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Abstract. We study theoretical models of three coupled wave guides with a PT -symmetric
distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion.
By comparing with a previously postulated matrix model it is shown how parameter ranges with good
prospects of finding a third-order exceptional point (EP3) in an experimentally feasible arrangement
of semiconductors can be determined. In addition it is demonstrated that continuous distributions of
exceptional points, which render the discovery of the EP3 difficult, are not only a feature of extended
wave guides but appear also in an idealised model of infinitely thin guides shaped by delta functions.
Keywords: optical wave guides; third-order exceptional point; matrix model.

1. Introduction
It is a well-known fact that the spectra of non-
Hermitian quantum systems can exhibit exceptional
points of second order (EP2), i.e. branch point singu-
larities at which two eigenstates coalesce [1–3]. They
have been extensively studied theoretically [4–17] and
their physical relevance has been demonstrated in
impressive experiments [18–26].
In much rarer cases exceptional points of higher

order (EPN) are discussed [27–30]. In a matrix rep-
resentation they can be identified by the fact that
the matrix is not diagonalisable. With a similar-
ity transformation one can reduce the matrix to a
Jordan normal form, where the EPN appears as an
N -dimensional Jordan block [31]. In a third-order ex-
ceptional point (EP3) three states coalesce in a cubic-
root branch point singularity, which already turned
out to exhibit new effects beyond those of EP2s such
as an unusual chiral behaviour [28]. The exchange
behaviour of the eigenstates for circles around an EP3
shows a complicated structure. It does not in all cases
uncover the typical cubic-root behaviour [29, 32].
Of special interest in the investigation of excep-

tional points are PT -symmetric systems, i.e. systems
whose Hamiltonians are invariant under the combined
action of the parity operator P and the time reversal
operator T [33]. In these systems the exceptional
point marks a quantum phase transition, in which
real eigenvalues merge under variation of a parameter
and become complex if the parameter is varied further
in the same direction. The eigenstates of the complex
eigenvalues are not PT symmetric, this is only the
case for the eigenstates with real eigenvalues. One
speaks of broken PT symmetry, and the EP marks
the position of the PT symmetry breaking. Since the

occurrence of exceptional points is a generic feature
of the PT phase transition a large number of works
exists for PT -symmetric quantum mechanics [27, 34–
49], quantum field theories [50, 51], electromagnetic
waves [52–58], and electronic devices [59].

In these papers exceptional points of second order
have been investigated in great detail. PT -symmetric
optical wave guides, in particular, with an appropriate
coupling between them, are ideally suited to generate
higher-order exceptional points [29]. Three coupled
wave guides have already been used to theoretically
investigate the influence of loss on a STIRAP proce-
dure [60]. Klaiman et al. [61] showed that a detailed
theoretical modelling of a setup of two wave guides
predicts the occurrence of an EP2, and directly proved
it via its signatures, among them an increasing beat
length in the power distribution. Exactly this strategy
has later been used experimentally [62]. Encouraged
by these findings the model was extended by Heiss
and Wunner, who added a third wave guide between
those with gain and loss to allow for a third-order
exceptional point. They studied a simplified model
consisting of infinitely thin wave guides modelled by
delta functions [30]. In a follow-up paper a detailed
investigation of a spatially extended setup with exper-
imentally accessible parameters was used [63]. It was
shown that the system is well capable of manifesting
a third-order exceptional point in an experimentally
feasible procedure.
The purpose of this paper is to show that the es-

sential properties of the system studied in [63] can
already be found in much simpler descriptions, allow-
ing for deeper insight. The whole three wave-guide
setup can be mapped to a matrix model. In such a
matrix model an EP3 can be found in a simple manner.
However, the largest benefit is in the predictability
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Figure 1. PT -symmetric wave guide setup allowing
for the occurrence of an EP3. Three coupled slab
wave guides are formed on a background material with
refractive index n0 = 3.3 of GaAs via an index varia-
tion of ∆n = 1.3× 10−3. The middle wave guide can
exhibit an additional index shift given by the value of
nm. A gain-loss profile is introduced via the imaginary
refractive index part γ. All distances are measured in
terms of a constant length scale a = 2.5 µm via the
dimensionless parameters sm and s1,2. The variation
of the refractive index is only in x direction and obeys
PT symmetry.

of matrix structures allowing for an easy access to an
EP3. Since the influence of the physical parameters on
the matrix elements is known from the mapping, the
matrix can guide the search for appropriate physical
parameter ranges.

