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Abstract  
 
Within a fault governing model the characteristic scale length is one of the most relevant 
physical parameters because it accounts for the so–called fracture energy (density) of the 
system, its dynamics, the time during which the accumulated stress is released and the seismic 
waves are excited, the amount of slip developed during an instability event. Friction laboratory 
experiments reveal that it is not a material property, but that it changes with the sliding 
velocity. We propose two rather different analytical models to fit laboratory evidence and we 
incorporate them into a fault model able to simulate repeated earthquakes in the framework 
of various formulations of rate and state friction. We demonstrate that temporal variations of 
the scale length do not prevent the system to reach its limit cycle, but they systematically 
reduce the magnitude of the expected event (both in term of developed slip, and thus seismic 
moment, and released stress) and also reduce the inter–event time (recurrence interval). 
Depending on the friction model, the system can penetrate into the stable regime and can 
either continue the accelerating phase toward to failure or decelerate and abort instability. 
 
 
Keywords: Earthquake dynamics; Characteristich length; Computational seismology; Fault 
rheology; Governing equations. 
 
 

 
 
1. Introduction 

 
There is no doubt that modern seismology still seeks improvements in the formulation of models to properly 

describe the physical processes occurring during faulting, in order to be able to explain the causes of the emission 
(and not only the propagation) of the seismic waves and finally to predict the occurrence of earthquakes. Two 
fundamental pillars make the problem very complicated from a deterministic point of view, the first being the 
practical lack of knowledge of the actual state of the fault (namely, the acting stresses, the sliding velocity, etc.) 
and the second being the epistemic ignorance on to the most appropriate and realistic physical model describing 
the behavior of a seismic fault system. 

Given the additional impossibility to reproduce in laboratory a real–world event (with concurrently realistic values 
of confining stresses and sliding speed), the numerical modeling of faulting process is considered as one of the most 
promising — and powerful as well — tools to systematically generate seismic scenarios and to validate theoretical 



predictions and proposed models against data recorded during seismic sequence and major failure episodes. 
Of course, one of the five major pillars illuminating the modern day researches [e.g., Bizzarri, 2014] is represented 

by laboratory inferences, despite the severe limitations mentioned above. Although crustal earthquakes are thought 
to be a mixture of fracture and friction phenomena [e.g., Ohnaka, 2003], the prominent part of these laboratory 
works rely on friction experiments, i.e., on the measure of the rheological properties of preexisting sliding surfaces, 
in mutual contact and subject to different loading conditions [see sections 2.3 and 2.4 of Bizzarri, 2014 and 
references therein for a review of this subject]. The pioneering experiments performed by Dieterich [1978] and 
Ruina [1983] has been followed by several others, culminated in the so–called high velocity rotary shear experiments 
[see, among others, Sone and Shimamoto, 2009].  

All these results highlighted the fact that the pivotal quantity which controls the physics of the system (and 
therefore the evolution of a natural fault) is represented by the scale length. This quantity — sometime invoked, 
improperly, as critical distance — basically represents the amount of cumulative slip that the system develops during 
the breakdown phase, i.e., during the portion of the coseismic stage during which the fault traction degrades from 
the yield level to the kinetic one. This scale length is reported as characteristic slip–weakening distance (denoted 
by the symbol d0) in the framework of the slip–dependent governing model, such as the canonical, linear slip–
weakening model postulated by Andrews [1976], or as the scale length L (or Dc as preferred by experimentalists) 
within the context of the rate– and state–dependent friction laws [Ruina, 1983 and references therein). As clearly 
stated by Bizzarri and Cocco [2003], d0 and L are intimately related one to the other, because the description of the 
weakening process predicted by the two different classes of governing models (slip–dependent or the rate‐ and 
state‐dependent) are not antithetic, but they can be easily reconciled on theoretical basis [see also Bizzarri, 2011a]. 

Independently of the assumed friction model, at a general level the scale length represents the possibility to 
move from the world of the laboratory (where the typical scales of the samples are of the order of tens of cm at 
maximum) to the world of the natural fault systems (geophysical structures which are expected to be even several 
tens of km long). Following the findings of Marone and Kilgore [1993] we can assume that the rheological processes 
acting at a natural scale operate with a larger characteristic length compared to that controlling the laboratory 
processes. In this framework, a recent study by Leeman et al. [2018], extending previous results by Mair and Marone 
[1999], states that the characteristic length is not a constant property of the sliding material, but it depends on the 
sliding speed of the system. 

In the present study we propose two different analytical models (see section 2) which fit the laboratory data of 
Mair and Marone [1999]. By adopting a mass–spring model to solve the elastodynamic problem (see section 3) we 
incorporate these models in various formulations of rate‐ and state‐dependent friction laws, in order to explore the 
role of time‐variable L in the entire cycle of a natural fault (see sections 4 and 5). 

