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Abstract. This paper examines the use of an artificial neural network approach in identifying the
origin of clove buds based on metabolites composition. Generally, large data sets are critical for an
accurate identification. Machine learning with large data sets lead to a precise identification based
on origins. However, clove buds uses small data sets due to the lack of metabolites composition and
their high cost of extraction. The results show that backpropagation and resilient propagation with
one and two hidden layers identifies the clove buds origin accurately. The backpropagation with one
hidden layer offers 99.91% and 99.47% for training and testing data sets, respectively. The resilient
propagation with two hidden layers offers 99.96% and 97.89% accuracy for training and testing data
sets, respectively.
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1. Introduction
There is a variation in the flavour and aroma of dif-
ferent plantation commodities. For example, in In-
donesia, the clove buds from Java have a prominent
wooden aroma and sour flavour while those in Bali
have a sweet-spicy flavour [1]. Arabica coffee from
Gayo has a lower acidity and a strong bitterness. In
contrast, coffee from Toraja has a medium browning,
tobacco, or caramel flavour, not too acidic and bitter.
Furthermore, Kintamani coffee from Bali has a fruit
flavour and acidity, mixed with a fresh flavour. Con-
trastingly, Coffee from Flores has a variety of flavours
ranging from chocolate, spicy, tobacco, strong, citrus,
flowers and wood. Coffee from Java has a spicy aroma
while that from Wamena has a fragrant aroma and
without pulp [2]. The specific flavours and aromas are
attributed to the composition of commodities’ metabo-
lites. Generally, specific metabolite is responsible for
particular flavours and aroma. For this reason, it is
vital to recognize the characteristics of each planta-
tion commodity based on the metabolite composition.
This study investigates the origin of clove buds. This
helps to maintain the flavour of a product using clove
buds as a mixture. Also, the characteristics of food
products can be predicted based on the origin of clove
buds used due to the differences in flavour and taste
between regions [3].

Metabolic profiling is a widely used approach in ob-
taining information related to metabolites contained
in a biological sample. This is a quantitative measure-
ment of metabolites from biological samples [4, 5]. To
give meaning to the metabolites data sets, the chemo-

metrics technique was developed. This is a chemical
sub-discipline that uses mathematics, statistics and
formal logic to gain knowledge about chemical sys-
tems. It provides maximum relevant information by
analysing metabolites data sets from biological sam-
ples [6]. Additionally, it is used in pattern recognition
of metabolites data sets in complex chemical systems
[3]. Pattern recognition in biological samples iden-
tifies specific metabolites or biomarkers that form a
particular flavour and aroma.
Artificial neural networks have been widely used

in pattern recognition [7] and other applications in
various fields as shown by some researchs [8–13]. How-
ever, it has not been fully implemented, especially in
clove buds. The small data sets available limit the
implementation of artificial neural networks for clove
buds. This is attributed to the lack of metabolite
composition in the clove buds and the high cost for
extracting them. Furthermore, some clove buds have
zero metabolite concentration. However, this is be-
cause of inefficient tools in the laboratory to detect
metabolites whose values are very small. Therefore,
this study implements artificial neural networks as pat-
tern recognition in clove buds data sets. Each origin
of clove buds has specific metabolites as a biomarker.

2. Materials and methods
2.1. Materials
This study uses clove buds data sets obtained from
Kresnowati et al. [3]. It examined clove buds from
four origins in Indonesia, including Java, Bali, Manado
and Toli-Toli. Each origin has three regions, and
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therefore, there are twelve regions in total. In the
laboratory, eight experiments are carried out in each
region, except for Java with only six experiments.
For each experiment, 47 types of metabolites were
recorded. In the matrix, data sets are 94 × 47. The
row and column represent the number of experiments
and metabolites, respectively.