In [63] it was demonstrated that the EP3 of interest
is surrounded by continuous distributions of EP2s or
EP3s in the space of the physical parameters. This
effect in combination with the fact that an EP3 can
show a square-root behaviour for parameter space
circles [29, 32] renders its identification difficult. In
this paper we show that this difficulty can be studied
in the much simpler delta-functions model introduced
in [30].

The remainder of the paper is organised as follows.
In Section 2 we provide a brief introduction into the
system. The matrix model is developed in Section 3,
where we introduce the mapping of the full system
onto three modes, which can be used to search for
the best parameter ranges. In Section 4 we show the
appearance of continuously distributed exceptional
points in the delta-functions model. The central re-
sults are summarised in Section 5.

2. Three optical wave guides
with a complex PT -symmetric
refractive index profile

The starting point of our investigation is the PT -
symmetric optical wave guide system introduced in
[63]. It consists of three coupled planar wave guides on
a background material of GaAs, which has a refractive
index of n0 = 3.3 at the vacuum wavelength used in
that study. The refractive index profile is supposed
to be PT -symmetric, i.e. it possesses a symmetric
real part representing the index guiding profile and an

antisymmetric imaginary part describing the gain-loss
structure, i.e. n(x) = n∗(−x). It extends the idea
Klaiman et al. pursued for two wave guides. The
physical parameters consist of dimensionless scaling
factors sm and s1,2 used to define distances in units of
a constant length a = 2.5 µm (cf. Fig. 1) and variations
of the refractive index. The background index is
shifted by a constant value of ∆n = 1.3× 10−3, and
an additional shift nm can be applied, to the middle
wave guide. The gain-loss parameter is labelled γ. The
vacuum wavelength is assumed to be λ = 1.55 µm.

For a wave propagation of transverse electric modes
along the z axis the ansatz

Ey(x, z, t) = Ey(x)ei(ωt−βz) (1)

with k = 2π/λ and the propagation constant β can
be applied, and leads to the wave equation( ∂2

∂x2 + k2n(x)2
)
Ey(x) = β2Ey(x), (2)

which is formally equivalent to the one-dimensional
Schrödinger equation(

−1
2
∂2

∂x2 + V (x)
)

︸ ︷︷ ︸
=Hsys

ψ(x) = Eψ(x) (3)

with the relations

V (x) = −1
2k

2n(x)2, E = −1
2β

2. (4)

Thus, the formalism of PT -symmetric quantum me-
chanics can be used for the setup. Eq. (2) was solved
numerically in [63]. In this work we introduce approx-
imations preserving the main properties.

3. Mapping onto a matrix model
In the first approximation we map the full Hamilto-
nian of the setup shown in Figure 1 to a three-mode
matrix model. By this approach we check whether
the system can give rise to a third-order branch point
in a simple manner. This is clearly the case if the
resulting Hamiltonian is of the form proposed in [29],
viz.

