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Abstract  
 
Low field magnetic susceptibility and other rock magnetic analyses are applied to inspect the 
magnetic nature of solid residuals in snow samples collected in downtown Rome and in two Natural 
Parks in central Italy. Field emission scanning electron microscope and energy dispersive 
spectroscopy (FESEM-EDS) analyses are utilized to reveal the nature of Fe-rich particles and 
discriminate their anthropogenic origin. The results indicate that magnetite (Fe3O4) is the main 
magnetic carrier in almost all samples and that the variations in concentration are directly 
associated with local sources of particulate matter (PM) from anthropogenic pollution related to 
automotive circulation in both environments. Magnetic minerals of other provenance are found as 
accessories. The snow deposits revealed to be an efficient neutral tool for fine particle collections, 
also in environments characterized by different concentration and source of pollutants. 
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1. Introduction 

 
In the recent past a series of studies concerning snow analyses demonstrated the capacity of snowflakes to 

capture pollutants from the atmosphere in region characterized by cold climatic conditions [e.g. Engelhard et al., 
2007; Nazarenko et al., 2017]. Other study in urban environments highlighted the ability of snow sampling to 
monitor the level of airborne pollutants which originate from road traffic [Viklander, 1996; Viskari et al., 1997; Elik, 
2002]. Bucko et al. [2011] tested the snow surveying as a tool to collect and characterize the magnetic physico-
chemical aspects of vehicle-derived particles. The analysis of snowmelt water and snow-dust was successful used 
in industrial environment [Boom and Marsalek, 1988; Westerlund and Viklander, 2006; Muller et al., 2020]. Then, 
the snow sampling was employed as a primary source of information for environmental data in areas where no 
dedicated monitoring systems were available, especially in those regions where the snow characterizes the majority 
of the atmospheric precipitation [Gabrielli et al., 2008; Kuoppamaki et al., 2014].  

In both wilderness unexploited areas and urban sites, others tools but snow are commonly employed in pollution 
assessment studies. In particular, biomonitoring through lichens and tree leaves is widely exploited in magnetic 



environmental studies [Moreno et al., 2003; Kodnick et al., 2017; Paoli et al., 2017; Winkler et al., 2019, 2020; Mariè 
et al., 2020]. Lichens demonstrated to be an efficient bioindicators of air quality in different environment [Conti and 
Cecchetti, 2001; Abas, 2021].  

In this study we applied snow sampling techniques for air pollution analysis in natural and urban locations, with 
the aim to characterize and compare the anthropogenic contribution to the magnetic fraction of particulate matter 
(PM). PM is a term commonly employed to describe a mixture of solid particles and liquid droplets in the air, which 
vary greatly in size, composition, and origin. Iron oxides minerals, as magnetite, are present in atmospheric PM, with 
dimensions ranging from a few nanometers to several micrometers. Because of this, iron rich pollutants may have 
adverse health effects, when inhaled breathing and enter into the respiratory system, penetrating through the cell 
tissue and into the central nervous system [e.g. Oberdörster et al., 2004; Gierè, 2016]. In regard to the human health 
effects the published studies show the effects of magnetite on brain and respiratory system, highlighting how the 
presence of magnetite in the brain may be linked to several neurodegenerative diseases, including Alzheimer 
[Pankhurst et al., 2008]. Electron microscope images on human brain tissue evidenced the presence of magnetite 
nanoparticles of two different type: spherical and euhedral, suggesting a different origin for the nanoparticles, i.e 
from air pollution and of biogenic origin [Maher et al., 2016].  

In this respect, it seems relevant to investigate the level of iron rich pollutants in areas where no automatic 
system of air quality control are active. On this aim, exploiting the snow as passive receptor tool, a snow sampling 
campaign was set up to investigate the possible contribution of anthropogenic magnetic particles to the total 
airborne PM. The analysis was carried out in an urban district and in some natural unexploited environments, 
utilizing magnetic, micro-textural and micro-chemical analyses. The whole set of rock magnetic and electron 
microscopy investigations (FESEM-EDS) was designed to outline the magnetic mineral content retained by the 
snow, and possibly discriminate among the fraction directly associated with the anthropogenic contribution with 
respect to the natural dust content. To achieve this, analyses of rock magnetic properties were conducted on the solid 
residual obtained from the snow samples in order to define the amount of the Fe-rich magnetic particles; these 
analyses, coupled with morphological and qualitative chemical studies, allowed to define the origin, shape and 
characters of the magnetic particles observed. In particular, the research intended to explore the magnetic particles 
contribution to the atmospheric PM and their origin, in different environments, employing the snow as a neutral 
micro-particle collector.  

