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Abstract. The process of disintegration is affected by a large number of operating and design
parameters which have not previously been described in detail. This paper discusses the effect of
the disintegrative surface area on the size of the operational load of a disintegration machine. This
parameter affects the operational power of the device. The paper explains the experimental process,
and describes and evaluates the measured data with mathematical functions that describe the relation
of the operational power of the devices to a selected parameter.
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1. Definition of a disintegrative
surface

It is important to prepare biomass really well for its
intended future use [1,2]. Several papers have been
written on the parameters of disintegration machines.
The significance of the monitored parameters that
influence the torque moment needed to disintegrate
material samples has been investigated. This paper
discusses experiments that have been carried out to
confirm the mathematical relations (1) for calculating
the disintegrative force [3,4], and to determine the
mathematical expressions for significant influencing
factors such as the area of the sample surface S and
the cutting-edge side rake.
Various experiments have shown the significance

of four known factors, the most significant being the
area of the cross-sectional surface S of the sample
(the cross-section that has to be break down by the
disintegrative wedge).

Before measuring this parameter, it is necessary to
define the area of the cross-section of the sample that
has to be broken down by the disintegrative wedge
in the disintegration process. Various papers on this
topic suggest that area S is calculated by multiplying
disintegration wedge width b by wedge height h. When
this disintegrative process was analyzed in greater
detail, it was found that the theory of a constant
wedge surface S is not correct. The real area of the
cross-section surface that must be broken down by
the tool wedge is defined by adding the surface areas
that arise after disintegrating the material sample.
Therefore

Sm = 2S1 + S2,

where S1 = hhm is the area defined by the side of the
wedge and S2 = bhm is the area defined by the face
of the wedge (Fig. 1). Then

Sm = 2hhm + bhm

and, after simplification,

Sm = hm(2h+ b),

where Sm is the material cross-section area that must
be broken down by the disintegrative wedge (mm2),
hm is the material thickness (mm), h is the wedge
height (mm), and b is the wedge width (mm).
This formula is relevant provided that the sample

material width H is greater than the wedge height h.
If the material sample width H is smaller than the
wedge height h, then the following is valid:

Sm = 2h1hm,

where h1 is the width of the material sample (h1 < h).

2. Experiment for determining
the influence of the
disintegrative surface area

In order to define the relation between the measured
data (torque moment Mk) and the section area of a
cut in the disintegrative material, experiments were
performed with the surface area of the cut as the only
factor that was changed. The experiment was per-
formed with five different material samples of varying
cross-sectional area. Only the thickness of the sample
material hm was varied.
Two relations were revealed. Firstly, the relation

of the torque to the area of the cross-section S of the
sample materials, and, secondly, the relation of the
torque to the thickness hm of the material sample.
The width of the sample was kept constant at 30mm,
so that the material was subjected to the whole surface
of the wedge while also overhanging the wedge in the
outward direction.
The following sample thicknesses were used: 7, 10,

12, 15, and 18mm, which are the material sizes used
for this kind of machine.

Measurements were made with Wedge 2, using the
same principles as for the previous experiments. This
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Figure 1. Illustration of surfaces used for calculating the disintegrative force.

Figure 2. Height of wedge h = 16.5mm.

wedge was used on the assumption that the measured
torque values would be in the measurement range
including thicknesses of 18mm, while Wedges 3 and 4
would result in measured values outside the measure-
ment range. This assumption was based on previous
measurements.
For each series of samples, 10 measurements were

repeated, for 5 types (levels) of samples, resulting in
a total of 50 measurements.

The surface area of the disintegrative cross-section
is calculated on the basis of the thickness of the sam-
ple, but not on the basis of the whole width, since one
portion, beneath the wedge, has already been disinte-
grated. The value was a maximum of 16.5mm (Fig. 2).
So the surface area of the material cross-section that
has been disintegrated is described by the relation
Sm = hm(2h+ b).