2.2. Data preprocessing
In total, the clove buds data sets have a wide range,
specifically between 10−4 and 10. Therefore, loga-
rithmic transformations are used to obtain reliable
numerical data. Since some metabolites data have zero
concentration, logarithmic transformation cannot be
applied directly. This is because their concentrations
range below the specified threshold. The metabolite
data with zero concentration are not removed because
of acting as biological markers. Therefore, they are
replaced with a value of one order smaller than the
smallest concentration available. In this case, the
zeros are replaced with 10−5. Before implementing ar-
tificial neural networks, one stage preprocessing clove
buds data sets from [14] are added to normalize the
values of metabolites data. The normalization ensures
that each data has the same influence or contribution
to determine its origin. The following normalization
formula is used [15]

zkl = xkl − x
s

. (1)

Here, zkl is the result of normalization of xkl, x is the
mean of the k-th experiment and s is

s =

√√√√ n∑
k=1

xkl − x
n− 1 . (2)

2.3. Artificial neural network
Artificial neural networks are a false representation of
the human brain that simulates the learning process
[16]. Backpropagation and resilient propagation are
learning algorithms widely used in artificial neural
networks [17–27]. In this study, two different network
architectures, including resilient and backpropagation,
are used. The first and second architectures consist
of two and one hidden layers, respectively.

2.3.1. Backpropagation learning algorithm
The backpropagation learning algorithm is based on
the repeated use of chain rules to calculate the effect of
each weight in network concerning the error function
E [28].

∂E

∂wij
= ∂E

∂oi

∂oi
∂neti

∂neti
∂wij

(3)

where wij is the weight from j − th neuron to i− th
neuron, oi is the output, and neti is the weighted num-
ber of neurons input i. Once the partial derivatives
for each weight are known, the goal of minimizing the
error function is achieved with gradient descent [28]:

w
(t+1)
ij = w

(t)
ij − ε

∂E

∂wij

(t)
(4)

where t is iteration and 0 < ε < 1 the learning rate.
From the Equation (4), choosing a large learning rate
(close to 1), allows for oscillations. This makes the er-
ror fall above the specified tolerance value and lessens
the identification accuracy. Conversely, in case the
learning rate (ε) is too small (close to 0), many steps
are needed for convergence of the error function E.
To avoid these, the backpropagation learning algo-
rithm is expanded by adding the momentum param-
eter (0 < α < 1) as shown in Equation (5). The
addition of the momentum parameter also accelerates
the convergence of error function [28].

∆w(t+1)
ij = −ε ∂E

∂wij

(t)
+ α∆w(t−1)

ij (5)

where it measures the effect of the previous step on
the current one.
To activate neurons in the hidden and output lay-

ers, the sigmoid activation function is used. Three
essential properties used in backpropagation and re-
silient propagation include bounded, monotonic and
continuously differentiable. This helps to convert a
weighted amount of input into an output signal for
each neuron i as shown by Equation (6) [29].

Oi = f(Ii) = 1
1 + e−σIi

. (6)

where Ii is the input of i-th weighted number of neu-
ron, σ the slope parameter of the sigmoid activation
function and Oi the output of i-th neuron. The thresh-
old used on the output layer for the sigmoid activation
function is

Oi =
{

1, if Oi ≥ 0.5
0, if Oi < 0.5. (7)

The weighted amount input is given in the following
equation [29].

n∑
i=1

wijOi + wBjOB . (8)

The sum of i represents the input received from all
neurons in the input layer, while B is the bias neu-
ron. Weight wij is associated with connections from
i-th neuron to j-th neuron, while wBj weight relates
to the connections from the biased to j-th neuron.
The weighted amount obtained in the hidden and
the output layers are activated by substituting the
weighted amount from Equation (8) to be an exponent
in Equation (6).

2.3.2. Resilient propagation learning
algorithm

Riedmiller et al. in [28] proposed a resilient propaga-
tion learning algorithm developed by the backpropaga-
tion algorithm. The algorithm directly adapts to the
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weight value based on the local gradient information.
Riedmiller et al. [28] introduced an update value ∆ij

for each weight determining the size of the weight
update. The adaptive update value evolves during
the learning process based on its local sight on the
error function E, according to the following learning
rule [28]:

∆t
ij =


η+ ∗∆(t−1)

ij , if ∂E
∂wij

(t−1) ∗ ∂E
∂wij

(t)
> 0

η− ∗∆(t−1)
ij , if ∂E

∂wij

(t−1) ∗ ∂E
∂wij

(t)
< 0

∆(t−1)
ij , else

(9)
where (0 < η− < 1 < η+) η− and η+ represents the
decrease and increase factors, respectively. According
to this adaptation rule, every time the partial deriva-
tive of the corresponding weight wij changes its sign,
which indicates that the last update is too big and
the algorithm is above the local minimum, the update
value ∆ij is decreased by the factor η−. In case the
derivative retains its sign, the update value slightly
increases to accelerate the convergence in the shallow
regions [28].
Once the update value for each weight is adjusted,

the update weight itself follows the rule stating that in
case the derivative is positive, the weight is decreased
by its update value. If the derivative is negative, the
update value is added