 
 

2. Sampling and Methods 
 
2.1 Paleomagnetism and rock magnetism 
 
Snow samples were collected during the 2012 winter season in Rome urban area and in the late spring of 2016 

in wilderness reserve parks in Central Apennines (Gran Sasso and Monti della Laga National Park, Velino-Sirente 
regional Park, Figure 1). In the lapse of time between the two sampling campaigns the characteristic of the 
environment at the sites and/or the level of possible air pollutants did not undergo any changes (ARPA, 
www.arpalazio.gov.it and www.artaabruzzo.it). During this time, in fact, the distinctive aspects of the different 
sampling localities did not experienced changes in the meteorological seasonal variability. In addition, the amount 
of vehicles circulating in both areas is proven to be quite constant thorough the years considered in this study 
(ANAS, www.stradeanas.it/it/le-strade/osservatorio-del-traffico).  

The Rome area samples were collected a week after a quite uncommon snowfall occurred in February 2012. On 
that occasion, the low outside temperatures allowed maintenance of the snow on the road side, preventing melting 
before being sampled. These samples (Rome, RM; Figure 1) come from different and close snow patches located 
along a high traffic roadside in Via di Vigna Murata, in midtown Rome. A volume of ca. 1800 cm3 of snow was 
obtained and let melt in a plastic recipient at room temperature. For the urban samples, the solid material utilized 
for measurements was obtained simply straining the water out after the solid fraction decanted. Eventual residuals, 
like seed or small asphalt street materials, were hand separated from the rough-drained fraction. At the end of the 
process, 30 grams of dust material was obtained.  

The samples collected in the wilderness areas come from mountain environments that, on seasonal basis, are 
affected by heavy snow falls. All the samples were picked during the late spring season (from April to early July 
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2016), allowing the snow to be sufficiently exposed to the atmospheric particulate. These snow samples belong to 
rural areas or fall in ski resort areas exploited for leisure purposes (Campo Felice, CF; Sirente, SR; Ovindoli, OV; Gran 
Sasso GR; Campo Imperatore, CI; Figure 1). In particular, three sampling sites are positioned along skiing mountain 
trails (GR, SR, CI) and two samples in partially urbanized ski winter areas and resorts (OV, CF). For each site from 8 
to 12 snow samples were collected in plastic bottles of 1liter volume (1200 cm3 of snow, Figure 2a-c). The snow was 
let melt at room temperature and then filtered using a filtration flask made up assembling a Buchner funnel to a 
vacuum pump (Figure 2c). To retain the solid fraction, the Buchner funnel was coupled with Whatman42 quantitative 
paper filters (cotton filters, ash less, particle retention 2.5 μm). Then, the solid fraction was retrieved from the paper 
filter once dried. Samples of soil were also locally taken and analyzed, in order to have details on the background 
rock magnetic values characteristic of each sampling area.  

A total of 72 samples were obtained after the draining process, 44 residual powder samples and 28 employed 
paper filters. All the samples were put into 2 x 2 x 2 cm standard plastic boxes to proceed in the laboratory for rock 
magnetic analyses.  

Following the available knowledge of the “a priori” level of pollutants exposure, at the sampling locality (e.g. 
ANAS), we grouped sample sites in three classes characterized by: i) high automotive circulation (urban site, with 
nearly 50.000 circulating vehicles per day, RM); ii) sporadic and periodic circulation, (ski resort area with seasonal 
peak of vehicles circulation with no more than 3.500 vehicles per day during the winter spring season, CF, OV); ii) 
truly wilderness protected area (with a very sporadic or negligible circulation, GR, SR).  
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Figure 1. Location of the sampling sites, their relative position in the Central Apennine area and urban Rome is shown. 
The pale blue area highlights the boundary of the urban city of Rome. Squares locates the cities with more than 
40.000 inhabitants. 
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Low field mass magnetic susceptibility (χ m3kg-1) was measured in the paleomagnetic laboratory of the Istituto 
Nazionale di Geofisica e Vulcanologia in Rome, with an AGICO Kappabridge system, KLY-2 model. Before any 
measurement, the weight and the magnetic susceptibility of each empty plastic box container was determined and 
the values were algebraically subtracted to those of the corresponding sample. Regarding the clean paper filters 
employed, their magnetic susceptibility resulted to be negligible. At the end of the low field magnetic susceptibility 
measurements, 10 powder samples (out of the 44) were rejected for further analyses, because of the very low values 
of their magnetic susceptibility. 

