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Abstract. An optimization method consisting of two evolutionary optimization algorithms and
a solver using nonlinear aerodynamics is applied to the design of a low-speed wing. The geometric
parameterization of the wing uses standard geometric quantities commonly used for describing the wing
geometry. The method seems to provide good reliable results with low computer capacity requirements.

Keywords: aerodynamic optimization; evolutionary algorithm; low-speed wing.

1. Introduction
With the use of new manufacturing technologies, espe-
cially technologies with composite materials, conven-
tional and well-proven wing shapes (usually trapezoids
or combination of trapezoids) can be abandoned, and
complex three-dimensional geometrical shapes can be
applied, even for light and general aviation aircraft.
A wing can now be designed more closely according to
aerodynamic requirements. The shapes of the wings
of advanced sailplanes can serve as demonstrative
examples [1, 2].
New optimization techniques connected to more

precise, more accurate and faster aerodynamic solvers
are leading to wings optimized according to several
aerodynamic criteria in relatively broad ranges of
geometric parameters.

Evolutionary algorithm methods suitable for multi-
criterion optimization have been developed over a
considerable period of time. Microevolutionary algo-
rithms provide welcome computational-time savings
together with an acceptably substantial scan of multi-
dimensional design space. Methods are now also avail-
able for computing the aerodynamic characteristics
of wings that provide sufficiently accurate results for
geometrically complex low-speed wings, and that are
at the same time very quick. The necessary param-
eterization of the geometric shape of the wing uses
conventional geometric parameters widely used in the
technical description of a wing, rather than mathemat-
ical parameters.

2. Optimization criteria
and constraints

In the aerodynamic optimization of a wing, some form
of minimization of the wing drag or maximization of
the lift-to-drag ratio is usually required as the main
optimization criterion. This is not sufficient for a real
aircraft wing, where many other constraints are simul-
taneously applied. Typical aerodynamic constraints
that can be used are: the minimum achieved value

Figure 1. Parameterization of the wing planform.

of the maximum lift coefficient CL max, the maximum
absolute value of the wing pitching moment coefficient
Cm, and the limit of the position of the point where
flow detachment begins.

Typical geometric constraints that can be used are:
wing area, wing span, wing aspect ratio, wing taper
ratio, wing twist, wing dihedral, wing swept angle.
The constraints can be given either as limiting values
(for example maximum acceptable twist) or as directly
required values. A prescribed kind of geometric shape
can also be required, for example a wing composed
from two trapezoids on the wing half-span.

As the Reynolds numbers along the wing span are in-
volved in the aerodynamic computations, dimensional
setting of the wing and the flight speed is preferred.

3. Geometric description
of the wing

The geometry of the wing was restricted by the fol-
lowing two prescribed requirements: area of the wing
Sw, and semispan b/2.
The leading edge (LE) and the trailing edge (TE)

of the wing were represented by a quadratic Bezier
curve [3] (see Figure 1) given by the equation

~r(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2, ~r(t) = [x, z],
(1)
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where P0 is a point at the root, P2 is a point at the tip
and P1 is the so-called control point of the curve lying
inside the triangle P0, P2, [P x

2 , P
y
0 ], which guarantees

that the curve is always convex or concave and lying
inside this triangle. The equation (1) of the curve
can be expressed with PLE,T E

0 shifted to the origin
of the coordinate system, without loss of generality.
The parametric coordinates of these shifted points are
then:

PLE, TE
0 = [0, 0],
PLE, TE

1 = [zLE, TE, dxLE, TExLE, TEzLE, TE],
PLE, TE

2 = [b/2, dxLE, TE],

where

dxLE, TE ∈ 〈xLE, TE
min , xLE, TE

max 〉,
xLE, TE ∈ 〈0, 1〉,
zLE, TE ∈ 〈0, b/2〉.

These curves with PLE, TE
0 at the origin of the coordi-

nate system are then shifted against each other along
the x-axis so that the surface of the wing is Sw. Alter-
natively, the configuration is rejected if the prescribed
surface area cannot be achieved for the given param-
eters. The wing configuration is also rejected when
there is non-decreasing local length of the chord with
an increasing z-coordinate. The local chords of the
wing are also twisted with consequent linear depen-
dency along the wing span, where the local twist angle
is given as ε(z) = z

b/2e
TIP and εTIP ∈ 〈xLE, TE

min 〉 is a
parameter describing the twist of the tip of the wing.
Overall, there are seven parameters: xLE, TE, zLE, TE,
dxLE, TE, εTIP. This parameterization includes a wide
range of realistic wing geometries, including trape-
zoidal geometries.