∆wtij =


−∆t−1

ij , if ∂E
∂wij

(t)
> 0

+∆t−1
ij , if ∂E

∂wij

(t)
< 0

0, else

(10)

wt+1
ij = wtij + ∆wtij (11)

However, in case the partial derivative sign changes,
which means the previous step was too large and
the minimum missed, the previous weight update is
reverted:

∆w(t)
ij = −∆w(t−1)

ij , if ∂E

∂wij

(t−1)
∗ ∂E

∂wij

(t)
< 0 (12)

Due to the ’backtracking’ weight step, the derivative
should change its sign once again in the next step. To
avoid another problem, there should be no adaptation
of the update value in the succeeding step. In practice,
this can be carried out by setting ∂E

∂wij

(t−1) = 0 in the
∆ij adaptation rule. The update values and weights
are changed every time the whole set of patterns is
presented to the network once (learning by epoch).
The following shows the process of adaptation

and resilient propagation learning process. The
minimum(maximum) operator is expected to pro-
vide a minimum or maximum of two numbers. The
sign operator returns +1 if the argument is positive,
-1 in the case it is negative, and 0 for otherwise.

For each weight and bias{

if( ∂E
∂wij

(t−1)
∗ ∂E

∂wij

(t)
> 0) then{

∆(t)
ij = minimum(∆(t−1)

ij ∗ η+,∆max)

∆w(t)
ij = sign( ∂E

∂wij

(t)
∗∆(t)

ij )

w
(t+1)
ij = w

(t)
ij + ∆w(t)

ij

}

else if( ∂E
∂wij

(t−1)
∗ ∂E

∂wij

(t)
< 0) then{

∆(t)
ij = maximum(∆(t−1)

ij ∗ η−,∆min)

w
(t+1)
ij = w

(t)
ij −∆w(t−1)

ij

∂E

∂wij

(t)
= 0

}

if( ∂E
∂wij

(t−1)
∗ ∂E

∂wij

(t)
= 0) then{

∆w(t)
ij = −sign( ∂E

∂wij

(t)
∗∆(t)

ij )

w
(t+1)
ij = w

(t)
ij + ∆w(t)

ij

}
}

3. Results and discussions
In this study, the percentage of training and testing
data sets are 80% and 20%, respectively. The metabo-
lites data sets in matrix are 94×47. Out of 94 rows,
75 were chosen randomly as training data sets, while
the remaining were used as testing sets. The selection
of training data sets is carried out randomly 30 times.
Therefore, in each network architecture, there are 30
values for the percentage of identification accuracy,
coefficient of determination and the mean squared er-
ror (MSE). The average is chosen as a representative
of the 30 values. In each network architecture, learn-
ing rate (ε) 0.9, momentum parameter (α) 0.1 and
maximum epoch 5000 are used with an error target
of 10−3. In this study, each origin is represented by a
binary code. Specifically, the binary code for the Java
origin is 1000, Bali 0100, Manado 0010 and Toli-Toli
0001. The calculation of the identification accuracy
and MSE is shown in Equation (13) and (14).

% accuracy = a

k
100 % (13)

Where a is the number of origins identified correctly,
while k is the total number. MSE calculated by the
following equation [29]

MSE = 1
m · n

m∑
p=1

n∑
k=1

(Tkp −Okp)2. (14)
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where Tkp is the desired target, Okp the network out-
put and p the variable corresponding to the number
of origins.
The suitability between the expected target and

network output was evaluated based on the coefficient
of determination R2. It was calculated using the
following equation [21]

R2 = 1−
1
n

∑n
k=1(Tkp −Okp)2

1
n−1

∑n
k=1(Tkp − Tkp)2

. (15)

Where Tkp is the average desired target.
In this study, backpropagation and resilient prop-

agation were used, each consisting of two and one
hidden layers. For one hidden layer, the number
of neurons was determined using the formula pro-
posed by Shibata and Ikeda in 2009 [30], specifically
Nh =

