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Abstract

An attenuation relationship model belonging to a region with a high earthquake hazard is important. 
It is used for engineering studies to know how the peak ground acceleration (PGA) value depends 
on the distance where there are no stations. This study used earthquakes with magnitudes greater 
than 4 that IzmirNET recorded between 2009 and 2017 to determine the PGA through an artificial 
neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS), which are widely 
applied in engineering seismology studies. For this purpose, 2925 records from 62 earthquakes were 
analysed in the ANN and ANFIS applications. Magnitude, focal depth, hypocentral distance (Rhyp), 
and site conditions comprise the inputs, and PGA values are the outputs. Using the Karaburun 
earthquake, we compared the ANN and ANFIS models using different ground motion prediction 
equations (GMPE) and the appropriate criteria. We determined the proximate values to PGA values 
measured at IzmirNET stations of the Karaburun earthquake, which was M = 6.2 in 2017, were used 
to test the ANN and ANFIS. The results were examined and indicated that the ANN and ANFIS are 
good candidates for obtaining PGA values for future earthquakes in the studied area. In addition, 
the PGA values of subsequent earthquakes can be calculated more quickly without any preliminary 
evaluation using an ANN and ANFIS.

Keywords: Peak ground acceleration (PGA); Artificial neural network (ANN); Adaptive neuro-fuzzy 
inference system (ANFIS); Ground motion prediction equations (GMPE); Izmir-Western Turkey

1. Introduction

It is essential to know the properties of earthquake ground motion for engineering design and construction. 
PGA analysis is one of the commonly used approaches to estimate ground motion parameters for seismic hazard 
assessment. The PGA is used to define the behaviour of the ground motion at the time of the earthquake. Generally, 
regression analysis estimates PGA values using earthquakes that have already occurred in the region. Using Ground 
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Motion Prediction Equations (GMPEs) in PGA estimations has some advantages and disadvantages depending on 
certain assumptions based on parameters. GMPEs give an estimated PGA instead of the actual PGA value in places 
with no station network. However, these estimations based on different parameters determined by regression 
analysis may give inaccurate results in terms of using some ambiguous parameters while giving the distance-
dependent PGA value. In regression analysis, PGA is usually calculated as a function of independent variables such 
as hypocentral or epicentral distance, magnitude, local site conditions, path, and fault type [Douglas 2003]. As an 
evaluation process, these independent variables cause to describe the source parameters of ground motion, both 
physical properties and some uncertainties arising from the calculation. The coefficients of the regression equation 
are directly affected by the heterogeneity of the independent variables. For these reasons, GMPEs have some limits 
in predicting the PGA values. Therefore, different techniques and methods have been applied to overcome the 
deficiencies in PGA estimation. To close the gap in this area, many researchers have begun applying artificial 
neural networks to earthquake engineering for seismic risk assessment.

Artificial neural networks (ANNs) are one of the nonlinear data tools used for modelling complex relationships 
between inputs and outputs. As an ANN is not defined as a form of a particular equation, it can find solutions or in-
vestigate relationships among nonlinear and complex interactions of variables given as input and output datasets. 
The actual dependence is established in an ANN directly from the data and can be used as a model for the selection 
of simple functional forms [Pozos-Estrada et al. 2014; Thomas et al. 2016]. ANN studies are also widely used to 
manage the Earthquake Early Warning System and the seismic risk studies, particularly emergency management 
and hazard preparedness [Panakkat and Adeli, 2008; Adeli and Panakkat, 2009; Rafiei and Adeli, 2017]. Kaftan et al. 
[2017] applied an ANN and ANFIS to process earthquake catalogue data of Western Turkey.