4. Aerodynamic description
of the wing

4.1. Airfoil sections
It is necessary to create a database of the airfoils used
on the wing in advance, because the aerodynamic
characteristics of the airfoils used on the wing and
their positions along the wingspan are used as inputs
for wing optimization. The airfoils are described by
their usual conventional aerodynamic characteristics,
i.e., by the lift curves, the drag curves and the moment
curves at different Reynolds numbers. It is very useful
to have these airfoil characteristics for the angles of
attack overrunning the angle of attack of stall by at
least two degrees.

4.2. Wing
The wing aerodynamic performance is described using
the commonly used coefficients of wing lift, wing drag
and wing pitching moment, the lift distribution along
the span, the lift coefficient distribution along the span

and the point along the span where flow detachment
begins.
The point where flow detachment begins is found

as the point where, increasing the wing angle of at-
tack, the local lift coefficient reaches the maximum
lift coefficient available at the local airfoil section.

5. Method for computing
the aerodynamic
characteristics of the wing

NLwing2 software was used for calculating the aero-
dynamic characteristics of the wing. NLWing2 is an
implementation of the nonlinear lifting line method de-
veloped at VZLU [4]. This method allows the use of 2D
viscous or non-viscous airfoil analysis (calculated e.g.,
by XFoil software or provided by wind tunnel testing)
for efficient computation of the nonlinear aerodynamic
properties of 3D wing configurations. It employs 2D
section data to build a 3D potential vortex model of
the flow. It uses a robust Euler-Newton method to
track the change in the flow vorticity quantities as the
angle of attack progresses. NLWing2 runs under the
GNU Octave system [5]. The implementation is very
effective, and is a few orders faster than alternative
CFD methods.

6. Optimization method
6.1. Evolutionary optimization
The powerful computing facilities that have emerged
in recent years have led to many practical optimiza-
tions in various areas of science and engineering. As a
consequence, various heterogeneous evolutionary algo-
rithms have appeared [6] to [12]. However, according
to their functionality, they can be described by the
following basic scheme: 1. Initialize the population by
randomly generated individuals 2. Evaluate 3. repeat
until the criterion for stopping of the optimization is
met a. choose individuals for reproduction b. apply
variation operators to the selected parents c. evalu-
ate new design candidates d. choose the best design
candidates for the next generation end of the loop
Genetic algorithms have received much attention in
the evolutionary community. Among them, the most
popular evolutionary algorithms are perhaps NSGA2,
by K. Deb et al. [13], and SPEA2, by E. Zitzler et
al. [14]. NSGA2 is widely considered to be a reference
algorithm.
The particular achievement of NSGA2 is that it is

very easy to use – it is almost parameter-less, and
is fast due to its elitist non-dominated sorting with
the crowding distance as a diversity metric. SPEA2
has an excellent diversity mechanism accompanied
by the so called Pareto-archive, preserving promising
non-dominated individuals during the evolution. A
detailed explanation of these two approaches can be
found in [13, 14].
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6.2. Differential evolution
A very promising new concept was proposed rela-
tively recently by R. Storn and K. Price [15], and
is known as the differential evolutionary(DE) algo-
rithm. Differential evolution is a simple yet powerful
means for creating promising new design candidates
via combining a parent solution with other population
members. Various implementations of the basic idea
were soon developed and, interestingly, some of them
outperformed both NSGA2 and SPEA2 on benchmark
problems.

Now let us quote the original formulation of the au-
thors. Differential evolution utilizes NP D-dimensional
design vectors

xG
i , i = 1, . . . , NP

as a population for each generation G. DE creates new
parameter vectors by adding the weighted difference
between two population vectors to a third vector. Let
this operation be called mutation. The components
of the mutated vector are then mixed with the pa-
rameters of another predetermined vector, the target
vector, to yield the so-called trial vector. This pa-
rameter mixing can be termed as a crossover. If the
trial vector has better fitness than the target vector,
it replaces the target vector. This last operation is
called selection. Each individual in the population
has to serve once as the target vector so that NP
competitions take place in each generation.
The basic DE-operators are as follows:

Mutation. For each target vector xG
i , a mutant

vector is created according to

vG+1
i = xG

ri
+ F (xG

r2
− xG

r3
)

with mutually different random indices r1,2,3 ∈
1, 2, . . . , NP and F > 0. The randomly chosen
integers r1,2,3 are also chosen different from the
running index i, so that NP must be greater than
or equal to four to allow for this condition, and F
controls the amplification of the differential vari-
ation xG

r2
− xG

r3
. It is real, greater than zero and

less than 2. In the original proposal it is constant
for the whole evolution, while our implementation
also allows it to be either constant for the current
running index of the design vector or varying with
each component of the actual individual.