3. Experimental evaluation
For the measured values and their corresponding un-
certainty, see Tab. 1 (the total uncertainty is equal
to the uncertainty evaluated by the A type method),
we can write Mk1 = (166.7 ± 21)Nm, where the value
following the ± sign represents the expanded uncer-
tainty U = kuC , at which uncertainty U is deter-
mined from the total (combined) standard uncertainty

Exp. hm Sm Mk s(Mk) uA

(mm) (mm2) (Nm) (Nm) (Nm)

1 7 354.2 166.7 29.39 9.3
2 10 506 262.2 42.39 13.41
3 12 607.2 299.9 64.51 20.4
4 15 759 389.1 62.23 19.68
5 18 910.8 460.1 82.61 26.12

Table 1. Estimation of measured values and their
uncertainty calculated using an A-type method.

uC = uA = 9.3Nm, and coefficient k = 2.26 based
on the distribution t for v = 9 degrees of freedom,
and this coefficient defines the interval with an es-
timated confidence level of 95%. The same record
can also be introduced for other values of Mki, where
i = 1, 2, . . . , k (k = 5).
Figures 3 and 4 show the relation of the measured

values of torque Mk to the surface area of the sam-
ple material Sm. In order to describe this relation
mathematically, the multi-nominal third degree ap-
proximation is applied. Setting the estimation of
the multi-nominal coefficients through a least squares
method, as seen from the function, units with square
and cube values are small:

y = −103.19 + 0.9447x− (0.02449x)2 + (0.00669x)3.

In the same way, we can describe the second degree
multi-nominal (Fig. 3) and also linear approximation
(Fig. 4).

Supposing that the mathematical formula for the
calculating force has the form [3,4]

F = τSm, (1)

the linear function can be used, so formula (1) can be
rewritten to express the torque

Mk = τRSm. (2)
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Figure 3. Relation of the torque to the disintegrating surface area of the material sample cross-section of the
material sample, with second degree multi-nominal approximation.

Figure 4. Relationship of the torque to the disintegrated surface area of the cross-section of the material sample,
with a linear approximation function.

The relation between force F and torque Mk is di-
rectly proportional, so only the linear dependencies
are considered, which are shown in Fig. 4.
The linear approximation function that describes

the relation of the torque to the disintegrating surface
area of the material cross-section is

Mk = 0.5235Sm − 12.897. (3)

Formulas (1) and (3) are similar, and therefore
the presumption expressing the relation between the
material shearing strength τ and the disintegrating
surface area of the material cross-section Sm is correct.
From a physical point of view, when the disintegrating
surface area of the cross-section of the material is zero,
the torque is also zero. Therefore the mathematical
model is not third degree multi-nominal, and it is
also not linearly dependent y = a + cx, but only
the expression y = cx is used. On the basis of this

assumption, formula (1) is suitable for describing the
load during the disintegration process [5].
For various surface areas of the cross-sections, the

following torque measurements were taken [6,7,8]:
• Mk1,1, Mk1,2, . . . , Mk1,10 for Sm1;
• Mk2,1, Mk2,2, . . . , Mk2,10 for Sm2;

...
• Mk5,1, Mk5,2, . . . , Mk5,10 for Sm5.
An estimation of the torque moment value for a

given surface area of the cross-section of the material
sample was calculated as the arithmetic mean of the
correspondingly measured torques for each Sml, l =
1, . . . , 5:

Mkl = 1
n

n∑
j=1

Mkl,j .

The functional dependence of the torques Mk on
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Figure 5. Relationship of the torque to the thickness of the material sample with a linear approximation function.

the surface area of a cross-section Sm can be written
as

Mk = cSm. (4)
Mathematical model for single units

Mkl = cSml, l = 1, . . . , 5

can be written in matrix notation as

X = Aa,

where X is the matrix of input data, A is the known
matrix of the measurement plan, and a is the vector
of unknown parameters, given by

X =


Mk1
Mk2
...

Mk5

 , a =
[
c
]
, A =


Sm1
Sm2
...

Sm5

 .

It is necessary to obtain an estimation of unknown
parameter b and the uncertainties of this estimation.
Obtaining the estimation of parameter c:

â = (AT U−1(x)A)−1AT U−1(x)x, (5)

where â is the vector of the estimations of the unknown
parameters, x is the vector of the estimations of the
input parameters, and U(x) is the covariance matrix,
which is of the form U(x)

=


u2(Mk1) u(Mk1,Mk2) · · · u(Mk1,Mk5)

u(Mk2,Mk1) u2(Mk2) u(Mk2,Mk5)
...