Continuously monitored temperature dependence of magnetic susceptibility (until 700 °C) was measured using 
AGICO MFK1-FA Kappabridge equipped with a CS-3 furnace in order to identify the Curie temperature of the 
magnetic minerals [cfr. Petrovský and Kapic�ka, 2006].  

A MicroMag magnetometer (Princeton Measurements Corp. Model 2900 MicromagTM), was employed to 
examine the hysteresis properties, i.e., coercive force (Bc), saturation magnetization (Ms), and saturation of remnant 
magnetization (Mrs) with a maximum applied field of 1 T. Coercivity of remanence (Bcr) was derived from backfield 
remagnetization curves.  

An anhysteretic remanent magnetization (ARM) was imparted to the whole set of samples using a bias field (DC) 
of 0.05 mT and a peak-alternating field (AF) of 100 mT, employing a 2G Enterprise magnetometer with an in-line 
AF demagnetizer and DC field solenoid. The ARM intensity of the samples was measured and stepwise demagnetized 
using AF peaks of 10, 20, 30, and 40 mT. 

2.2 Micro-Morphological analyses instruments and methods 
 
Qualitative microscope observations were performed on selected samples (Table 2), the selection was made on 

the basis of the rock magnetic analysis results and the preference was given to samples showing high magnetic 
susceptibility values. These analyses allowed a qualitatively characterization of the chemical content and inspection 
of the morphological aspects of the magnetic fraction, endorsing a further discrimination among the natural and 
anthropogenic Fe-rich fraction. 

The size and shape of individual particles were observed using a JEOL JSM 6500F Field Emission (Schottky type) 
Scanning Electron Microscope (FESEM, resolution 1.5 nm at 15 kV operating voltage), equipped with backscattered 
electron detector and Energy Dispersion System (EDS, JEOL HYPERNINE, 133 eV resolution) microanalysis. Before 
FESEM observation, the samples were carbon-coated using a JEOL JEC-530 Auto Carbon Coater. The microscope 
working distance was 10 mm, with an accelerating voltage of 15 kV. 

Figure 2 a) sampling site along a mountain trek trail; b) sampling site in urban area; c) filtration equipment: flask, Buchner 
funnel, the vacuum pump, the Whatman42 quantitative paper filters employed to retain the solid fraction from 
the melted snow.



3. Results and discussion  
 
The values of the magnetic parameters measured are summarized in Table 1 and allowed the identification of 

the dominant magnetic minerals in the snow samples. In general, the distribution of the low field mass susceptibility 
allows the classification of the samples based on the level of generic source of anthropogenic pollutants [for a 
review see Sagnotti et al., 2009]. The mass specific magnetic susceptibility distribution indicates an evident relation 
with the closeness of great urban area (see circle dimension of sampled sites on Figure 3) and, as expected, the 
maximum values are observed at sites close to high traffic roads and urban clusters. Among the positive values, for 
the magnetic susceptibili ties, the higher is reached for samples in downtown Rome (i.e. 1055 x 10-8 m3 kg-1) while 
the lower value is found for the ones of the mountain range (GR09, 11, 12 x 10-8 m3 kg-1 Figure 3). This data are an 
indication for the distribution of concentration of magnetic pollutants in sampling sites.  

The hysteresis loops of the whole set of samples show very narrow aspects (Figure 4, column A), in general 
indicative of Multi Domain (MD), Pseudo Single Domain (PSD) grain sizes for magnetite particles [e.g. Roberts et 
al., 1995; Dunlop, 2002]; coercivity values (Bcr) range within 4,24 - 49,95 mT interval (see also Table 1). Slightly open 
loops and coercivity values within the range of 26,14-41,34 mT are instead characteristic of the urban samples in 
Rome (Figure 4 A, Table 1). The magnetic saturation (Ms) is reached, for most of the samples, at about 300 mT, 
indicating the predominance of low coercivity minerals.  
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Figure 3. Location of the sampling sites. Colored circles represent the low field mass specific magnetic susceptibility mean 
value at each site, χ in 10-8m3/kg; each circle radius is scaled on χ magnitude.



 
 

Table 1. Minimum, maximum, mean values and standard deviation, for principal magnetic parameters obtained from 
each site. 

