in the 1-
component method, the post-seismic deformation model is added to the motion model of the component where 
the seismic jump is detected. While the deformation model is observed in other components such that adding 
it to the station motion model reduces the norm of the residual vector.  

Note that, after the statistical significance of jumps magnitude, about 46% of the detected jumps are 
discarded. From Table 1, we find that the maximum number of jumps is for the TABZ station (20 jumps) and the 
minimum number is for the GGSH station (1 jump). We find that each station has an average of 9 jumps in 11-
year observation. In addition, we find that the number of outliers detected for all the stations is about 4.4% of 
the total observations on average. As mentioned earlier, due to having more robust algorithms, the indices 
statistic of the median and IQR are preferred to the mean and standard deviation for the outlier detection.  

Regarding the trend part of the motion model, we observed that most stations have a linear trend. However, 
we revealed a nonlinear trend in the secular station motion in the up component of GGSH, ORYH, and BNAB 
stations as well as the north component of MMKN station. Table 2 presents the functions that best fit the 
nonlinear trend of the four mentioned stations along with the percentage reduction of the norm of the residual 
vector. Note that in the case of a linear trend, the percentage reduction is zero. It is worth mentioning that 
although we investigated the logarithmic and exponential functions as well, these functions were not found to 
be appropriate.  

MLE (𝐫��, 𝐂) = exp (‒    𝑡) 𝐫��� 𝐂⁻¹𝐫���)
1 

(2𝜋)�/²𝑑𝑒𝑡(𝐂)¹/²
1 
2
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Table 1. A summary of the 25 permanent GNSS stations in the northwest network of Iran 

station city
latitude 

(deg)
longitude 

(deg)
start 
date

end 
date

number of  
epochs without 

observations 
(day)

number 
of  

jumps

number 
of 

outliers

number 
of final 

data

AHAR Ahar 38.47 47.05 2006.00 2016.99 200 12 273 3545

AMND Soufian 38.23 46.16 2006.00 2016.99 132 8 135 3751

ARDH Sarab 37.83 47.65 2006.00 2016.99 325 9 377 3316

BNAB Bonab 37.37 46.05 2006.00 2016.99 197 16 92 3729

BRMN Sarab 37.92 47.29 2006.00 2016.99 178 7 196 3644

BSOF Marand 38.67 45.73 2006.00 2016.99 1005 4 82 2931

BZGN Bazargan 39.38 44.39 2006.60 2016.99 356 8 224 3438

GGSH Salmas 38.21 44.95 2006.00 2012.29 1892 1 9 2117

HSTD Hashtrood 37.58 47.09 2006.00 2016.93 361 8 94 3563

KBLG Chaldoran 39.03 44.56 2006.47 2016.99 305 13 177 3536

KHJE Khaje 38.15 46.60 2006.15 2016.99 356 7 81 3581

KKDY Avajiq 39.33 44.16 2006.60 2016.99 440 13 397 3181

KLBR Kaleybar 38.87 47.03 2006.00 2016.99 748 4 297 2973

MMKN Mamaqan 37.99 44.77 2006.27 2016.99 222 16 212 3584

MNDB Miandoab 36.93 46.01 2006.00 2016.99 847 15 103 3068

NZSF Qarahziyaeddin 39.00 45.11 2006.00 2016.99 162 9 88 3768

ORYH Urmia 37.62 45.06 2006.00 2016.99 201 12 151 3666

POLD Poldasht 39.35 45.06 2006.00 2016.99 361 8 107 3550

SKOH Osku 37.93 46.12 2006.00 2016.99 476 7 121 3421

TABZ Tabriz 38.06 46.34 2006.00 2016.99 105 20 153 3760

TASJ Tasuj 38.32 45.36 2006.00 2016.99 289 3 142 3587

TKCE Turkman Chay 37.58 47.39 2006.00 2016.99 239 7 61 3718

VLDN Ivughli 38.49 45.19 2006.32 2016.99 400 4 148 3470

YKKZ Yekan-eKahriz 38.67 45.41 2006.47 2016.99 419 6 88 3511

ZARI Khoy 38.45 44.55 2006.70 2016.99 445 9 150 3423

Table 2. The functions used for modeling the nonlinear trend as well as the percentage reduction of the norm of the 
residual vector. 