. . .
...

u(Mk5,Mk1) u(Mk5,Mk2) · · · u2(Mk5)

 ,

where u2(Mk1), . . . , u2(Mk5) are uncertainties
of the torque, calculated by the type A method
(Tab. 1), since other uncertainties are neglected, and
u(Mkl,Mkl′), l, l′ = 1, . . . , 5, are the covariance be-
tween torques Mkl and Mkl′ .

Due to the absence of a common influence on the
measurements of torques Mkl, Mk(l+1), the covari-
ances between them can be neglected, so the covari-
ance matrix U(x) takes the form

U(x) =


u2(Mk1) 0 · · · 0

0 u2(Mk2) 0
...

. . .
...

0 0 · · · u2(Mk5)

 .

The matrix of the estimation of the unknown pa-
rameter can be calculated as

U(â) = (AT U−1(x)A)−1, (6)

where matrix U(â) is a single variable matrix

U(â) =
[
u2(c)

]
,

where u(c) is the uncertainty of the unknown parame-
ter c.

4. Conclusion
By calculating matrix relations (5) and (6) we obtain
the parameter c = 0.5 and uncertainty u(c) = 0.013.
Therefore,

Mk = 0.5005Sm. (7)

Considering practical values of c = 0.5 kNmm−1 and
u(c) = 0.013 kNmm, the uncertainty of the calculated
torque Mk by formula (4) is found to be

u(Mk) = u(c)Sm.

Comparing formulas (7) and (2), the tensile shear
strength τ of the disintegrating material is c/R (R =
0.1165m), thus τ = 4.29MPa. The table value of
tensile shear strength τ is found by [4] to be τtab =
6.7MPa.

Based on earlier experiments and from the fact that
the c/R ratio is not equal to the shear strength τ ,
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it can be hypothesized that formulas (7) must also
reflect an additional parameter γ. Therefore it is
necessary to perform further experiments, where the
influence of the cutting-edge side rake γ on the torque
moment Mk will be monitored, as well as adding a
new coefficient to the formula that will reflect the
influence of this parameter.
The same relation as is illustrated in Fig. 3 and

Fig. 4 can be made for the thickness of the material
sample hm, and the character of the torque on different
thicknesses of the material sample is shown in Fig. 5.

References
[1] Lisý, M., Baláš, M., Moskalík, J., Štelcl, O., Biomass
gasification – primary methods for eliminating tar,
(2012) Acta Polytechnica, 52 (3), pp. 66–70.

[2] Moskalík, J., Škvařil, J., Štelcl, O., Baláš, M.„ Lisý,
M.: Energy recovery from contaminated biomass, (2012)
Acta Polytechnica, 52 (3), pp. 77–82.

[3] Kováč, A., Rudolf, B. Tvárniace stroje, SNTL, Alfa,
Bratislava 1989.

[4] Lisičan, J. Teória a technika spracovania dreva.
Matcentrum, Zvolen 1996.

[5] Beniak, J., Ondruška, J., Čačko, V.: Design process of
energy effective shredding machines for biomass
treatment. Acta Polytechnica 52 (5), 2012, pp. 133–137.

[6] Palenčár, R., Halaj, M. Metrologické zabezpečenie
systémov riadenia kvality, Vydavateľstvo STU v
Bratislave 1998, ISBN 80-227-1171-3.

[7] Palenčár, R., Ruit, J.-M., Janiga, I., Horníková, A.
Štatistické metódy v metrologických a skúšobných
laboratóriách, Grafické štúdio Ing. Peter Juriga,
2001,ISBN 80-968449-3-8.

[8] Jarošová, E. Navrhování experimentů. Česká
společnost pro jakost, 1997.

5


	Acta Polytechnica 54(1):1–5, 2014
	1 Definition of a disintegrative surface
	2 Experiment for determining the influence of the disintegrative surface area
	3 Experimental evaluation
	4 Conclusion
	References