Derras and Bekkouche [2011] applied an ANN to predict PGA values using the KiK-net seismic database in Ja-
pan. They also applied GMPEs to the same data set to compare the results obtained from two methods. Kerh and 
Ting [2005] estimated PGA at the railway line in Taiwan by using different combinations of epicentral distance, 
earthquake magnitude, and focal depth of the input layer and compared their results to microtremor measure-
ments. Güllü and Erçelebi [2007] used strong motion data on Turkey to define attenuation relationships with an 
ANN. García et al. [2007] developed the ANN model in the Mexican subduction zone using magnitude, epicentral 
distance, and focal depth as input parameters. Pozos-Estrada et al. [2014] also studied to determine PGA and 
pseudo-spectral accelerations with Mexican subduction earthquakes. Günaydın and Günaydın [2008] applied three 
different ANN models to determine the PGA values   by taking advantage of the earthquake records in the Marmara 
Region. Derras et al. [2012] used the ANN model on earthquake data from Japan’s KiK-net using moment mag-
nitude, epicentral distance, time-averaged shear wave velocity, fundamental frequency, and focal depth as input 
parameters. In addition to ANN studies in predicting PGA, ANFISs also have been applied for the same purpose. 
ANFISs combine the learning abilities of an ANN and the reasoning abilities of fuzzy logic to provide enhanced 
prediction abilities in Thomas et al. [2016]. An ANN and a randomized adaptive neuro-fuzzy inference system 
(RANFIS) were used for predicting the parameters of ground motion as PGA, PGV (peak ground velocity), and PGD 
(peak ground displacement). Ahumada et al. [2016] used recent earthquake records from the USA and Taiwan with 
magnitudes of 5 or greater to derive attenuation relationships for PGA with fuzzy logic. Raghucharan et al. [2019] 
applied an ANN to predict ground motion model for the Himalayas and Indo-Gangetic plains. Das and Chakrabort-
ty [2021] developed an ANN models for predicting one of the important ground vibration parameter, PGA, besides 
the peak particle velocity (PPV).

This study aims to develop the PGA estimation models for Western Turkey by using ANN and ANFIS methods. 
Magnitude, distance, site conditions, and the focal depth of the earthquakes recorded by IzmirNET [Gok et al., 
2014] were used as inputs to predict PGA. To evaluate the performance of the ANN and ANFIS in predicting PGA, 
the dataset of the Karaburun earthquake was used as test data. Also, the obtained results of the two methods were 
compared with the results of the classic GMPE approach. The results of all datasets showed that the ANN and AN-
FIS gave reasonable solutions in predicting PGA for Western Turkey. The obtained results indicate that the ANN 
can catch the trend of the recorded PGAs. This approach seems to be a promising alternative to describe earth-
quake events despite the limited observations and qualitative information of geotechnical site conditions of the 
recording stations, which leads to the reasoning of a partially defined behaviour.
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2. IzmirNET strong-motion network

The data used in this study was recorded by IzmirNET in Izmir and its environs. Figure 1 shows the study area 
included using earthquakes and stations. The IzmirNET strong-motion network consists of 19 stations equipped 
with three-component digital accelerometers. The study dataset consists of 2925 records. The hypocentral distances 
for the selected records vary between 10 km to 400 km, and only events with a moment magnitude Mw ≥ 4 are con-
sidered. The distribution of the data concerning the focal depth, hypocentral distance, and moment magnitude (Mw) 
is given in Figure 2. Values of moment magnitudes are mostly changed between Mw = 4 and Mw = 5.3. The depth 
of the events ranged from very shallow to about 30 km. The greatest event occurred on July 20, 2017 (Mw = 6.5; 
depth = 19.44 km) and the other events were selected to include a broad spectrum of cases in the testing database.

Figure 1.  Topography and principal tectonic units of Western Anatolia. The stations of IzmirNET are shown with solid 
blue triangles. Epicenter of the events analyzed in this study were indicated by solid circles. Provincial centers 
in the surrounding area are also indicated on the map. (Inset Map: box denotes the study area and AS: Aegean 
Sea; BS: Black Sea; MS: Mediterranean Sea; NAF: North Anatolian Fault; EAF: East Anatolian Fault). This image 
is created using GMT software [Wessel et al., 2013].
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Figure 2.  Distributions of the IzmirNET data used in the present study as a function of (a) moment magnitude (Mw) and 
focal depth and (b) moment magnitude and hypocentral distance.