 
 

2. Time variable scale length: the proposed models 
 
As stated above, experimental data by Mair and Marone [1999] clearly indicate that the scale length L is not a constant 

depending only on the material, acting normal stress and other experimental conditions, but it depends on the sliding 
speed. Indeed, Figure 9 of Leeman et al. [2018] shows that L systematically increases with velocity and it can vary more 
than a factor 10 when sliding speed changes from 0.01 mm/s to 10 mm/s. We report the results of Mair and Marone 
[1999] as full black dots in Figure 1; the inset plot refers to the same velocities considered in their experiments. 

In order to fit their data we assume two rather different analytical functions. The first is a logarithmical form [as 
suggested by Leeman et al., 2018], written as it follows: 
 

(1)
 

 
where Lref is the reference value of the characteristic length (i.e., the value assumed in a model without variations 
of L), v is the slip velocity, v* is a reference value of the slip velocity and 𝛼 and 𝛽 are the two dimensionless free 
parameters. Data of Mair and Marone [1999] are fitted very well (with R2 = 0.95) with 𝛼 = 2 and 𝛽 = 𝛼*[ln(𝑣*) + 11.6]. 
(Note that 𝛼 and 𝛽 are of the same order of magnitude and therefore they are equally relevant in equation (1)). 
The model (1) is reported in red in Figure 1. 

𝐿 = 𝐿��� �𝛼 in �      � + 𝛽�𝑣 𝑣*
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The other expression we consider is a power law form which reads: 
 

      
(2)

 
 
where again 𝛾 and 𝛿 are dimensionless free parameters. With 𝛾 = 0.4 and 𝛿 ″105.4 𝑣*� we also obtain a good fit of 
data (with R2 = 0.98); the model (2) is superimposed as blue curve in Figure 1.  

Practically, to avoid to have estimates of L lower than Lref (or even negative within model (1)) we consider the 
two following formulations: 

    

(3)

 
and 

       

(4)

 
 
respectively. In other words, the assumed models (3) and (4) predict that L = Lref for low slip velocities (namely for 
v lower than roughly 10 μm/s), while for greater values of 𝜈 the scale length changes with 𝜈 (and therefore implicitly 
with time on which 𝜈 explicitly depends). 

In Figure 2 we superimpose, for models (3) and (4), the expected value of L for different cases of Lref, ranging from 
1 mm to 1 cm; these are values commonly expected for real faults [Marone and Kilgore, 1993]. It is clear that, for 
all cases, for high values of v the power law model (equation (4)) predicts a more relevant change in L compared to 
the logarithmical model (equation (3)). 

𝐿 = 𝐿��� 𝛿 �      ��𝑣 𝑣*

⎧  ⎨ ⎩
   𝐿���       ,𝑣 < e‒11.6

𝐿��� �𝛼 in �      � + 𝛽�     ,𝑣 ≥ e‒11.6𝐿 = 𝑣 𝑣*

⎧  ⎨ ⎩
𝐿���           ,𝑣 < 105.4‒¹/�

𝐿��� 𝛿 �      ��      ,𝑣 ≥ 105.4‒¹/�𝐿 = 𝑣 𝑣*
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Figure 1. Laboratory data from Mair and Marone (1999), reported as full black dots, fitted with the two analytical 
models proposed in this work; the logarithmic form (equation (1), red curve) and the power law form 
(equation (2), blue curve). The inset plot (zoom) reports the velocity range of data by Mair and Marone, just 
for comparison to that paper. 
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3. The fault model 
 
3.1 The mass–block analog system 
 
Here we consider a single, one degree of freedom fault model, referred to as mass–spring (or spring–slider) 

system, where a seismogenic fault is idealized as a single point where the mass m (per unit surface area) is 
concentrated. On this material point a normal stress 𝜎n

eff is acting and it slides over a planar surface with a frictional 
resistance τ [see for instance the pioneering works of Gu et al., 1984 and Tse and Rice, 1986]. From the end of the 
spring (having an elastic constant k) the system is continuously loaded by a remote velocity, vload, which physically 
represents the speed of a tectonic plate which loads the seismogenic region. The model is represented schematically 
in Figure 3. 

In the framework of this analog 1–D fault model the elastodynamic problem simply is the equation of motion 
of a damped harmonic oscillator, which can be written as [Bizzarri, 2012c]: 

             U� = F(U,𝑡) (5) 

 
where dot indicates the time derivative and  

         

(6)

 
 

U� ≡ �             �   and   F ≡         .⎡ ⎢ ⎢ ⎣
1 𝑚 (𝑘 𝑣���� 𝑡 ‒ 𝑘𝑢(𝑡) ‒ 𝜏)

⎤ ⎥ ⎥ ⎦
𝑢(𝑡) 𝑣(𝑡)

Figure 2. Evolution of the characteristic scale length as predicted by the models proposed in the present study for typical 
values of Lref . Dots refer to the logarithmic model (equation (3)), while diamonds refer to the power law model 
(equation (4)). The inset plots reports L in μm and in a log scale. Note that for v lower than roughly 10 μm/s L is 
constant (and equal to Lref ) for both the models. For completeness, we also report the values of vc (discriminating 
between quasi-static and fully dynamic behavior) and vl defining the beginning of the seismic range (see section 
3.2 and Table 1 for details). 