Ĥmath =

a− 2iγ
√

2v 0√
2v 0

√
2v

0
√

2v b+ 2iγ

 (5)

with γ, v ∈ R and a, b ∈ C. The real and imaginary
parts of the diagonal elements simulate the refractive
index as well as the gain (loss) behaviour in the wave
guides. The parameter v represents a coupling be-
tween neighbouring wave guides via evanescent fields,
and is thus related to the distance between them. All
in all Ĥmath reflects a situation in which each wave
guide supports a single mode.
However, this matrix is merely an abstract math-

ematical model without direct connection to an ex-
perimental realisation. To establish such connection
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we use the formal analogy between the wave equation
(2) and the one-dimensional Schrödinger equation (3)
and calculate a matrix representation of our system
in terms of

Ĥ ′ = 〈ψi|Hsys|ψj〉. (6)
For this purpose we assume the same real index dif-
ference ∆n = 1.3 × 10−3 (and nm = 0) as well as
the same width w = 2a = 5.0 µm for all three wave
guides and use the ground state modes of each sin-
gle potential well with corresponding basis functions
ψi, ψj . This results in a matrix of the form

Ĥ ′ =

α+ iη σ′ ξ
σ′ α σ′

ξ σ′ α− iη

 (7)

with α, η, ξ ∈ R and σ′ ∈ C. The use of a common
width is compatible only with sm = 1.0 and s2 −
s1 = 2.0, which implies that the matrix elements
still depend on the doublet (γ, s1), and thus on the
distance s1 − sm between the wave guides.
Eq. (7) does not show the form predicted for the

appearance of an EP3 from Eq. (5) as ξ 6= 0 and
σ′ ∈ C. This corresponds to a situation in which also
the two outer wave guides are connected by a coupling
of their waves. This can happen due to a too small
separation between the wave guides. However, for a
sufficiently large separation s1 − sm the Hamiltonian
Ĥ ′ reduces to the form

ˆ̄H =

α+ iη σ 0
σ α σ
0 σ α− iη

 (8)

with α, η, σ ∈ R, which resembles the desired form
of Eq. (5) for a = b = 0 up to a constant shift α.
The transition Ĥ ′ → ˆ̄H can be observed in Figure
2, where the real eigenenergies of Eq. (7) are shown
as a function of the wave guides’ distances. For com-
paratively small distances the energies are far apart
from each other due to a stronger coupling between
the modes. In this range only Ĥ ′ describes the full
system correctly. For larger distances the energies
approach each other, which means that we likewise
obtain an accurate description of the system in terms
of the Hamiltonian ˆ̄H. This is the regime, in which
a search for an EP3 is most promising. The small
separation between the modes also ensures that they
are well separated from further states, and thus the
reduction to three modes is justified.
Knowing the shape of an appropriate wave guide

we now focus on a large separation between the wave
guides with sm = 1.0, s1 = 28.0 and s2 = 30.0 and
verify the existence of the EP3. We find it in the
spectra by varying the gain-loss coefficient γ. As in
the case of the numerical solution of Eq. (2) carried
out in [63] the EP3 can be reached by varying only
one parameter. The result is depicted in Figure 3a.
Obviously we obtain the coalescence of all three real
eigenenergies for γMEP3 = 0.0636 cm−1 in a cubic root
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Figure 2. Real eigenenergies E = −β2/2 of the
Hamiltonian Ĥ ′ as a function of the scaled distance
s1 − sm between the middle wave guide and the outer
ones. As there is a small separation between the wave
guides there is comparatively strong coupling among
the modes (grey area). With increasing distance the
coupling becomes negligible and the system is well
described by the new Hamiltonian ˆ̄H from Eq. (8).

branch point singularity. Beyond this point the spec-
trum becomes complex with two complex conjugate
energies and one with vanishing imaginary part. Note
that the middle state stays widely unaffected by an
increase of the non-Hermiticity parameter, which is
also found in the more realistic descriptions [30, 63]
as well as flat band systems [64, 65].
To ascertain that this is indeed an EP3 we follow

a standard procedure and perform a closed loop in a
suitable parameter space around the supposed branch
point singularity. To do so we have to introduce the
complex parameters a, b from Eq. (5) breaking the
underlying PT symmetry. We restrict ourselves to
the specific choice a = b = ar + iai and add this to ˆ̄H,
ending up with

ĤA = ˆ̄H + a

1 0 0
0 0 0
0 0 1

 . (9)

Using this form the circle is performed in the complex
plane of a along an ellipse with the parametrization

[0, 2π]→ R2, ϕ 7→
(
ar
ai

)
=
(

10−5 cosϕ
10−6 sinϕ

)
(10)

as illustrated in Figure 3c. The corresponding state
permutation is depicted in Figure 3b and clearly ex-
hibits the threefold exchange behaviour of an EP3.