3. Materials and methods

3.1 Artificial neural network (ANN)

An ANN, popularly known as a neural network, is a computational model that has been created with inspiration 
from biological neural networks. The fundamental unit of computation in an ANN is called a neuron, a node, or a 
processing element.

A multilayer perceptron neural network (MLPNN) is one of the most applied neural networks and has many 
application areas ranging from medicine to engineering. The network comprises an input layer, one or more hid-
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den layers, and an output layer. Synaptic weights provide the connections between all the network components. 
A backpropagation algorithm regulates the mentioned weights to get a nonlinear mapping. The output of the jth 
neuron in the hidden layer is given by:
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where 𝑥𝑖 represents the input vector, 𝑤𝑗𝑖 shows the synaptic weight between the input 𝑖 and the neuron 𝑗, 𝑦𝑗 rep-
resents the output of the jth neuron, 𝑏𝑗 is called as bias, and 𝑓(𝑣) shows the activation function. The sigmoid and 
the hyperbolic tangent functions are the most preferred activation functions in ANN applications. The sigmoid 
function is given as:
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where 𝛼 is the slope parameter of the function each neuron in the network generally includes a nonlinear differ-
ential activation function.

A supervised neural network – MLPNN is one of the well-known ANN types – is trained with the input and 
matching output set. The backpropagation algorithm for training the network is based on the steepest descent 
gradient method applied to minimize a defined energy function related to the instantaneous error between the 
actual and desired output. The energy function to be minimized can be given as:
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where 𝑑𝑘 shows the desired network output vector for the 𝑘th input pattern and 𝑦𝑘 represents the actual output 
vector for the 𝑘th input pattern of the MLPNN given by Figure 3. The learning rule for a network weight adaptation 
in any one of the network layers using the steepest-descent gradient approach is given by:
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where 𝜇 represents the learning rate parameter, which is greater than zero, 𝑠 = 1,2,3 gives the corresponding layer 
numbers, 
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 determines the difference between the current and previous weight for the corresponding layer 
s. For the obtained weight formulations [Haykin, 1994; Ham and Kostanic, 2000], the network is trained until it 
reaches a predetermined accuracy level to produce correct responses for the training patterns. A separate data set 
is applied to the network after the training phase to test the network’s performance.

3.2 Adaptive neuro-fuzzy interference system (ANFIS)

Jang [1993] developed ANFIS in the early 1990s. This method has been applied in various fields, from chaotic 
time series to signal processing studies. The developed ANFIS model generally uses the hybrid learning algorithm. 
It takes advantage of both structures as it integrates ANN and a fuzzy logic inference system. ANFIS can be accept-
ed as a basis for generating a set of fuzzy if-then rules with proper membership functions to generate the stipulated 
input-output pairs. In this study, a hybrid learning algorithm was applied for fuzzy inference system parameter 
identification. A given dataset is emulated for training fuzzy inference membership function parameters by com-
bining the least-squares and the backpropagation gradient descent methods.
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3.3 Applications of ANN and ANFIS

This study developed ANN and ANFIS models to predict the PGA for Izmir and its surroundings. For this pur-
pose, earthquake magnitude, focal depth, hypocentral distance, and site conditions are used as input parameters to 
develop the PGA prediction model. The first variable is the moment magnitude of the earthquakes, and the range 
of Mw is from Mw = 4 to Mw = 6.5. The second variable, hypocentral distance, ranges from 10 km to 400 km for this 
study. The focal depth of the recorded earthquakes changes between 5 km to 30 km as the third variable for this 
study. All events were recorded at alluvial deposits, sandstones-mudstones, limestones, and volcanic-andesite 
[Gok et al. 2014]. Therefore, four site condition classes were used as a defined rock (site-A), stiff soil (site-B), soil 
(site-C) and soft soil (site-D) as the fourth variable.