√
Ni ·No, where Nh, Ni, and No represent hid-

den, input and output neurons, respectively. In both
the backpropagation and resilient propagation, the
number of neurons used does not exceed one hidden
layer. Based on Shibata and Ikeda [30] formula, the
number of neurons in one hidden layer was obtained,
specifically Nh =

√
Ni ·No =

√
47 · 4 = 13.71. How-

ever, in this study, it was rounded up to 15 neurons.
Some experiments were conducted to evaluate the
identification accuracy, and whether using one hidden
layer with 15 neurons might lead to a better accuracy
of identification than two hidden layers. However,
the number of neurons varied, setting less than 15
neurons. For two hidden layers, experiments were
conducted with the number of consecutive neurons as
follows; 3-5 (8), 4-6 (10), 5-7 (12) and 6-8 (14). The
number of neurons in the hidden layer never exceeded
15 neurons.

3.1. Backpropagation (B-Prop) with two
hidden layers

In this section, the backpropagation learning algo-
rithm with two hidden layers was used. The number
of neurons in the hidden layer varied with not more
than 15 neurons. There were four variations of the
network architecture, including 47-3-5-4, 47-4-6-4, 47-
5-7-4 and 47-6-8-4. The input layer consists of 47
neurons based on the number of metabolites. The
output layer consists of 4 neurons according to the
number of clove buds origins.
Table 1 shows the network architecture 47-3-5-4

gives the highest value for the identification accuracy
and coefficient of determination in training and testing
data sets. Similar to the MSE, this network archi-
tecture provides the smallest amount of both training
and the testing data sets. From Table 1, increasing the
number of neurons in the backpropagation with two
hidden layers decreases network performance. This
is in line with Shafi et al. in 2006 [31], which stated
that increasing the number of neurons in the hidden
layer only heightened the complexity of the network.
Still, it does not increase the accuracy of the pattern
recognition.

3.2. Backpropagation (B-Prop) with one
hidden layer

The backpropagation learning algorithm with one hid-
den layer was implemented to evaluate its result in
the case of a comparison using two hidden layers. The
results obtained are shown in Table 2.

Table 2 shows that the network architecture 47-15-4
identifies the clove buds origin effectively. The identi-
fication accuracy percentage is 99.91% and 99.47% for
training and testing data sets, respectively. Moreover,
the MSE value is also smaller compared to the two
hidden layers.

For the backpropagation algorithm, the results show
one hidden layer is better than two. This is in line with
Villiers and Barnard [32], which stated that a network
architecture with one hidden layer is on average better
than two hidden layers. They concluded that two
hidden layers are more difficult to train. Additionally,
they also established that this behaviour is caused by
a local minimum problem. The networks with two
hidden layers are more prone to the local minimum
problem during the training.

3.3. Resilient propagation (R-Prop)
with two hidden layers

Resilient propagation learning algorithm contains
some parameters, including the upper and lower limits
as well as the decrease and increase factors. In this
study, the range of update values is limited to the
upper limit (∆max) = 50, the lower limit (∆min) =
10−6, and the decrease and increase factors (η−) = 0.5
and (η+) = 1.2, respectively. The reason for choosing
these values is shown in [28]. Similar to Section 3.1,
the resilient propagation learning algorithm is applied
to the network architecture with two hidden layers.
The number of neurons vary but do not exceed 15
neurons. In this section, there are four variations of
the network architecture, including 47-3-5-4, 47-4-6-4,
47-5-7-4 and 47-6-8-4.

The results in Table 3 show the network architecture
47-5-7-4 gives the highest identification accuracy of
the clove buds origin. The percentage of the identi-
fication accuracy is 99.96% and 97.89% for training
and testing data sets, respectively.

3.4. Resilient propagation (R-Prop)
with one hidden layer

In this section, the resilient propagation learning algo-
rithm is implemented with one hidden layer. Similar
to section 3.2, the number of neurons in the hidden
layer is 15 neurons, and have the network architecture
47-15-4.