Mathematically, U in equation (6) indicates the state of the dynamical system, at a generic time t, in the phase 
space (u, v), u denotes the amount of fault slip at time t and v is its time derivative. Contrarily to the extended fault 
models, in the present model the discontinuity interface is formally absent, however, within the coseismic phase 
(defined by the “slip” event), the quantity u can be interpreted as the fault slip, i.e., the discontinuity of the 
displacement vector in continuum models of faulting [see equation (3) in Bizzarri, 2011a]. On the other hand, the 
velocity v varies from the very low values of the interseismic phase (or the “stick” phase of the dynamical system, 
where v ~ vload or less) to the high values attained during the coseismic stage (where v is in so–called seismic range, 
where v ~ several m/s).  

Finally, the traction τ in (6) mathematically represents the fault governing model, which expresses analytically 
the dependence of the shear components of the stress tensor on the physical observables [u, v, some state variables, 
etc.; see equation (10) of Bizzarri, 2011a]. In the present paper we will adopt two different friction models, as 
described in sections 4 and 5. 

 
 
3.2 Numerical approach 
 
As discussed in Bizzarri [2012a], the equation of motion (5) possesses closed–form analytical solutions in some 

special cases, but it does not in general conditions. Since we will employ non linear governing models (see next sections 
4 and 5), it has to be solved numerically. To this goal we use a Runge–Kutta algorithm at fourth order with auto–adaptive 
time stepping [Press et al., 1992]. We use the algorithms RKQC and RK4 of Press et al. [1992], which has been proved to 
agree [e.g., Kato, 2001; de Lorenzo and Loddo, 2010] with the results obtained with the ODE45 routine in Matlab®. 
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Figure 3. Sketch of the analog fault model adopted in the present paper. The single block (of mass m per unit surface area), 
loaded by an external force 𝜏�₀, slides on a planar surface against a friction 𝜏 (which is mathematically defined 
by the assumed governing model) and represents the fault behavior. The spring represents the coupling with the 
elastic part of the model (namely, the medium in which the fault is embedded). See section 3 for further details. 
Modified from Bizzarri [2012c]. 



The behavior of the dynamical system is characterized by two different regimes, discriminated by the threshold 
velocity vc = 0.01 mm/s, imposed as a model’ s parameter in all the numerical experiments performed here; one is 
a quasi-static range, for which we neglect inertial effects (i.e., the acceleration is assumed to be negligible, because 
the fault is evolving very slowly), and the other is the dynamic one, for which the complete problem (equations (5) 
and (6)) is solved.  

We define the occurrence of a dynamic instability (formally the “slip” event or the earthquake) as the time level 
t[n] where the v exceeds the threshold value of vl = 0.1 m/s, in agreement with previous literature [e.g., Day et al., 
2005; Rubin and Ampuero, 2005; Bizzarri and Belardinelli, 2008; Bizzarri and Spudich, 2008; Bizzarri, 2012c]:  
 

       𝑡[𝑛] | 𝑣 �𝑡[𝑛]� ≥ 𝑣� (7) 
 
n being the integer counting the number of instability during the entire seismic cycle. The time interval which 
separates two subsequent instabilities naturally defines the inter–event time, Tcycle (referred also as the seismic 
cycle): 

 (8) 
 
 

3.3 Stability of the system 
 
The theory predicts a bifurcation in the evolution of the system depending on the dimensionless parameter 𝜅 

[e.g., Gu et al., 1984; Rice, 1983], also known as stiffness ratio: 

(9) 

 
when 𝜅 < 1 (i.e., k < kc) the system is inherently unstable, in that it stores elastic energy during the interseismic 
loading and then it releases it in a dynamic fashion. On the contrary, when 𝜅 > 1 (i.e., k > kc) the system slides 
stably under quasti–static loading, in that the elastic unloading balances the frictional weakening. It can become 
unstable if the system is subject to a sufficiently strong dynamic loading [e.g., Scholz, 1998]. In the framework of 
the rate– and state–dependent friction laws the critical stiffness kc , neglecting low order terms, is expressed as: 

 

         
(10)

 
 
where a and b are two dimensionless governing parameters, which depend on the material and eventually also on 
temperature, pressure, etc.; the first accounts for the direct effect of velocity on the friction coefficient and the 
second one controls the releasing phase of stress. More precisely, the difference (B – A) ≡ (b – a)𝜎n

eff quantifies the 
decrease of the fault traction from its initial value to the residual level caused by a sudden increase in the loading 
velocity of a factor e.  