BNAB GGSH MMKN ORYH

E
Trend function Linear Linear Linear Linear

Percentage 0% 0% 0% 0%

N
Trend function Linear Linear Third degree 

polynomial Linear

Percentage 0% 0% 23% 0%

U
Trend function Second degree 

polynomial
Third degree 
polynomial Linear Fifth degree 

polynomial

Percentage 28% 63% 0% 33%
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4.1 Post-seismic deformation model  
 

In order to be able to determine the post-seismic deformation model, it is required to discriminate seismic jumps 
from instrumental ones. For this purpose, if an earthquake with the magnitude of greater than 5𝑀� occurs at the 
day of the jump occurrence in a radius of one degree around each station, that jump is considered a seismic jump. 
In our study area, two strong earthquakes have occurred: (1) the Ahar earthquake in the northwestern area of Iran 
with the magnitude of 6.5𝑀� on August 11, 2012, and (2) the Van earthquake in Eastern Turkey with the magnitude 
of 7.1𝑀� on October 23, 2011. The Van earthquake affects the BZGN and KKDY stations, and the Ahar earthquake 
affects the AHAR, BRMN, KHJE, and TABZ stations. Thus, the value of 𝑛� in Eq. (3) for the aforementioned stations 
is taken equal to one. For the values 𝑇log and 𝑇exp in Eq. (3), we consider three values of 6-month, one-year and 
two-year. We found that taking these different values for 𝑇log and 𝑇exp did not significantly affect the results, which 
is consistent with the findings of Bevis and Brown (2014). After evaluating Models 1, 2 and 3 given in Eq. (3), we 
concluded that the optimal model for the post-seismic deformation at all the six stations is a combination of 
logarithmic and exponential functions (Model 3). 
 
 

4.2 Spatial filtering  
 

The study area is considered as a small-scale network where the stacking method can properly be applied for its 
spatial filtering due to the following reasons: (1) the size of area is small, about 400 km × 300 km, (2) the average 
distance between the stations in this area is about 166 km, (3) the longest distance in the network is about 420 km, 
and (4) the average distance of the stations from the geometric center of the network is about 118 km where almost 
half of them are located less than 100 km from the center. Therefore, the whole network is considered as one block 
and the CME parameter is assumed to be uniform.  

In this study, three scenarios are considered to select the stations for the calculation of the CME parameter. In 
the first scenario, we select the stations with fewer jumps, gaps, and outliers, and also not being affected by strong 
earthquakes. In the second scenario, we exclude the seismicity criterion, but consider the criteria of appropriate 
spatial distribution and widespread coverage over the whole region. In the third scenario, we apply the time series 
of the post-fit residuals at all the other stations to estimate the CME parameter at each station. For each scenario, 
we calculate the CME values for the three coordinate components of the stations and remove them from the 
unfiltered post-fit residual vector based on Eqs. (7), (8), and (9). 

The most effective scenario is selected based on the reduction of the norm of post-fit residual vector before and 
after spatial filtering. The average values of the percentage reduction of the norm of post-fit residual vector for the 
three coordinate components after applying the three scenarios are given in Table 3. From Table 3, we find that the 
best scenario for the selection of stations is the third scenario. This may be due to being a small-scale network with 
the close stations to each other. As a result, we apply the weighted stacking method under the third scenario to 
perform the spatial filtering on the 25 stations of the network. The results show that the reduction percentages in 
the norm of post-fit residual vectors for the three east, north and up components are 19.34%, 17.51%, and 12.44%, 
respectively (Table 3). In accordance with the findings of previous studies [Tian and Shen 2014; Amiri-Simkooei et 
al. 2017; Li et al. 2019; Li et al. 2020], the east component is more affected by the CME parameter than the north 
and up components.

Table 3. The average relative reduction of the norm of post-fit residual vector for three scenarios.

east component north component up component

scenario 1 13.54% 10.67% 12.12%

scenario 2 15.52% 14.02% 11.93%

scenario 3 19.34% 17.51% 12.44%



4.3 Velocity estimate  
 

Table 4 shows the amplitudes 𝑎 and 𝑏₋1 for the east, north, and up components as well as the reliable velocities 
and their realistic uncertainties at all stations. As expected, the amplitudes of the white and flicker noises are 
approximately the same for the horizontal components; the average value of 𝑎 is 0.6 mm and the average value of 
𝑏₋1 is 2.2 mm/yr1/4. From Table 4, we find that the vertical component noise is significantly higher than those of the 
horizontal components by a factor of 3.7 for 𝑎 and a factor of 2.7 for 𝑏₋1. These results are consistent with the 
previously published results [Williams et al., 2004; Santamaria-Gomez et al., 2011; Amiri-Simkooei et al., 2017; 
Klos and Bogusez, 2017; Li et al., 2019]. The ratios of the average amplitudes of flicker noise to the average 
amplitudes of white noise at the east, north, and up components are 4.04, 4, and 2.68, respectively. This shows that 
the flicker noise amplitude is larger than the white noise amplitude at every three components. These results are 
also in line with the results of Teferle et al. (2008) showing that the power-law noise amplitude is about 3 to 4 times 
larger than the white noise amplitude.  
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station
a(mm) b-1 (mm/yr1/4) v ± 𝜎v (mm/yr)