The 2925 records of IzmirNET stations were divided into two parts: 80% for training (corresponding to 2340 
records) and 20% for testing. The optimum network structure for ANN training sessions was obtained after trying a 
different number of hidden layers. Various combinations were also applied to find the optimum number of neurons 
in these layers. After these experiments, the optimum network structure was determined to be an ANN with two 
hidden layers consisting of 50 and 20 neurons, respectively. The most reasonable result was obtained for the learn-
ing rate parameter 0.01. To evaluate the accuracy of the obtained results, the correlation coefficients and network 
error were analyzed. The correlation coefficient (R) is defined as:
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where X𝑖 represents the observed PGA value at the 𝑖th record, Y𝑖 is the predicted PGA value at the 𝑖th record, and 
N is the total number of records. As shown in Figure 4 for ANN applications, the correlation coefficients between 
observed and predicted PGA values for training and test sets are obtained as 0.7859 and 0.7761, respectively.

Figure 3. Multi-Layer Perceptron Neural Network structure.
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Similar to ANN applications, the same training and test data set was used to estimate PGA values in the ANFIS 
model. As in the previous stage, we used four input parameters to apply to the ANFIS model. These are magnitude, 
hypocentral distance, focal depth, and site conditions. The same dataset used in previous steps was figured out by 
using various membership functions. Along the training process, different numbers of rules were tried, and the 
best results were estimated with two. The triangular membership function yielded more satisfactory results than 
the other membership functions. Similarly, the accuracy of the obtained results is analysed with the correlation 
coefficients (equation 5). The reasonable results for training and test set are obtained as 0.7552 and 0.7426, respec-
tively (Figure 5).

Figure 5.  Observed versus predicted PGA (g) relationships by the ANFIS model during training, and testing data sets. The 
diagonal dotted line (Y = X) indicates the ideal fit condition.

Figure 4.  Observed versus predicted PGA (g) relationships by the ANN model during training, and testing data sets. The 
diagonal dotted line (Y = X) indicates the ideal fit condition.
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The root mean square error (RMSE) is calculated as follows:
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where X, Y, and N show observed PGA value at the 𝑖th record, the predicted PGA value at the 𝑖th record, and the total 
number of records, respectively. RMSE values between observed and predicted PGA values for training and test sets 
are obtained as 0.4235 and 0.5726 according to ANN results. In the ANFIS applications, RMSE values for training 
and test set are obtained as 0.4765 and 0.6091 (equation 6).

It can be said that the ANN gives comparatively higher correlation coefficient values with a reasonable error 
percentage. When the acquired results are examined, both an ANN and ANFIS can be successfully applied to esti-
mate PGA (Table 1).

Models
RMSE R

Training Testing Training Testing

ANN 0.4235 0.5726 0.7859 0.7761

ANFIS 0.4765 0.6091 0.7552 0.7426

Table 1. RMSE and correlation coefficient (R) ratios of the training and testing results of the ANN and ANFIS models.