Theoretically, the temporal variation of L, as predicted by models (3) and (4), has relevant implication in the 
degree of instability of the system. Indeed, it can happen that the system, starting from an inherently unstable 
configuration, enters into the stable behavior, in that the variation of sliding speed causes 𝜅 be greater than unity 
(due to a variation in L). Formally, this occurs when the sliding speed v exceeds a threshold vCS, expressed as it 
follows: 

(11) 
 

and 

   (12) 
 

𝑇[𝑛]   = 𝑡[𝑛] ‒ 𝑡[𝑛‐1],𝑛 ≥ 2.����� def

𝜅 =      ;𝑘 𝑘�

𝑘� = (𝑏‒𝑎)𝜎���� 𝐿

𝑣�� = 𝑣* �                    �¹/�(𝑏‒𝑎)𝜎����𝐾𝐿��� 𝛿

𝑣�� = 𝑣* e     �  ‒𝛽�(𝑏‒𝑎)𝜎���� 𝑘𝐿���₁ �
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for model (3) and (4), respectively. This means that, when L is not constant, a velocity–weakening regime [defined 
by the condition b > a; Gu et al., 1984; Rice, 1983], starting with inherently unstable conditions (𝜅 < 1), is not a 
sufficient condition to obtain a sequence of repeated seismic instabilities; we will discuss this result in the next 
sections. It is interesting to note that while vc and vl are model parameters, assigned a priori before the numerical 
experiments, vCS depends on the adopted constitutive parameters and on the model adopted to describe the 
variation of L. 

 
 

4. Results with Dieterich‐Ruina friction law 
 
Within the framework of Dieterich–Ruina (DR thereinafter) friction the state variable 𝛹 identifies the average 

contact time of asperities at a microscopic level [Dieterich, 1978; Beeler et al., 1994]: 
 

    

(13) 

 
The parameters in the present paper are tabulated in Table 1. Since the adopted model is 1–D, the assumed value 

of effective normal stress has to be intended as the condition at the earthquake hypocenter. Variations of 𝜎n
eff as such 

proposed by Linker and Dieterich [1992] and by Dieterich and Linker [1992] are disregarded here, where we assume 
that the effective normal stress is constant, although they have been considered in more elaborated models [Bizzarri 
and Cocco, 2006a; 2006b; Rice, 2006]. The initial state of the system is (𝜈0,𝜏0) = (𝜈*,𝜏ss(v*)), where the symbol 𝜏ss 
stands for the steady state value of friction (defined by the condition (d/dt) 𝛹 = 0, so that 𝜏ss(𝜈) = 𝜇ss(𝜈) 𝜎n

eff = 
�𝜇* ‒ (𝑏 ‒ 𝑎) ln � ��𝜎���� ). With the assumed values of v*, 𝛼 and 𝛾 we have: 𝛽 = – 20.54 and 𝛿 = 1.67 × 10–2.

 

(a) The system starts at t = 0 from its steady state (at a generic time t* the steady state is defined by the condition    𝛹 � �₌�* = 0.   
Table 1. Parameters adopted in the present study. They refer to typical conditions expected at the hypocentral depth of 
crustal earthquakes. The subscript 0 denotes the initial state of the system, at t = 0. 

⎧  ⎨ ⎩ 𝛹 = 1 ‒ 
𝜏 = �𝜇* + 𝑎 ln�     � +𝑏 ln�        ��𝜎����𝑣 𝑣*

𝛹𝑣* 𝐿d d𝑡 𝛹𝑣 𝐿

𝜈 𝜈*

𝑑 𝑑𝑡
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Parameter Value

Model Parameters

Tectonic loading rate, 𝜏�₀ = 𝑘𝑣���� 3.17 × 10‒3 Pa/s (= 1 bar/yr)

Machine stiffness, 𝑘 10 MPa/m

Period of the analog freely slipping system, 𝑇 = 2𝜋√𝑚/𝑘 5 s

Critical value of the sliding velocity above which the dynamic regime is considered, 𝑣� 0.01 mm/s

Threshold value of the sliding velocity defining the occurrence of an instability, 𝑣� 0.1 m/s

Fault Constitutive Parameters

Effective normal stress, 𝜎���� 30 MPa 

Logarithmic direct effect parameter, 𝑎 0.007

Evolution effect parameter, 𝑏 0.016

Reference value of the friction coefficient, 𝜇* 0.56

Reference value of the sliding velocity, 𝜈* 3.17 × 10‒10 m/s (=1 cm/yr)
Initial slip velocity, v0 3.17 × 10‒10 m/s
Initial value of the state variable, 𝛹0 31.5 × 106 s (= 𝛹ss(𝑣0) = 𝐿/𝑣0) (a)

Initial shear stress, 𝜏₀ 16.8 MPa (= 𝜇*𝜎����₀)

Parameters of the models of variable L

Model (3)
𝛼 2

𝛽 ‒ 20.54 (𝛼[ln(𝜈*) + 11.6])
Model (4)

𝛾 0.4

𝛿 1.67 x 10‒2(= 105.4 𝜈*� )