east north up east north up east north up

AHAR 0.6 0.7 2.4 1.7 1.8 5.0 30.4±0.3 20.3±0.3 1.4±0.9

AMND 0.6 0.7 2.2 1.7 2.1 4.1 29.1±0.2 21.0±0.2 2.1±0.5

ARDH 0.6 0.8 2.7 2.1 2.3 5.9 27.6±0.3 22.4±0.3 0.7±0.8

BNAB 0 0 1.7 3. 4 3.5 7.4 23.9±0.4 21.6±0.5 -11.4±2.4

BRMN 0.5 0.5 2.1 1.5 1.5 3.4 28.1±0.2 22.2±0.2 0.8±0.6

BSOF 0.6 0.6 2.4 2.1 2.0 6.3 31.4±0.2 20.6±0.2 1.6±0.5

BZGN 0.7 0.6 2.4 2.3 2.2 5.4 31.6±0.4 17.7±0.3 0.4±0.8

GGSH 0.5 0.6 0 2.1 1.8 14.5 30.7±0.3 23.4±0.2 -80.9±10.6

HSTD 0.5 0.5 2.2 2.0 2.1 6.6 25.8±0.2 23.6±0.2 0.9±0.7

KBLG 0.7 0.7 2.7 2.6 2.5 4.7 30.9±0.4 20.6±0.4 -0.9±0.8

KHJE 0.5 0.5 2.3 2.4 2.1 4.7 29.6±0.3 20.0±0.3 -0.8±0.7

KKDY 0.9 0.9 3.4 3.4 2.1 5.0 31.1±0.8 18.7±0.5 1.6±1.3

KLBR 0.9 0.7 2.8 2.8 3.2 6.6 32.1±0.3 22.6±0.3 1.4±0.6

MMKN 0.9 0.3 2.1 3.3 3.2 5.2 24.4±0.5 24.0±1.8 -1.1±0.8

MNDB 0.9 0.6 2.3 2.0 2.6 6.1 24.3±0.3 23.4±0.3 -7.2±0.8

NZSF 0.4 0.4 2.1 2.4 2.6 4.2 31.4±0.3 20.1±0.3 0.2±0.5

ORYH 0.6 0.5 1.3 3.0 2.6 12.5 25.6±0.4 26.2±0.3 -50.6±14.9

POLD 0.5 0.5 2.4 1.8 2.2 5.6 31.4±0.2 19.7±0.2 1.2±0.6

SKOH 0.5 0.5 1.9 1.5 1.7 4.5 26.7±0.2 22.4±0.2 0.8±0.5

TABZ 0.4 0.4 1.5 1.4 1.7 3.6 29.0±0.3 20.4±0.3 3.8±0.7

TASJ 0.5 0.5 2.1 1.5 1.6 5.7 27.00±0.1 24.1±0.1 1.4±0.4

TKCE 0.4 0.4 2.1 2.8 2.4 5.9 26.7±0.3 22.1±0.2 1.4±0.6

VLDN 0.6 0.7 2.7 1.8 2.2 5.0 29.3±0.2 23.6±0.2 1.0±0.5

YKKZ 0.6 0.6 2.2 2.1 2.2 5.1 31.0±0.2 20.9±0.2 1.2±0.5

ZARI 0.8 0.8 2.9 1.8 2.2 4.7 26.2±0.2 24.4±0.3 0.4±0.7

Table 4. White noise amplitude (𝑎(𝑚𝑚)), flicker noise amplitude (𝑏₋1(𝑚𝑚/yr¹/⁴)), and estimated reliable velocities 
together with their realistic uncertainties (𝑣±𝜎�(𝑚𝑚/yr)) for the three components.
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Based on our evaluations, the realistic uncertainties at the east, north, and up components are 5.0, 4.8, and 
4.4 times greater than the optimistic uncertainties, respectively, which represent agreement with previous 
studies. According to the findings of Yuan et al. [2007], the realistic uncertainties are 2 to 6 times larger than 
the optimistic uncertainties. In the up component, Teferle et al. [2008] have reported that the realistic 
uncertainty is 3 to 4 times larger than the optimistic uncertainty, while Santamaria-Gomez et al. [2011] have 
reported the factor of 4 to 5. It is worth mentioning that the definition of the stochastic model slightly changes 
the velocities by the average rate of 0.45, 0.53, and 0.86 mm/yr at the east, north, and up components, 
respectively.  