Table 4 shows the network architecture 47-15-4 iden-
tifies the origin of clove buds with an identification
accuracy of 99.86% and 94.74% on training and test-
ing data sets, respectively.
The network architecture of the resilient propaga-

tion algorithm, both two hidden layers and one hidden
layer, provides identification results with a very high
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Network MSE Accuracy (%) R2

Architecture Training Testing Training Testing Training Testing
47-3-5-4 0.10346 0.11357 76.98 73.68 0.81 0.76
47-4-6-4 0.13084 0.13547 62 57.54 0.64 0.61
47-5-7-4 0.14889 0.15884 49.73 41.4 0.51 0.42
47-6-8-4 0.15388 0.15874 50.04 42.46 0.48 0.43

Table 1. Backpropagation with two hidden layers.

Network MSE Accuracy (%) R2

Architecture Training Testing Training Testing Training Testing
47-15-4 0.0721 0.0773 99.91 99.47 0.99 0.98

Table 2. Backpropagation with one hidden layer.

Figure 1. Identification accuracy percentage of train-
ing data sets.

accuracy. However, the network architecture with two
hidden layers has a slightly lower accuracy.

Tables 3 and 4 show the two-layered resilient prop-
agation with deficient neurons performs better than
the single-layer having more neurons. This is in line
with Santra et al. [24], which established that the per-
formance of two hidden layers with 8-10 (18) neurons
is better that of one hidden layer with 62 neurons.
The summary of the best identification accuracy

and determination coefficient are shown in Figures 1,
2, 3 and 4, respectively. For each network architecture,
the smallest MSE in training and testing data sets
are shown in Figures 5 and 6, respectively.
The results of the identification from the origins

of clove buds have been obtained. In small data set
categories, backpropagation with one hidden layer
provides an accurate identification in the training and
testing data sets. It accurately identifies the origins
of clove buds obtained using the resilient propagation
algorithm with two hidden layers.
The neural networks model obtained in this paper

can be a reference from a scientific perspective. For in-
stance, it can be used in future studies to identify the

Figure 2. Identification accuracy percentage of test-
ing data sets.

Figure 3. Determination coefficient of training data
sets.
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Network MSE Accuracy (%) R2

Architecture Training Testing Training Testing Training Testing
47-3-5-4 0.07209 0.08111 99.73 97.37 0.98 0.95
47-4-6-4 0.07162 0.08316 99.69 96.49 0.99 0.94
47-5-7-4 0.07160 0.07961 99.96 97.89 0.99 0.96
47-6-8-4 0.07160 0.07978 99.78 97.72 0.99 0.96

Table 3. Resilient propagation with two hidden layers.

Network MSE Accuracy (%) R2

Architecture Training Testing Training Testing Training Testing
47-15-4 0.07158 0.07932 99.86 94.74 0.99 0.92

Table 4. Resilient propagation with one hidden layer.

Figure 4. Determination coefficient of testing data
sets.

Figure 5. MSE of training data sets.

Figure 6. MSE of testing data sets.

origin of various plantation commodities with small
metabolites data sets. At the moment, the most ap-
propriate way of determining the origin of a plantation
commodity is qualitative, relying on the services of
flavourist to evaluate the flavour and taste. This is
because each commodity has a specific flavour and
taste based on the origin of its region. Furthermore,
the different origins of clove buds data sets have not
been reported in the literature and thus no direct
comparison can be presented in this paper.

4. Conclusions
This paper demonstrated the potential and ability of a
neural network approach with backpropagation and re-
silient propagation learning algorithms. It was meant
to identify the clove buds origin based on metabo-
lites composition. The work was divided into two
parts, the first one being an identification of the clove
buds origin using the backpropagation learning algo-
rithm. In this algorithm, two network architectures
were constructed. One having a single hidden layer
and the second one having two. The results showed
that the use of one hidden layer gives the clove buds
origin identification accurately, specifically 99.91%
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and 99.47% in training and testing data sets, respec-
tively. The second step involved the identification
of the clove buds origin using a resilient propagation
learning algorithm. In this algorithm, two network
architectures were constructed. One having a single
hidden layer and the second one having two. The
results showed that the use of two hidden layers gives
an accurate clove buds origin identification, including
99.96% and 97.89% in training and testing data sets,
respectively. From these results, it was concluded
that for an identification of small metabolites data
sets from a plantation commodity, the backpropaga-
tion algorithm with one hidden layer and the resilient
propagation algorithm with two hidden layers should
be used. This paper also confirmed the contribution
of artificial neural networks to the pattern recognition
of metabolites data sets obtained by the metabolic
profiling technique.
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