 
 

The general trend of the thermomagnetic curves enhance a sharp magnetic susceptibility decrease at 580°- 600° C, 
the typical Curie temperature for magnetite, which constitutes the principal contributor to the magnetic 
susceptibility of our samples. Decreasing between 580° and 700°C have been retrieved only for few samples (CI02, 
CI06, RM), suggesting the presence of higher coercivity magnetic mineral, as hematite, as accessory mineral (Figure 
4 column B). All the samples have irreversible cooling curves, and beside the samples from the urban area, the whole 
set of the cooling curves are above the heating, implying neoformation of new magnetic phases during the heating 
process [Hunt et al., 1995; Petrovský and Kapic�ka, 2006; Jordanova and Jordanova, 2016]. The magnetic susceptibility 
values plotted versus isothermal remanent magnetization (SIRM) (Figure 5a) illustrate the magnetic concentration 
and give rough information on the magnetic grain size [Thompson and Oldfield, 1986]. This specific graph holds a 
good linear relation (R2=0,91672), with the increment of magnetic mineral concentration, into the upper right 
corner, that coincides with the cluster of the Rome urban samples and indicates difference in the content of magnetic 
minerals rather than changes in the magnetic phases. When the covariance relation subsists, the snow residuals have 
ferromagnetic minerals dominating the magnetic properties [Urbat et al., 2004]. The upper part of the diagram of 
Figure 5a corresponds to minerals with high ferromagnetic content and small magnetic grain size, this observation 
is consistent with Figure 5b, where the samples of RM (urban origin) are placed [Lecoanet et al., 2003]. The majority 
of the samples bear magnetic grains size of ca. 8 μm (Figure 5a), higher dimension are retrieved only for some 

Site 𝜒 (10-8 m3 kg-1 ) ARM (Am-1) SIRM (Am2 kg-1) Bcr (mT) Sirm/𝜒 (KAm -1) ARM/SIRM

CI            
Min 20,53 3,34E-05 4,63E-03 5,70 8,05 0,016
Max 335,94 1,16E-04 3,80E-02 47,31 16,61 0,056

mean 167,78 7,20E-05 1,77E-02 21,50 12,70 0,036
Sd 94,71 2,46E-05 1,12E-02 11,57 3,14 0,014
GR            
Min 11,12 1,56E-05 3,07E-03 11,82 2,28 0,009
Max 218,42 1,09E-04 5,37E-02 27,66 34,29 0,052

mean 86,37 6,06E-05 1,75E-02 21,63 10,40 0,035
Sd 66,62 3,39E-05 1,90E-02 7,08 13,79 0,018
OV            
Min 109,78 1,61E-05 5,45E-04 4,24 2,28 0,008
Max 175,15 9,31E-05 3,76E-02 49,95 34,29 0,045

mean 146,25 4,65E-05 1,42E-02 27,10 10,40 0,022
Sd 27,22 3,35E-05 1,61E-02 18,62 13,79 0,016
CF            

Min 20,22 1,16E-05 1,94E-03 4,38 0,76 0,006
Max 131,30 5,17E-05 1,13E-02 26,38 1,79 0,025

mean 60,12 3,01E-05 8,88E-03 20,24 1,17 0,013
Sd 43,15 1,68E-05 3,20E-03 8,64 0,45 0,009
SR            

Min 86,21 3,62E-05 1,24E-02 11,14 7,61 0,017
Max 221,71 1,29E-04 1,84E-02 28,59 17,92 0,062

mean 132,49 9,69E-05 1,55E-02 20,23 11,71 0,048
Sd 41,80 2,99E-05 2,34E-03 8,29 4,46 0,018
RM            
Min 509,02 1,63E-01 1,15E-01 26,14 12,37 0,097
Max 1054,60 1,12E+02 1,62E-01 41,34 25,12 0,538

Mean 888,54 1,44E+01 1,33E-01 35,38 16,33 0,285
Sd 159,83 3,69E+01 1,46E-02 4,87 3,92 0,143
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Figure 4. Hysteresis loops for representative sample at each site (column A); corresponding temperature dependent 
magnetic susceptibility behavior (column B).



sample of the Gran Sasso Range (GR) and at the Ovindoli site (OV). The 8μm mean grain size corresponds to the 
pseudo single domain state [Dunlop, 2002; Thompson and Oldfield, 1986]. Coupling this latter graph with the one 
illustrating the inter-parametric ratios that indicates grain size variations (Figure 5b), it is confirmed that samples 
with higher magnetic concentration bear particles with the lower grain size dimension, i.e. the ones belonging to 
the urban area (Figure 5a-b). The remaining specimens, the ones from the non-urban environment, are characterized 
instead by minor magnetic concentration and greater grain size (Figure 5b). This general behavior is confirmed by 
the hysteresis parameters data as illustrated in the grain size distribution plot [e.g. Day et al., 1977; Dunlop, 2002] 
(Figure 5c). Here, the majority of the samples fall in the PSD state area, with some exceptions made for samples 
falling into the mixing area of single domain (SD)-multi domain (MD) state.  