The average uncertainties of the east, north, and up components are 0.28, 0.33, and 1.70 mm/yr, respectively, 
indicating that the velocity uncertainty at the up component is substantially higher than those of the horizontal 
components. The velocity uncertainty of the up component ranges from 0.4 mm/yr at the TASJ station to 14.9 
mm/yr at the ORYH station. From Table 4, we find that the vertical velocities of some stations (ARDH, BZGN, 
NZSF, and ZARI) are smaller than their realistic uncertainties, which means that they should be excluded from 
the geodetic and geophysical studies. It is worth noting that, considering the optimistic uncertainties derived 
from only the white noise, the vertical velocities of the aforementioned stations become significant implying 
the necessity of the noise analysis. In other words, the realistic uncertainties grant reliable geophysical or 
geodynamic interpretations [Bogusz et al., 2019].  

Figure 5 depicts the horizontal and vertical velocity vectors for the stations in the northwest network of Iran. 
As illustrated in Figure 5a, these stations virtually have the same horizontal velocities. The average horizontal 
velocity obtained from Table 4 is 36.0 ± 0.3 mm/yr at the azimuth of 52.66° NE. Figure 5b demonstrates that the 
GGSH, ORYH, BNAB and MNDB stations possess completely different vertical velocities compared to the other 
stations. The subsidence of these stations is estimated to be more than 7 mm/yr, while the vertical velocities of 
the other stations are in the range of -5 to 5 mm/yr. 

To evaluate our results, we compare our estimated velocities with those obtained from Median Interannual 
Difference Adjusted for Skewness (MIDAS) [Blewitt et al., 2018]. For this purpose, we use seven MIDAS stations 
that are close to our network and their time span is approximately consistent with this study. The velocities of 
these stations along with their uncertainties are listed in Table 5 [Blewitt et al., 2018]. For each MIDAS station, 
the nearest station of our network is selected and the velocity difference between these two stations is 
calculated. Note that the nearest station of our network to the ISER station is MNDB, while the rest of MIDAS 
stations are close to ARDH. Figure 6 depicts the velocity difference between MIDAS and our network stations. 
From Figure 6, we find that, except for the north component of the HAKK station, our results are consistent 
with the MIDAS results. It is worth mentioning that according to Table 5, the velocity of the HAKK station in 
the north component (9.04 mm/yr) seems abnormal compared to its neighboring MIDAS stations. The small 
differences observed in results can be attributed to the methodological differences, time span (especially at the 
ISER and MRDY stations), and the distance between the stations. 

 

station
latitude 

(deg)
longitude 

(deg)
start date end date

vE ± 𝜎vE 
(mm/yr)

vN ± 𝜎vN 
(mm/yr)

vU ± 𝜎vU 
(mm/yr)

BASK 38.04 44.02 2009 2016 22.27±0.30 26.70±0.42 0.38±1.28

CAT9 38.01 43.06 2009 2016 22.87±0.34 26.80±0.54 -0.61±1.27

HAKK 37.57 43.74 2009 2016 26.42±0.34 9.04±0.37 1.85±1.24

ISER 36.16 44.01 2009 2020 22.62±0.21 26.07±0.29 -7.95±0.78

MRDY 38.99 43.76 2009 2014 27.41±0.73 18.40±0.67 0.73±1.41

OZAL 38.66 43.99 2009 2016 24.50±0.25 25.97±0.30 0.12±0.90

SEMD 37.31 44.57 2009 2016 22.07±0.36 25.18±0.32 1.11±1.30

Table 5. MIDAS velocities and uncertainties [Blewitt et al., 2018] of stations close to the northwest network of Iran as 
well as their location and time span.
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Figure 5. The horizontal (a) and vertical (b) velocity vectors of the stations in the northwest network of Iran. 
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As a by-product of the time series analysis, we study the periodic signals of the stations. Having the coefficients 
of 𝑠� and 𝑐� in Eq. (2), the corresponding amplitude of the periodic component, 𝐴� , can be computed from the 
following formula: 
 

         
(12)

 
 

Figure 7 presents the amplitudes of the periodic components for all three coordinate components at all stations. 
The median values of these amplitudes are given in Table 6. In Figure 7 and Table 6, the amplitudes of 𝐴1 to 𝐴4 are 
related to the annual, semi-annual, draconitic year, and second draconitic harmonic signals, respectively. The results 
show that the amplitudes of the vertical component are significantly larger than those of the horizontal components, 
which is in agreement with the findings of Klos and Bogusz, [2017] and Klos et al. [2018]. Moreover, we find that, overall, 
the largest amplitudes are related to the annual and draconitic year signals, as reported by Bogusz and Klos [2016].  