Crossover. The diversity of the population can be
further increased by a crossover. The so-called trial
vector is therefore formed:

uG+1
1 = (uG+1

1i , uG+1
2i , . . . , uG+1

Di ),

where

uG+1
ji =

{
vG+1

ji if randb(j) ≤ CR or j = rnbr(i),
xG+1

ji otherwise.

Here, randb(j) is the j-th evaluation of a uniform
pseudo-random number generator with the outcome

from the interval [0, 1]. CR is the crossover constant
from [0, 1] which has to be determined by the user,
and rnbr(i) is a randomly chosen index belonging
to 1, 2, . . . , D, which ensures that uG+1

ji gets at least
one parameter from vG+1

ji .
In addition, EA1 allows vectors also to be exchanged
as a whole, and not just their components.

Selection. In the original proposal, the trial vector
is compared to the target vector using the greedy cri-
terion. If vector uG+1

i yields a smaller cost function
value than xG

i then xG+1
i is set to uG+1

i . Other-
wise the old value xG

i is retained. This scheme was
tailored for solving merely single-objective optimiza-
tion problems. Modification for the multi-objective
case was straightforward. EA1 is a Pareto-archive
oriented algorithm, therefore every trial vector is
compared to the archive. If any archive-member
dominates it, it is discarded. Otherwise it is in-
cluded into the archive.
The pseudocode of differential evolution is as fol-

lows:
(1.) Initialize the population of P design candidates
by randomly generated individuals.

(2.) Evaluate.
(3.) Repeat until the criterion for stopping the op-
timization is met: For each design vector Pi (i =
1, . . . , NP ) from P :
(a) create candidate C from parent Pi;
(b) evaluate the candidate;
(c) if the candidate is better than any of the archive
parents, it becomes a new member and replaces
it; otherwise the candidate is discarded.

(4.) Randomly enumerate the individuals in P .

6.3. The EA1 Multi-objective
evolutionary optimizer

We, too, have proposed an evolutionary optimizer,
which is called EA1 (Evolution Algorithms One), using
the crowding distance as a diversity metric, together
with the Pareto-archive for preserving non-dominated
members of the evolution. There are ideas borrowed
from the two previously-mentioned algorithms, sup-
plemented by range-adaptation, population-statistics
management and elitist-random reinitialization.

Range adaptation is a highly efficient technique for
directing the evolution towards interesting regions of
the design and criterial space, by controlling the popu-
lation statistics. The essence of range adaptation is as
follows: check the mean values and the standard de-
viations of the decision variables every k generations.
Let us denote the old (after n generations) mean-value
vector and its standard deviation as vold and σold, and
the new (after n+ k generations) mean-value vector
and its standard deviation as vnew and σnew, respec-
tively. If the i-th component of vnew differs from the
i-th component of vold by more than a certain value,
defined as ap ∗ (σold)i (ap is a user-supplied constant
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– let us call it an adaptation parameter, and (σold)i

is the i-th component of the old standard deviation-
vector), then generate the new reinitialized population
in the interval ((vnew)i−(∆vnew)i, (vnew)i−(∆vnew)i),
where ∆vnew = vnew − vold. In other words, let one
third of (∆vnew)i be the new i-th component of the
standard deviation-vector. One third is chosen, be-
cause the population is assumed to conform to the
Gaussian probability distribution, and 99.7 percent of
it is contained within the interval (−3σ,+3σ). More-
over, if the new standard deviation (σnew)i is less than
a certain prescribed scalar value σmin, then (σnew)i is
equal to σmin, to ensure that the evolution will not be
attracted toward any local optimum. As can be seen
from the above, this strategy strives to keep the evo-
lution in a permanently “excited” state by continually
perturbing it through forced modification of the pop-
ulation statistics. The values for ap usually go from
1.0 to 1.5, and σmin is mostly equal to 0.2. Therefore,
these are included as two additional parameters of the
evolution. The number of individuals included in the
population statistics ranges from the upper two to the
whole population [7].

Elitist-random reinitialization consists of putting
some (usually two) Pareto-archive members into the
reinitialized population, which is subsequently se-
lected randomly for mating. It usually utilizes micro-
populations going down to four. However, ten-member
populations are most commonly used in the evolution.
At the beginning, elitist-random reinitialization was
a multi-objective micro-genetic algorithm with range-
adaptation and elitist-random based reinitialization.
Details about our concept are given in [16]. However,
it was necessary to broaden its scope by exploiting the
new excellent features of differential evolution. After
a redesign and a great deal of experimentation with
redefining the basic DE-operators to conform with
multi-objective microevolution, the result has evolved
into a multi-objective optimizer equipped with both
genetic and differential evolution operators. The user
can now choose between these according to a simple
switch that indicates the type of evolution to be used
during the optimization. A detailed description will be
given in a paper which is currently under preparation.