4. Results and discussions

We compared our results of ANFIS and ANN methods to six different GMPEs. The reasons for choosing them 
are the similarity of magnitude ranges, distance, or study area. To analyze the ANN and ANFIS applications, the 
Karaburun earthquake was used as test data to estimate PGA values for all site types. The GMPEs proposed are 
from Ambraseys et al. [1996], Sadigh et al. [1997], Lussou et al. [2001], Berge-Thierry et al. [2003], Kalkan and Gül-
kan [2004], and Akyol and Karagöz [2009]. GMPEs from Ambraseys et al. [1996] were derived from Europe, Middle 
East database that lower limit of magnitude is equal to 4.0, last 200 km for distance, and use four site conditions 
at first but retain three. The second model was proposed by Sadigh et al. [1997]. It is the same as Ambraseys et al. 
[1996] regarding distance dependence and magnitude, but its region is the Western USA (United States of America) 
and used rock and deep soil as site condition parameters. GMPEs from Lusso et al. [2001] were derived from the 
Japanese Kyoshin network and used magnitude and hypocentral distance ranges between 3.5 and 6.3 and 10 km 
and 200 km, respectively. This model uses four site classes that are defined by the shear-wave velocity in the upper-
most 30 m. Berge-Thierry et al. [2003] operated with European and US data to obtain a ground motion model using 
4.0 < Ms, hypocentral distance 4 < Rhyp < 330 km, and site condition parameter rock and alluvium. Kalkan and 
Gülkan [2004] studied Turkish data with a magnitude greater than 4, a Joyner-Boore distance [Joyner and Boore, 
1993] range of 1 < Rjb < 250 km, and three site classes to define the region. The ground motion model of Akyol and 
Karagöz [2009] is the most appropriate study of the parameters that we should express in our study area. For the 
regression analysis, they selected earthquakes from Western Anatolia with four site classes, a magnitude greater 
than 4, and hypocentral distances ranging between 15 km and 200 km.

Figure 6 compares six fitted relationships to PGA data from the strongest earthquake of the study area recorded 
on site A and site D, five fitted curves on sites B and C. The earthquake that occurred on 12.06.2017 at 12h28 is 
called the Karaburun earthquake. The depth and moment magnitude of the Karaburun earthquake are h = 15.9 km 
and Mw = 6.2, respectively, and it has a normal faulting mechanism. Source parameters of the Karaburun earth-
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quake are taken from the Disaster and Emergency Management Presidency [AFAD, 2017]. The hypocentral distance 
range of the stations to the earthquake is between 58 km and 96 km.

Theoretical attenuation relationship models and PGA values measured for the Karaburun earthquake were 
compared. Attenuation relationship models that are used, such as magnitude and distance, are also considered. 
Selected models can be used for the Karaburun earthquake as a criterion. In terms of size and distance conditions, 
these models provide the validity conditions of the models. Model graphics in Figure 6, Berge-Thierry et al. [2003] 
are not included in types B and C, although they are prepared according to five different ground classes. The lines 
in the graphs are the curves of theoretical attenuation models produced by different authors in different years, as 
mentioned before. Triangles are the peak acceleration values of the Karaburun earthquake measured by IzmirNET 
strong-motion stations. The stations are classified in different colors according to the results obtained from the 
previous studies and the characteristics of the site where they are located [Gok et al., 2014]. The vertical axis rep-
resents the PGA values, while the horizontal axis indicates the hypocentral distance.

Site A: It can be seen that the estimation obtained with Lussou et al. [2001] overestimates the response for the 
event. The other relationship equations closely estimate the PGA of the event. The actual PGA values at stations 
are shown with triangles. The ANN shows accurate results at this distance and for this site. ANFIS presents coher-

Figure 6.  Investigation of 12.06.2017 12h28, Mw=6.2 Karaburun Earthquake to compare the GMPEs, ANN and ANFIS 
(purple and pink curves, respectively) results for different sites. GMPE abbreviations are Sadigh_97: Sadigh 
et al. 1997, K&G_2004: Kalkan and Gülkan 2004, A&K_2009: Akyol and Karagöz 2009, B-T_2003: Berge-Thierry 
et al. 2003, Lussou_2001: Lussou et al. 2001, Amb_1996: Ambraseyyes et al. 1996.Different colored triangles 
represent different stations which are deployed various site conditions; purple triangles indicate volcanic-an-
desite, green ones indicate limestones, blue triangles indicate sandstones-mudstones, and gray triangles indi-
cate alluvial deposits (Gok et al. 2014).
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ent results the same as ANN. According to others, the ANN and ANFIS give low PGA values at 10 and 100 km of 
hypocentral distance. Unlike the ANFIS, which started to decrease after about 100 km, the ANN suddenly dropped 
after 200 km.