We report the results in Figures 4 and 5. The black curve denotes the reference case, where L = Lref . The stick–
slip behavior of the system, which produces repeated instabilities of the same magnitude (Figure 4a), releasing the 
same amount of stress (Figure 4b), is clearly visible from that figure. The system reaches its limit cycle, because 
maximum and minimum values of the traction during subsequent instability events are identical; in the 
correspondence of each single instability the drop in the stress is the same and therefore we can state that, on this 
fault and in these special conditions, all the occurring earthquakes exhibit the same magnitude. We can also see that 
the interseismic phase of stress recovery (namely the restrengthening stage) is always the same. This is simply 
because the state of the system at the end of the deceleration phase is identical over the whole sesimic cycle (see 
Figure 4c and the inset in Figure 5a); the minimum values of the slip velocity are the same and consequently also 
the restrengthening phase is the same. In other words, the time required to the fault to completely recover its stress 
and finally reach the subsequent event is constant. All these results are synthetically represented in the phase 
portrait (Figure 4c); at the beginning there is a transient phase, consisting into few instabilities, and then the system 
enters in its limit cycle, in that the trajectory followed by the system is unique and covered forever. This behavior, 
which somehow identifies the idealized concept of characteristic earthquake, is expected in these idealized 
conditions, although it is not a general rule, as discussed by Bizzarri [2012c]. 

The presence of temporal variations in the characteristic length does not destroy the cyclicity of the instabilities; 
also with variable L the system undergoes to its limit cycle, but it has severe implications in the whole dynamics of 
the events. In particular, we can observe for both the models (3) and (4): 

 I. the events are more frequent (in particular for model (4)); the inter–event time Tcycle (see equation (8)) is 
reduced (Figures 4a and 4b). From 170 yr in the reference case, the seismic cycle becomes 147 yr and 94 yr for 
models (3) and (4), respectively (the variation therefore is of about 13.5 % and 44.7 %, respectively); 

II. the events have lower magnitude (Figures 4a and 4b), in that the amount of slip developed and the stress 
released during each instability are lower compared to the reference case. The slip at each instability is 1.7 m 
for the reference case and it is reduced to 1.4 m and 0.9 m for models (3) and (4), respectively. The stress 
release (namely, the difference between the peak traction and the residual traction after the total release) is 
16.73 MPa in the reference situation and 14.49 MPa and 9.09 MPa in case of models (3) and (4), respectively. 

 
By looking at Figure 5 we can clearly recognize that the evolution of the system is the same at low velocities (as 

expected, since for both models (3) and (4) L = Lref for v < 10 μm/s, as discussed in section 2). Therefore the time 
evolutions of v and 𝛹 are identical in this range. Once L starts to vary, the state variable evolution begins to change 
compared to the reference case (see Figure 5b); this in turn causes a reduction in the peak slip velocity. This is not 
surprising, since an increase in L reflects into a decrease of the degree of instability of the system (as also predicted 
by the increase in the stiffness ratio 𝜅; see section 3.3). At the same time, the stress release is lower and thus the 
interseismic phase begins earlier (see Figure 4c). The more relevant change obtained with model (4) compared to 
that obtained with model (3) can be clearly explained by the fact that in the former case the system spontaneously 
enters in the stable regime (𝜅 > 1), while in the latter case remains in the unstable range (see Figure 5a). 

The same conclusions also hold for other values of a and b (nor reported here for brevity) and of Lref. In Figure 6 
we explore the case of Lref = 2 mm; in this case 𝜅ref = 0.074, instead of 0.037 when Lref = 1 mm. In this situation, also 
in the case of model (3) the system spontaneously enters into the stable regime and, as expected, the differences 
with respect to the reference case are more pronounced and amplified compared to the situation where Lref = 1 mm. 

For greater values of Lref the system does not enter in its limit cycle, i.e., it is not able to develop instabilities; 
once the velocity starts to increase (due to the applied external loading) also L starts to increase and this results in 
an increase of the stiffness ratio 𝜅, which finally impedes the dynamic acceleration to take place. In other words, 
with greater values of Lref models (3) and (4) inhibit the occurrence of instabilities.
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Figure 4. Result in case of the Dieterich-Ruina (DR) model (equation (13)) for Lref = 1 mm (the other parameters are listed 
in Table 1). (a) Time evolution of the fault slip. (b) Time evolution of the fault traction. (c) Phase diagram (i.e., 
traction vs. slip velocity; note the logarithm scale in the abscissa). In this and in all the remaining figures of the 
present paper black curves refer to the reference model, having a constant value of the scale length (L = Lref), 
red curves refer to the logarithmic variation of L (model (3)), while blue curves refer to the power law variation 
of L (model (4)). In panel (c) are indicated the velocities separating the quasi-static and the dynamic behavior 
and the occurrence of a dynamic instability (vc and vl , respectively, see section 3.2 for further details). We also 
indicate the space in the phase diagram where the system spontaneously enters in the stable regime, 
corresponding to velocities greater than vCS, which, for the adopted Lref, equal 6.69 m/s and 3.32 x 10-2 m/s, 
respectively (see equations (11) and (12)). 