It is worth mentioning that the GGSH, ORYH, and BNAB stations, which are in the proximity of Lake Urmia, have 
generally the largest amplitudes. Furthermore, these stations have the largest vertical velocities (Figure 5b) as well as 
the nonlinear trend in the up component. This may be due to the hydrological behavior of Lake Urmia and its basin. 
As a matter of fact, because of the drought in 2007 [Trigo et al., 2010] and the increase of groundwater extraction 
in this region, the mean groundwater level has been decreased considerably. Forootan et al. [2014] have indicated 
that the groundwater storage in the Lake Urmia region changes by -11.2 mm/yr based on GRACE product from 2005 

𝐴� = �𝑠   ²� +𝑐²� 

Table 6. The median of amplitudes of periodic signals for the east, north, and up components. The amplitudes of 𝐴1 to             
𝐴4 are related to the annual, semi-annual, draconitic year, and second draconitic harmonic signals, respectively.

𝐴1 (mm) 𝐴2 (mm) 𝐴3 (mm) 𝐴4 (mm)
east 0.63 0.21 0.81 0.18

north 0.73 0.26 0.88 0.44
up 4.21 1.25 1.64 0.53

Figure 6. The velocity difference (Δv) between the MIDAS stations and the nearest station of northwest network of Iran 
at three coordinate components.



to 2011; see also Hosseini-Moghari et al. [2020]. According to the findings of Tourian et al. [2015], the lake’s water 
level and its area has been decreased at an average rate of 34 ± 1 cm/yr and 220 ± 6 km2/yr between 2002 to 2014, 
respectively. These hydrological behaviors over Lake Urmia and its basin lead to anomalous subsidence in this 
region, which may cause abnormal effects observed in these three stations adjacent to Lake Urmia. 
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Figure 7. The amplitudes of periodic signals for (a) east, (b) north, and (c) up components. The amplitudes of  to  are 
related to the annual, semi-annual, draconitic year, and second draconitic harmonic signals, respectively. 
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5. Conclusion 
 

In this study, the daily position time series of 25 permanent GNSS stations in the northwest network of Iran 
from 2006 to 2016 were analyzed to enhance the estimation of the station motion parameters, and particularly to 
determine reliable velocity vectors together with their realistic uncertainties. For this purpose, a comprehensive 
computation was developed on two integrated parts, namely, the deterministic model analysis and noise analysis. 
To the best of our knowledge, no time series analysis has been conducted in this area; therefore, the results of our 
study will remarkably contribute to the further geophysical studies. 

In the deterministic model analysis part, in an iterative process, real jumps are identified, due to co-seismic 
displacements or to changing of the instruments. In addition, the best functional model is obtained for the station 
motion trend as well as the post-seismic deformation. From the results, we found that most stations have a linear 
trend. However, in the BNAB, GGSH, ORYH, and MMKN stations, a nonlinear trend is observed in at least one of their 
components. Moreover, we found that a combination of logarithmic and exponential functions is optimal model for 
post-seismic deformation in this area. 

Results indicate that in the spatial filtering step, the norm of post-fit residual vector is reduced by 19.34 %, 
17.51 % and 12.44 % at the east, north and up components, respectively. Concerning the stochastic model, we 
found that the noise of the up component is significantly higher than the noise of the other components. We 
observed that the white and flicker noise amplitudes in the vertical component are 3.7 times and 2.7 times the 
horizontal components, respectively. According to our findings, the realistic uncertainties at the east, north, and up 
components are 5.0, 4.8, and 4.4 times greater than the optimistic uncertainties, respectively. 

We estimated the vertical velocity of most stations to be in the range of -5 to 5 mm/yr, except for three stations 
that are in the proximity of Lake Urmia. We also found that these three stations have distinctive features such as 
nonlinear trend, large periodic signal and anomalous subsidence, which may be due to the hydrological behavior 
over Lake Urmia and its basin. We observed that the network stations move horizontally with a velocity of 36.0 ± 
0.3 mm/yr on average. The azimuth of this motion is 52.66° NE. The estimated parameters of periodic signal of the 
stations demonstrate that the amplitude of periodic signals of the up component is significantly larger than that 
of the east and north components. Moreover, the annual and draconitic year signals have the largest amplitudes in 
the three coordinate components.  
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