Site B: For this site, the condition results of the ANN and ANFIS are higher than expected for rock the site. When 
the equation of Lussou et al. [2001] gives exaggerated results, the relationships of the ANN and ANFIS approach 
other GMPEs. They are also compatible with the real PGA of the earthquake.

Site C: The PGA values measured for this site are below the theoretical models. However, studies with the ANFIS 
and ANN are more reflective of actual PGA values.

Site D: In this type of site, however, the measured values for the Karaburun earthquake are less than the theoretical 
values. The ANFIS results are closer to actual values, whereas the ANN has a lower model in D type.

As observed in the four graphs, the actual PGA values measured are well below the theoretical models. The six 
attenuation models tested give more exaggerated results than the actual PGA values measured by the seismic net-
work. However, the values obtained using the ANN and ANFIS reflect more realistic results. Based on these results, 
PGA values for the Karaburun earthquake measured by the IzmirNET accelerometer network established in the 
Izmir settlement area and the ANN and ANFIS results are more sensitive and accurate than theoretical models.

If the PGA values used in earthquake hazard studies are to be used according to the distances of the earthquakes 
that occur in and around Izmir, the above relations from the ANN and ANFIS can be used. These results need to 
be tested in different earthquakes in the case of larger magnitudes and earthquakes nearer to earthquake stations. 
The model derived from Western Anatolia also gives closer solutions.

5. Conclusions

GMPEs provide empirical relationships between ground motion intensities and magnitude, epicentral or hy-
pocentral distance, site characteristics, etc. Generally, unknown coefficients of the earthquake parameters are 
calculated by regression analysis at process of GMPEs. With the increase in seismic stations and the sensitivity of 
the earthquake parameters, the regression models have become more complex to explain the variables. For this 
reason, the suitability of the selected parameters and the interpretability of the obtained results are of significant 
value.

In this study, PGA values belonging to the region were recorded using the ANN and ANFIS and records of earth-
quakes with a magnitude of 4 and above estimated by IzmirNET stations. When the obtained results are examined, 
it is seen that the determined PGA values are within acceptable error limits. For the two models used in this study, 
the RMSE and R ratios of both training and test results were examined. The ANN model was found to be more suc-
cessful than the second model since the correlation coefficient was higher. When we examine the RMSE values, it 
is concluded that the training and test values of the ANN model are lower than the ANFIS model, and the RMSE is 
lower. However, the RMSE and R values of both models are very close to each other because of both training and 
testing studies. This indicates the successful applicability of both models in PGA studies.

With this method, it may be possible to determine the PGA values by using the earthquake records that have 
already taken place in the region when considering the problems that may arise in the stations or the loss of data. 
New earthquakes to be added to the dataset and the sensitivity of the PGA values determined by the records of 
these earthquakes are possible.

The attenuation models of the ANN and ANFIS are completely data-driven and, without any a priori assump-
tion, are generally very close to those detailed with classic methods. The division of sites into learning and test 
datasets would play a fundamental role in developing such models. These studies testing GMPEs improve the 
predictive performance of the models.

We observed that the ANN and ANFIS have the potential to predict the attenuation of the earthquakes with 
distance and the magnitudes of the earthquakes of the Izmir area based on these comparisons. The applicable 
GMPEs for the study area were examined using data from the Karaburun earthquake that occurred in the area. As a 
result of the evaluation, when the actual PGA values recorded by the IzmirNET stations and the GMPEs obtained by 
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empirical correlations are compared, we determined that the GMPEs have overestimated the PGA values. However, 
the results obtained with the ANN and ANFIS are more realistic. Since it is important to get results quickly when 
an earthquake occurs, these ANN and ANFIS models accelerate the process and get closer to the result.

Acknowledgement. Thank you for the constructive comments provided by an anonymous reviewer who helped im-
prove this article. 
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