4. Continuously distributed
exceptional points around
the EP3

The third-order exceptional point investigated in Sec-
tion 3 was verified with a parameter space circle and
its typical threefold permutation behaviour. As was
found in [63] this can become a difficult task in a realis-
tic setup. On the one hand, not every parameter space
circle leads to the threefold permutation. A twofold
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Figure 3. Evidence of a third-order exceptional point in the matrix model for a large separation between the wave
guides (sm = 1.0, s1 = 28.0, s2 = 30.0). The real index difference to the background material (∆n = 1.3 × 10−3)
was set to be equal for all three wave guides, i.e. nm = 0. The coalescence of the three eigenenergies as a function
of the non-Hermiticity parameter γ is depicted in a) and appears at γEP3 = 0.0636 cm−1. The lower panel shows
the characteristic state permutation of an EP3 b) as one performs a closed loop around it in a specific parameter
space c). Here we circle the EP3 counter clockwise in the complex plane of the asymmetry parameter a = ar + iai,
where the specific symbols mark the starting points of the permutation and the arrows the corresponding direction.

state exchange misleadingly indicating an EP2 is also
possible for certain parameter choices [29, 32]. On
the other hand, additional exceptional points, which
are accidentally located within the area enclosed by
the parameter space loop, can distort the signature
of the EP3. In the spatially extended investigation
of [63] it turned out that the EP3 is accompanied by
continuous distributions of exceptional points in such
a way that it is very hard to find a parameter plane,
in which a circle reveals the pure cubic-root branch
point signature of the EP3. Here we show that this is
not only a property of the special shape of the three
wave guides used in [63] but a generic feature of three
coupled guiding profiles. To do so, we return to the
delta-functions model from [30].

The model is given by an effective Schrödinger equa-
tion of the form

−ψ′′(x)−
(
(1 + iγ)δ(x+ b) + Γδ(x)
+ (1− iγ)δ(x− b)

)
ψ(x) = −k2ψ(x),

(11)

where three delta-function potential wells are located
at x = ±b and x = 0. Loss is added to the left well
and the same amount of gain is added to the right one
via the parameter γ. The units are chosen in such a
way that the strength of the real and imaginary parts
of the two outer wells is normalised to unity, while in
the middle well we allow for a different depth given
by the real parameter Γ > 0, similarly to its spatially
extended counterpart from Section 2. As the system
is non-Hermitian the eigenvalues k are complex in
general with Re(k) > 0. We are interested in bound
state solutions with real eigenvalues, and the bound
state wave functions have the form

ψ(x) =


Aekx, x < −b,
2(r cosh(kx) + %1 sinh(kx)), −b < x < 0,
2(r cosh(kx) + %2 sinh(kx)), 0 < x < b,

Be−kx, x > b.

(12)

As the continuity conditions and the discontinuity con-
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ditions for the wave functions and their first deriva-
tives have to be fulfilled at the delta functions we
obtain a system of linear equations in the form

M

 r
%1
%2

 = 0, (13)

for which nontrivial solutions exist if the correspond-
ing secular equation

detM = Γ
(
e−4kb(1 + γ2)− 2e−2kb(γ2 − 2k + 1)

+ γ2 + (2k − 1)2)
+ 2k

(
e−4kb(1 + γ2)− γ2 − (2k − 1)2) = 0 (14)

vanishes. Hence we obtain the eigenvalues k as roots
of the determinant det[M](k) ≡ f(k) depending on
the distance b, the non-Hermiticity parameter γ, and
the parameter Γ of the middle well. Assuming k to
be purely real, the position of the third-order branch
point singularity is fixed by

f(k) = ∂f

∂k
= ∂2f

∂k2 = 0. (15)