Laura Alfonsi et al.

8

Figure 5. Biplots of (a) magnetic concentration parameters (SIRM versus χ); (b) χ versus grain-size parameters 
(SIRM/ARM); (c) Hysteresis ratios plotted on a grain size distribution plot [Day et al., 1977; Dunlop, 2002]; (d ) 
biplots of SIRM/χ ratio versus Bcr to discriminate magnetic minerals from each other’s. Individual polygonal 
boxes denote the magnetic minerals corresponding domains; label sites as in the legend. SIRM and ARM values 
are expressed in 10-3Am2 kg-1; magnetic susceptibility (χ) is expressed in 10-8m3kg-1. SD: single domain; PSD: 
pseudo-single domain; MD: multi-domain. Concentration and grain size values in (a) and polygonal boxes in (d) 
following Thompson and Oldfield [1986]. 



The values of Mrs/χ (kA/m) plotted versus Bcr (Figure 5d) of our samples fall in the magnetite and titano-
magnetite field [Peters and Thompson, 1998]. In the same biplot graph, is evidenced the presence of pyrrhotite 
(Fel-xS, 0 < x < 0.125) for some samples of the urban dusts (RM see Figure 5d). Although, its presence was not 
confirmed by other rock magnetic analyses (i.e. thermomagnetic curves for Curie temperature).  

To resume, the whole set of data and analyses point toward a variability among the studies sites principally 
related to the magnetic concentration and/or slight differences in grain size, rather than presence of different 
magnetic mineralogy. As expected, the largest concentration of magnetic minerals is observed in urban area samples, 
also carried by fine grain size minerals; while coarse grain size is representative for samples of the intermountain 
sites (CF, CI, OV). On the basis of the above consideration, the site of Rome, positioned along and heavy traffic 
loaded area, can be considered as a reference site for a “polluted” area with respect of the whole set of analyzed 
samples. 

The FESEM analysis allowed the recognition of Fe-rich particles in the samples. It should be noted that, because 
of an analytical problem in the spectra, it was not possible to acquire the signal of the light elements, under oxygen. 
The major element identified in the analyzed particles is mainly Fe with minor contribution at some sample of Ti 
(observed at the OV site). The analysis indicates that the magnetic minerals of the samples are predominantly 
represented by Fe-oxides (i.e. magnetite, Table 2).  

 

 
 

Table 2. Chemical composition (oxides weight %) obtained by FESEM-EDS microanalysis from Fe-rich particles collected 
in three different natural protected areas of the Central Apennines. See text for discussion. Light elements (under 
O) were not analyzed due to contamination of EDS detector 

 
 
The SEM-EDS also indicates a distinctive morphological aspect associated to a specific chemical composition. In 

particular, magnetic particles with spherical shape and porous aggregates have predominance of Fe and O 
accompanied with Ti, which is typical for particles originated from fast cooling of melts or as result of combustion 
of fossil fuel [e.g. Flanders, 1994, 1999]. The morphological and elemental characteristic or the magnetic particles of 