The evolution starts with a population generated by
Latin Hypercube Sampling. After the evaluation, the
non-dominated individuals are put into the Pareto-
archive to update it. EA1 actually uses two popula-
tions: the first population contains only four to ten
individuals to produce new information via applying
evolutionary operators, and the second population
contains the Pareto archive. Each new individual is
evaluated by comparing it to the archive. If it is not
dominated by any archive member, it is accepted as a
new member, otherwise it is rejected. The pseudocode
is as follows:
(1.) Initialize the population of P design candidates
by randomly generated individuals through Latin
Hypercube Sampling.

(2.) Evaluate and update the archive.
(3.) Repeat until the criterion for stopping the opti-
mization is met: For each design vector:
(a) apply evolutionary operators (either genetic or
differential);

(b) evaluate and update the archive: every n gen-
erations:
i. update the population statistics,
ii. adapt the search range,
iii. reinitialize the population by elitist-random

reinitialization.

7. Example of optimizing a wing
by EA1

The method was used for optimizing a low-speed wing
for the following problem.
(1.) Geometrical constraints:

• NACA 0012 symmetric airfoil along the whole
span;

• area of the wing Sw = 16m2;
• span of the wing bw = 18m;
• the local chord c(z) must decrease monotonically
towards the tip of the wing;

• the leading and trailing edge created by the curve
are defined by (1);

• the twist is only linear from the wing root to the
wing tip, maximum twist at the wing tip 3° in
relation to the root;

• longitudinal position of the 1
4 point of the MAC

x0.25 MAC = x0.25 c root ± 0.05cMAC.
(2.) Aerodynamic constraints:

• CL max ≥ 1.25 for Re = 1.5 · 106;
• point of the beginning of the flow separation not

farther than 0.65bw/2 from the wing root to the
wing tip;

• Reynolds number is Re = 1.5 · 106 (related to
cMAC).

(3.) Optimization criteria: In the wing polar curve
diagram (relation CL = CL(CD)), to minimize the
area S (do not confuse with Sw wing area) con-
strained by:
• value CD = 0 from the left side;
• wing polar curve from the right side;
• value CL = 0.1 from bottom;
• value CL = 1.0 from the top.

(4.) The differential evolution in EA1 has been set as
follows:
• population size: 4, 10, 30;
• length of the design vectors: 7;
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Figure 2. Pareto front, CL max as a function of the optimization criterion S.

Wing S CL max Twist Separation
[°] [bw/2]

1 0.01287 1.363 0.49 0.139
2 0.01290 1.364 0.27 0.249
3 0.01292 1.365 0.27 0.249

Table 1. Three examples of optimized wings.

• the fraction of the population included in the
calculation of the population statistics: npop 1
for population sizes 4 and 10, and npop 3 for
population size 30;

• Pareto-archive size: 300;
(5.) The population was reinitialized in each genera-
tion:
• adaptation parameter ap: 1.5, σmin: 0.4;
• mutation parameter F : 10−10;
• crossover parameter CR: 0.1.

7.1. Results
It is seen that the Pareto front (Figure 2) offers many
wings which offer a low value of the drag optimization
criteria and meet the prescribed constraints. Three
examples of the optimized wing planform geometry
and twist are included in Table 1 and in Figure 3.
The aerodynamic characteristics of these wings are
given in Table 1 and in Figure 4. The optimized
shapes are generally similar to the planforms of the
wings of advanced sailplanes and motorgliders, so
these preliminary tests indicate that the method can
be used in practical applications.

It can also be seen that the Pareto front (Figure 2)
is very flat, as concerns the drag optimization crite-
rion . This means that relatively high deviation from
the optimum geometric extreme does not substan-
tially affect the wing aerodynamic performance and
the other constraints. This is a favourable result in

Figure 3. Wings 1, 2 and 3.

the sense that non-aerodynamic requirements (e.g.,
structural and manufacturing requirements) can be
broadly applied in the wing design in this case.

8. Conclusions
A method for optimizing the shape of a low-speed wing
has been developed and tested. The method combines
the new EA1 evolutionary optimization algorithm
with the proven NLwing2 aerodynamic solver, using
nonlinear aerodynamic data as inputs. The initial
tests seem to prove that the method is applicable for
the preliminary design of the wing.

List of symbols
b wing span
CD drag coefficient
CL lift coefficient
CL max maximum lift coefficient
Cm pitching moment coefficient
c local wing chord
cMAC wing mean aerodynamic chord
S value of the optimization criterion
Sw wing area
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Figure 4. Polar diagrams of the three optimized wings and of the rectangular and trapezoidal wing.

α angle of attack
ε twist angle
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