With ΓEP3 = 1.002 the EP3 appears at

γδEP3 = 0.06527796794065678, (16a)
bEP3 = 6.2012417361076206, (16b)
kEP3 = 0.49584858490334327. (16c)

This can be verified by circling this point in the com-
plex plane of the distance b (as it was done in [30]) or
by introducing asymmetry parameters breaking the
underlying PT symmetry.
A verification without PT symmetry breaking, i.e.

a circle around the EP3 in the b-γ space turns out
to be impossible in this simplified model as it is al-
ways dominated by a signature belonging to an EP2.
This suggests the conclusion that in analogy with the
spatially extended model from [63] the EP3 may be
accompanied by EP2s, which disturb the exchange
behaviour. To expose this behaviour we attenuate the
condition of Eq. (15) to a twofold zero, from which we
get the pair of variables (k, γ) or (k, b) and therefore
the positions of the EP2s via a two-dimensional root
search. The results are shown in Figure 4 (top left). It
can be seen that the EP2s are distributed continuously
around the EP3 in the b-γ space. The lines represent
either EP2s between the ground state and the first
excited mode or between both excited modes. They
coalesce at the position of the EP3 at γδEP3 leaving a
knee in the parameter space. Moreover there appear
more branches at γc1,2 along the blue line, which can-
not be explained by purely real parameters b and γ.
Hence we either continue b or γ analytically into the
complex plane and allow for k ∈ C, which turns the
two-dimensional root search into a four-dimensional
one. The resulting effects on the Re(γ)–Im(b) space
or Re(γ)–Im(γ) space are depicted on the right-hand
side of Figure 4.

5. Conclusion
In this paper we applied two approximations to the
system of three coupled PT -symmetric wave guides
studied in [63]. In a mapping of the system to a
three-mode matrix model we could show that the
matrix can serve as an intuitive guide to parameter
regimes, in which the prospects of finding a third-order
exceptional point are best. This is exactly the case
when the correctly mapped matrix assumes, due to
appropriately chosen physical parameters, the shape
proposed in [29].
The continuous distributions of EP2s around the

EP3 of interest in the space of the accessible physical
parameters can be found in the much simpler delta-
functions model from [30]. Thus, it is possible to
search for adequate physical parameters allowing for
the identification of the EP3 via its characteristic
threefold state permutation without the need of having
to solve the full problem.

The appearance of the EP3 has experimentally ob-
servable effects in the wave guide system. Circles in
parameter space as those performed in Section 3 can
be used. They can lead to the unambiguous signal
of a threefold state permutation. Due to the continu-
ous distribution of EP2s around the EP3 this might
become a difficult task. Thus, a temporally resolved
measurement of the field intensity in the three wave
guides as proposed in [63] might be the best way of
obtaining an observable effect. Close to the EP3 an
increasing beat length and a simultaneous pulsating
behaviour in all three wave guides will be present.
In principle the approach of extending the system

with additional wave guides to allow for higher-order
exceptional points can be continued. With four wave
guides it should for example be possible to access
a fourth-order exceptional point. The observations
made in this work suggest that all further extensions
should first be studied in simple approaches before
a laborious modelling of a realistic physical setup is
done. An N -mode matrix model can tell whether
a promising search for an EPN in a setup with N
wave guides is possible. If this is the case, it can pro-
vide rough estimates for suitable physical parameters.
Since algorithms for the detection of higher-order Jor-
dan blocks exist [66] their presence can quickly be
investigated.

The reduction of the full system to delta functions
leads to much simpler equations but preserves the
whole richness of effects. As such it can be used as
a first access to the structure of the eigenstates. In
particular, it can be used to evaluate whether an iden-
tification of the EPN via the N -fold permutation of
the eigenstates seems to be feasible. This can give
valuable information before costly numerical calcula-
tions of the full system are done.
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