Sample MgO Al2O3 SiO2 P2O5 K2O CaO Ag2O La2O3 CeO2 TiO2 FeO TOT

OV01_1 1,32 5,42 1,08     0,86       12,66 78,66 100,00

OV01_2 1,00 3,37 0,75     1,61       11,57 81,70 100,00

OV01_3 1,58 4,08 1,27     1,00       9,20 82,87 100,00

OV01_4 0,90 4,02 2,27     1,69       9,85 81,27 100,00

OV01_5F 8,19 4,82 54,15   2,04 20,24         10,56 100,00

OV01_5   1,42 19,69 15,16   36,69 5,07 7,76 14,21     100,00

Gr06_S 1,65 16,98 25,13   1,43 0,62         54,19 100,00

GR06_S   23,70 35,18   3,63           37,50 100,00

GR06_T 1,65 16,98 25,13   1,43 0,62         54,19 100,00

SR02_1 6,15 22,04 29,68               42,13 100,00

SR02_2 1,92 7,52 14,83 1,05 0,62           74,06 100,00

SR02_S 2,27 14,10 20,61 3,32 0,87           58,83 100,00
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some of the analyzed samples (RM, OV), allows to attributed them an anthropogenic origin [Strzyszcz et al., 1996; 
Veneva et al., 2004; Sagnotti et al., 2006, 2009; Petrovský et al., 2013; Liu et al., 2019]. The SED-EDS observation 
confirmed that the site of Rome bears grains size with finer particles, and these in general are in the range of 50 nm 
- 1μm dimension (Figure 6a); this finer spherical particles are mainly anthropogenic iron-rich sphere. Instead, larger 
grains, with dimension > 1 micron, are more frequent at the intermountain sites (Figure 6b, c, d); although magnetite 
fine particles, even if sparse, have been retrieved also at these sites (Figure 6e). Silica-aluminum sphere are also 
present at almost all the sites, these quartz spherules of air blow aeolian dust, are probably of Saharan origin [see 
Sagnotti et al., 2006]. At the Rome site, these are often coated with ferromagnetic particles of nano-dimensions.  

The mass percentage oxides composition of some the analyzed samples, containing ferro oxides, is summed in 
Table 2. GR and SR samples contain a high percentage of Si and Al, while OV samples show reduced quantities of 
these elements. All the particles coming from the OV area show high Fe levels with ca. 10% of Ti content, these 
samples come from a parking slot in a ski resort facility. In this locality other non-magnetic anthropogenic 
pollutants have been found: mainly products of fertilization compounds, and remains of component employed in 
abrasive materials (Cerium oxides). Finally, all the analyzed samples show low percentage contents of other cations 
such as Mg, Ca, K, and P.  

It should be noted that, although the FESEM-EDS analysis pointed to a non-neglectable amount of Ti in some 
samples (up to 10% in the OV site cfr. Table 2), this does not find correspondence in the Curie temperature of the 
selected samples measured: no clear peak of susceptibility at 530°C is visible in the heating curve [Evans and Heller, 
2003], pointing instead to pure magnetite as the lonely magnetic carrier (Figure 4b). The same consideration holds 
for the presence of pyrrhotite in some of the samples at the RM site (cfr Figure 5d), whose existence it is not 
manifested in the corresponding thermomagnetic curve (Figure 4a). This may appear as a discrepancy, but it should 
be considered that the resolution of the EDS-FESEM analysis in on the order of nanometers and directly carried on 
the selected particle, while the K-T determination is made on the bulk material. Moreover, at least for the Rome site 
the samples utilized for the thermomagnetic analysis are the ones falling in the pure magnetite field in grain size 
distribution plot (Figure 5d). 

 
 

4. Conclusion  
 
This study made a comparison among rock magnetic data obtained from snow deposits in wilderness areas in 

central Italy and in the urban center of Rome, allowing to identify the characters and the origin of the magnetic 
particulate matter. Results indicate that: i) in both areas from rock magnetic properties the ferromagnetic content 
of the PM is mainly represented by magnetite; ii) the difference among sites refers to concentrations of the 
magnetic minerals, rather that mineralogical differentiation; iii) chemical analysis and particulate morphology, 
coupled with magnetic measurements (concentration and grain size), highlighted the differences between natural 
or anthropogenic origin of minerals.  

As a general result, the study disclosed that anthropogenic derived magnetic particles are abundant in areas 
where local sources of pollution are permanently active, such as high traffic urban roads, and/or have seasonal 
activity (i.e. parking lots of ski resort facilities). In the isolated and protected natural park area, the anthropic 
magnetic contribution is very low and associated with the prevalent natural component. 

The rock magnetic analysis presented, coupled with FESEM observations, demonstrated to be a valuable 
additional method to define local pollution, suitable to define the source of the related material in different 
environments. In this respect, the snow is confirmed to be a valid neutral collecting tool to investigate and monitor 
the particulate matter.  

The monitoring of particulate matter has an important role in human health preservation, the results of this 
paper confirmed that snow can be employed to that purpose also in those areas where no automatic monitoring 
facilities are available, and/or where snow constitutes the main precipitation. These kind of studies should be 
prosecuted in order to ameliorate and standardize their feasibility and procedures.  
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Figure 6. FESEM images of analyzed Fe-rich PM (red dots) and corresponding EDS spectra for: (a) Road dusts, 
anthropogenic Ti-reach magnetite aggregates, RM site; (b) Ti-reach magnetite OV site; (c) anthropogenic 
Fe-oxides SR site; (d) aggregates of Fe-Oxides, and aeolian sands in Sr site (e) sand granule, probably eolian 
wind-blown dust at GR site.
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