5. Results with Ruina-Dieterich model 
 
In this section we adopt a different temporal evolution of the frictional resistance, which follows the Ruina–

Dieterich (RD henceforth) law [Ruina, 1983; Beeler et al., 1994; Roy and Marone, 1996]: 
 

    

(14) 

 
In this formulation the analytical expression of the friction coefficient is mathematically the same, 𝛹 has 

again the dimension of time, but it evolves in a different fashion, usually known as slip law (compared to the 
so–called ageing law of the DR model). This law is also known to predict a behavior of the simulated fault which 
is globally more unstable than the DR model, for the same adopted constitutive and model parameters and 
initial conditions. In particular, it predicts a more abrupt stress drop [see also Bizzarri and Cocco, 2003] and a 
faster dynamics. 

This is confirmed by comparing Figures 4 and 7; in the reference cases (black curves) the unperturbed Tcycle 
is now 138 yr (instead of 170 yr for the DR constitutive model). Correspondingly, the value of traction reached 
after the instability remains higher in this case and therefore the interseismic restrengthening phase is shorter 
(compare Figures 4c and 7c). 

In contrast to the DR case (Figures 4 and 5), when the spring–slider is governed by the RD governing model 
it is less affected by the temporal variations of the length scale. Indeed, this occurs because the slider is more 
unstable than that governed by the DR friction law and because the state variable evolves faster. By introducing 
a variable L we still observe a reduction in the inter–event time (we now have Tcycle = 136 yr for model (3) and 
Tcycle = 134 yr for model (4)), but the variations with respect to the reference case are now only about 1.45 % and 
2.9 %, respectively. This is due to the fact that the minimum value of slip velocity (see Figure 7a) is practically 
unchanged in the three cases and that the traction exhibits a very small variation in its minimum value (see 
Figure 7b). As a consequence, the interseismic fault restrengthening stage is very similar in all cases and it takes 
roughly the same times (with the feeble differences of 2 and 4 yr mentioned above).  

Things tend to change for increasing values of Lref. When Lref  = 1 cm (Figure 8) the slider, which now starts 
with 𝜅ref  = 0.37, leaves the quasi–static evolution, enters into the dynamic range (we recall that this occurs for 
v > vc = 0.01 mm/s; see section 3.2), and ‒ due to the intrinsic high degree of instability guaranteed by the RD 
model ‒ it enters in the stable range (𝜅 > 1) for both models (3) and (4). Indeed, it is able to significantly 
penetrate the stable range (for v > vCS; see equations (11) and (12)) and finally it generates seismic instabilities 
(for v > vl = 0.1 m/s; see section 3.2). We emphasize here that with the DR governing model, for Lref  = 2 mm, 
model (4) does not allow the system to exceed vl (see blue curve in Figure 6a). 

With the RD law and Lref  = 1 cm the variations of L are so relevant (see also Figure 2) that the slider is 
significantly affected by them. Now the system continues to reach its limiting cycle, but the inter–event time 
changes from 125 yr for the reference case to 96 yr and 55 yr for models (3) and (4), respectively (so that the 
variation is about 23.2 % and 56 %, respectively). Indeed, in this configuration the maximum slip velocity is 
reduced (especially for model (4); see Figure 8a) and also its evolution in the low velocity range is markedly 
changed. In the same line, there is a severe reduction of the stress release (see Figure 8b), so that the fault takes 
less time to recover its strength (see Figure 8c). 

⎧  ⎨ ⎩ 𝛹 = ‒           ln �         �
𝜏 = �𝜇* + 𝑎 ln�     � +𝑏 ln�        ��𝜎����𝑣 𝑣*

𝛹𝑣* 𝐿d d𝑡 𝛹𝑣 𝐿 𝛹𝑣 𝐿
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Figure 5. Results for DR model, again with Lref = 1 mm. Time evolution of slip velocity (panel (a)) and of the state variable 
(panel (b)) focused on the first instability. In both panels the insets report the whole seismic cycle of the fault. 
In panel (a) the relevant values of slip velocity are reported, as in Figure 4c. 
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Figure 6. Results for DR model, but now for Lref = 2 mm. (a) Time evolution of slip velocity. (b) Time evolution of traction. 
(c) Phase portrait. Note that now both models (3) and (4) predict that the system can enter into the stable regime; 
indeed, in this case we have: vCS = 7.83 x 10-3 m/s and vCS = 5.87 x 10-3 m/s (equations (11) and (12), respectively). 
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Figure 7. Results for the Ruina-Dieterich governing model (equation (14)) for Lref = 1 mm (as in Figures 4 and 5 for the DR 
law). (a) Time evolution of slip velocity. (b) Time evolution of traction. (c) Phase portrait. Only model (4) predicts 
that the system enters in the stable range.
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Figure 8. The same as in Figure 7, but now for Lref = 1 cm. In this case both models (3) and (4) cause the system to enter 
in the stable range, since vCS = 3.54 x 10-3 m/s and vCS = 1.05 x 10-3 m/s (equations (11) and (12), respectively).
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6. Discussion and conclusions 
 
We have proposed two analytical models to fit laboratory data performed by Mair and Marone [1999]; see also 

Leeman et al. [2018]. These friction experiments indicate that the scale length L ‒ which controls the state variable 
evolution within the context of the rate– and state–dependent governing models [Ruina, 1983] ‒ is not a property 
which depends only on the type of material, but it also depends on the sliding speed (formally on the fault slip 
velocity). At a more fundamental level, in a dynamic model of faulting processes, the scale length definitively is 
one of the most relevant physical parameters, in that it controls the whole dynamics of the system, in terms of time 
scales of the stress release, amount of slip developed during an instability event, fracture energy density spent to 
break a new portion of the fault (and thus it also controls the seismic wave radiation).  

We have shown (see Figure 1) that experimental data can be fitted both with a logarithmic form (model (1)) and 
with a power law form (model (2)). We extend these models outside the range of sliding speeds explored in laboratory 
experiments by postulating models (3) and (4); see Figure 2. We incorporate these proposed models into two 
different analytical expressions of the rate– and state–dependent friction laws, the Dieterich–Ruina (DR) model 
(equation (13)) and the Ruina–Dieterich (RD) model (equation (14)). Then we solve the elastodynamic problem for 
a single, isolated, 1–D spring–slider model (namely, a harmonic oscillator). 

We want briefly to reiterate that this analog fault model is not the state–of–the–art, nor the more sophisticated 
way to describe the true behavior of an extended, potentially non planar fault embedded in a continuous medium, 
where heterogeneous properties can come into the game. Nevertheless, it has the great advantage to make it possible 
to simulate an entire seismic cycle (i.e., several Myr) of a fault with very limited computational resources and in very 
short computational times [Tse and Rice, 1986; Boatwright and Cocco, 1996; Gomberg et al., 1997; Bizzarri, 2012c]. 
An intermediate level of complication (in between the two end members of 1–D system and truly 3–D extended fault 
models) is represented by the model proposed by Burridge and Knopoff [1967], consisting in multiple masses linked 
together by springs with different elastic constants to model the spatial heterogeneities of the host rocks [Huang 
et al., 1992], neglected by definition on the case of a single mass–spring model. In a separate study we will explore 
the role of variable L in a more realistic 3–D setting, where the two modes of shear rupture (mode II and mode III 
are coupled together).  

We conduct a large class of simulations, where we adopt various values of reference scale length, by assuming 
typical values expected for real–world fault [e.g., Marone and Kilgore, 1993]. In our models we do not change the 
value of the normal stress 𝜎n

eff, although we know that dynamic perturbations of the effective normal stress acting 
on the fault (as well as bi–material effects, free surface interactions, thermal pressurization of pore fluids) can 
significantly affect the energy balance and thus ultimately the rupture dynamics, [e.g., Nielsen et al., 1998; Oglesby 
et al., 1998; 2000; Bizzarri and Cocco, 2006a; 2006b; Rubin and Ampuero, 2007; Scala et al., 2017; 2019]. Indeed, 
temporal variations of 𝜎n

eff, potentially coupled with variations of L, can further contribute to affect the stability 
condition of the system, since both parameters enters in the critical stiffness kc (see equation (10)). Due to the non 
linear nature of the system, even in the simplified 1–D idealization assumed here, it is not possible to a priori predict 
how these mutual variations can change the behavior of the system. Incidentally, we recall here that the effect of 
variation of 𝜎n

eff have been reported in Bizzarri [2012b] again with a mass–spring model.  
The numerical experiments presented in this work clearly demonstrate that the introduction of a variable L 

significantly affects the dynamics of a fault. Namely, we observe that, with a variable scale length: 
   I. the cyclicity of the system is not destroyed, in that the slider is able to enter in its limit cycle and therefore 

the recurrence time remains constant through time;  
  II. with respect to the reference case (where L does not vary and equals Lref over the whole duration of the 

seismic cycle) the events have lower magnitude, in that the amount of slip developed and during each 
instability is lower compared to the reference case; 

III. the stress release (namely, the difference between the peak traction and the residual traction after the total 
release) is reduced compared to that typical of the reference configuration. This result is important, since the 
stress release is connected to the emitted energy. Indeed, we know that in an extended model the size of the 
cohesive zone (i.e., the region of the fault where the stress drop is accomplished) is directly controlled by the 
length scale (either d0 of L in the contexts of the slip–dependent laws of in the framework of the rate and state 
friction). Moreover, it is also well known that that the increasing slip rate is connected to the rupture at which 
the rupture front advances and to a shrinking of the cohesive itself [e.g., Bizzarri and Das, 2012] and this 



finally reflects into an increase of the frequency content of the emitted seismic radiation. At the present 
knowledge, it is not clear how potential temporal variations of L during the propagation of an extended 
rupture can affect the size of the cohesive zone and thus the seismic energy. This would be the subject of a 
separate paper in preparation; 

IV: the minimum values of the slip velocity attained at the end of the deceleration phase are higher; 
 V: the inter–event time Tcycle (see equation (8)) is reduced. The variation can even exceed 50 % of the reference 

cycle time; this is a natural consequence of previous results iii) and iv); 
VI: the velocity–weakening regime (b > a) and the initially unstable behavior (𝜅 < 1) is not more a sufficient 

condition to obtain dynamic instabilities; the variations of L can produce 𝜅 > 1 during the motion of the 
slider and therefore, deepening on Lref and on the assumed governing model, the accelerating phase can be 
impeded and failure event can abort. 

 
These conclusions hold also for other values of model parameters, such as a and b (not shown here for brevity). 

Our numerical simulations show very clearly the behavior of the system. The external load 𝜏� causes a gradual 
increase of the sliding speed 𝜈, which in turn affects L, that starts to becomes larger than Lref . This time level is 
indentified by the vertical lines in Figure 9 (red and blue color for models (3) and (4), respectively). Starting from 
this time the evolution of the state variable departs from its natural, reference behavior (see Figure 9b). The system 
then undergoes toward the instability, by exceeding the quasi–static limit of vc = 0.01 mm/s (see Figure 9a); it enters 
into the dynamic regime, characterized by an accelerating phase. This causes the most relevant variation of L (see 
Figure 9c). This variation changes the value of the critical stiffness (equation (10)) and can even cause 𝜅 (equation (9)) 
to be greater than unity. In other words, the accelerating system — which started from an inherently unstable regime, 
due to the assumed model and constitutive parameters — spontaneously enters into the stable range (𝜅 > 1; 
see section 3.3). At this time v > vCS (equations (11) and (12) for models (3) and (4), respectively); this time instant 
is denoted by big symbols in the inset of Figure 9c. Due to the high degree of instability of the system (guaranteed 
by the assumed RD model), in this case the accelerating phase continues, the slip velocity reaches its peak and 
finally starts to decelerate. This results in a decrease in L (see Figure 9c) and consequently in 𝜅. At a given time the 
stiffness ratio becomes again lower than unity (or correspondingly the slip velocity returns again to values lower 
than vCS); this time level is denoted by the right vertical segments of the rectangles in Figure 9. Finally, L equals Lref 
again, because the fast deceleration of the system makes v very low (Figure 9a), and the state variable dumps into 
the new steady state condition (panel b); see also Bizzarri and Cocco [2003]. The coseismic phase is completed and 
then the intersesimic phase begins, leading to a further instability event. 

In this paper we have seen that the time variable L does not prevent the fault to reproduce the so–called 
characteristic earthquake (CE). This concept, which of course is inherently attractive, is routinely employed in 
probabilistic hazard analysis and in building codes. Moreover, although its physical meaning has been scrutinized 
and widely criticized [Bizzarri, 2012c], the concept of recurrence time often founds the framework of earthquake 
prediction. Indeed, it has been demonstrated that several physical phenomena can destroy the concept of CE; the 
pore fluids thermal pressurization [Mitsui and Hirahara, 2009], wear processes [Bizzarri, 2010], porosity and 
permeability evolution [Mitsui and Cocco, 2010; Bizzarri, 2012b], time variations of parameters a and b due to 
temperature–dependence [Bizzarri, 2011b]. Although the cyclicity of the system survives with both model (3) and 
(4), the variations of L shed light on the fact that it would be impossible to a priori predict the exact value of the 
recurrence time. Indeed, a recent study [Barbot et al., 2012] suggested an analytical expression for Tcycle, which is 
postulated to depend on coseismic (vco) and interseismic (vinter) slip velocities: 
 

              
(15)

 
 
While vco can be estimated roughly in 1 m/s, vinter is unpredictable and strongly depends on the value of Lref and 

on the assumed friction model, as we have clearly shown. 
To summarize, we have demonstrated that, independently of the assumed parameters and on the adopted friction 

model, the velocity–dependence of the scale length is able to produce significant modifications to the reference 
behavior even of a simple, idealized fault model, such as the spring–slider system. 

 

𝑇����� = ln�          �. (𝑏‒𝑎)𝜎���� 𝜏�₀ 𝑣�� 𝑣�����
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Figure 9. Time evolution of the slip velocity (panel (a)) and of the state variable (panel (b)) in the case of RD model with 
Lref = 1 cm (as in Figure 8). Panel (c) reports the corresponding evolution of L as given by models (3) and (4) (red 
and blue curves, respectively). The time interval focuses on the first instability of the system. Vertical lines 
indicate the time level at which L starts to depart from Lref . Rectangles mark the time interval in which the slider 
remains in the stable range (i.e., when 𝜅 > 1 or analogously when v > vCS). Panel (a) also recalls the extension of 
the quasi–static and dynamic regimes (discriminated by the value of vc = 0.01 mm/s) and the seismic range (for 
v > vl = 0.1 m/s; see section 3.2 for details). The inset in panel (c) is a zoom of L indicating the portion of its 
evolution which corresponds to the stable range (the big symbols in this plot denote the first computed values 
of L that give 𝜅 > 1).
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