
1 Introduction
A concept of multi-agent systems (MAS) is a widely used

paradigm for modelling, planning and control of various pro-
cesses. Generally, it uses distributed negotiation techniques
for achieving particular goals. Besides standard centralized
planning and optimization mechanisms, MAS supports local
replanning with minimal needed changes of the entire plan.
There are several MAS implementations for production plan-
ning - e.g. [16] and for cooperation across supply chains [18,
20, 13]. Modern business speeds up research in the domain of
Virtual Organizations [10] that transform supply chains into
dynamic cooperative networks. (Cooperation with the other
partners in a Virtual Organization allows the enterprise to
react to incoming business opportunities that could not be
covered by the enterprise alone.) Cooperation in such an
environment is based on distributed negotiation among indi-
vidual partners that leads to satisfaction of individual or
common goals. In case of internal cooperation (within an
enterprise), the goal is to maximize the overall profit of the
whole enterprise. Changing the scope to external coopera-
tion (across a supply chain), the behaviour of the parties
involved is more self-interested, as their goal is to maxi-
mizate their own profits. Standard negotiation protocols and
techniques used in MAS do not follow this course, so new ne-
gotiation principles for such an environment have to be
investigated.

2 Competitive and collaborative
environments
Let us introduce a difference between collaborative and

competitive multi-agent environments [1]. By a collaborative
multi-agent environment we understand an agent commu-

nity where the agents usually share a common goal that they
try to achieve cooperatively. In other cases the agents may
have different goals, but their primary motivation is to maxi-
mize their social welfare – the total sum of all the individual
utilities (profits) of the collaborative agents. Conversely, by a
competitive multi-agent environment we understand an agent
community where the primary motivation of the agents is to
maximize their individual utilities, no matter what the social
welfare of the community is (agents are so called self-interested).
The agents establish cooperation in the process of achieving a
common goal only if it maximizes their individual utilities.

As mentioned above, cooperation across a supply chain
differs substantially from the cooperation within an enter-
prise. We distinguish collaborative and competitive environ-
ments and inspect different aspects of cooperation in these
cases. In our work we focus on reconfigurating and
replanning as the crucial element in successful cooperation
among agents. This paper attempts to analyze ways of adjust-
ing contracts in a real-world setting. Proper algorithms for
contracting need to be developed as they underlie the coop-
eration in a competitive environment.

3 Commitments and decommitments
The concept of cooperative problem solving by means

of social commitments was introduced by Wooldridge and
Jennings in 1999. Dropping a social commitment (de-
commitment) was either rational and beneficial for all the
participants, or did not occur at all. Although the authors do
not restrict the commitment description provided here to
collaborative environments, the agents turn out to be social-
-welfare maximizers rather than competitors. However, in
competitive environments an agent tends to drop its commit-
ments if this maximizes its individual utility, no matter how it
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may consequently harm the others. If we want self-interested
agents either to fulfil their commitments or to provide com-
pensations for the harm to others in the case of decommit-
ment (i.e. if we want agents to act responsibly), the agents
have to commit themselves in this sense as well.

For contracting in collaborative environments there is
usually no need for any explicit metrics of the individual util-
ity or the social welfare gained. (For example, the number of
goals successfully achieved suffices as an evaluation of the
utility gained; algorithms for contracting in collaborative
environments often guarantee maximization of social wel-
fare.) By contrast, in competitive environments an explicit
expression of utility is desirable. It facilitates the implementa-
tion of rewards and penalties as utilities that the agents gain
or lose. The concept of such an explicit utility evaluation is
then a part of commitments -an agent providing a service (the
contractee) commits not only to perform appropriate actions
(in order to gain the utility promised – this is the agent’s
motivation), but to provide compensation if fails (e.g. a com-
pensation of the profit lost to the other party). Simulta-
neously, the other party (the contractor) commits not only to
pay for services provided by the first party, but also to provide
a compensation if it decommits from the contract (the first
party suffers loss of profit loss and is paid e.g. the opportu-
nity cost).

3.1 Levelled commitment contracts
The most complete approach to commitments in a com-

petitive environment has been presented by Sandholm and
Lesser [19] as levelled commitments. Levelled commitments
include an explicit utility evaluation in the form of a contract
price and penalties. Levelled commitments facilitate decom-
mitments that were not acceptable for full commitments com-
monly used. A full commitment is defined by a contract
obligation as an n-tuple (�, �), where � introduces a descrip-
tion of what each of the two parties (the contractor and
the contractee) has to perform (handling tasks, contributing
goods, lending resources, etc.) and � introduces the contract
price that the contractor has to pay to the contractee. Neither
of the agents may drop the commitment, under any cir-
cumstance till it is brought to a good end. In contrast, levelled
commitments are defined as an n-tuple (�, �, a, b), where the ex-
tending parameters a and b introduce penalties to be paid
when decommitments occur.

Levelled commitments are based on non-cooperative
game theory. A negotiation process consists of two parts (i) the
contracting game, when the agents agree on a contract and (ii)
the decommitting game, when they decide whether or not to
decommit. Various events may occur (resources failing or be-
coming available, outside offers, etc.) that change the value of
the contract independently for any of the two agents so that
keeping the commitment does not need to be desirable for
one or for both of the agents. Both the decommitment deci-
sion and the setting of the contract (�, a and b) are based on
knowledge of the ex ante probability density functions (p.d.f.)
of receiving the best outside offers. The p.d.f. are assumed
to be common knowledge between the contractor and the
contractee.

Levelled commitments have several limiting assumptions
that facilitate equilibrium calculations of the contract settings,

but make the use of levelled commitments more difficult in
domains where such assumptions may be neither possible nor
even desirable (e.g. logistics, production planning, etc.). The
most significant assumptions are: (i) an agent does not want to
be involved in more than one contract at a time, (ii) all the
contracts available have the same description � (the only
concern is the contract price) and (iii) the p.d.f. of receiving
the best outside offers are common knowledge between the
agents. The most limiting assumption is (iii) [8].

Moreover, the concept of levelled commitments also does
not state explicitly whether the contract price under consider-
ation introduces only a profit or whether if it considers costs
on performing �. It rather seems that � introduces the total
price of the contract, set only on the basis of p.d.f. (there is no
distinction between costs and the expected profit that both
are comprised in the real-world contract price). Fixed costs
are seemingly also not taken into account, as the price of a null
deal (i.e. the agents do not agree on a contract) is assumed to
be equal to the average best outside offer. Thus, the agent
does not lose anything, but only does not get what it might
have got if the best offer had come.

3.2 Contract setting
An extension of levelled commitment contracts has been

introduced by Excelente-Toledo et al. in [8]. They provide
both an algorithm for calculating the contract setting and an
algorithm for considering a decommitment. Unfortunately,
the assumptions considered (e.g. omitting the fixed costs)
need not always be acceptable. Thus, algorithms for con-
tract setting in the competitive environments need to be
developed.

The price of a contract in the real world covers at least the
following three items: (i) variable costs which depend on con-
tract size, feasibility issues, etc. (i.e. specific conditions related
to a particular contract), (ii) fixed costs which are not related to
a particular contract, but are related to the overall business
and need to be covered (e.g. the rent for an office, payment
for energy, employees’ wages, etc.) and (iii) intended profit from
the contract (e.g. a profit for the enterprise owner). A penalty
in the real world seeks to cover at least a portion of the fixed
costs and also the profit lost. While the calculation of vari-
able and fixed costs or of profit lost, is rather pragmatic, the
setting of the intended profit is rather strategic or even specu-
lative, and depends on many considerations (e.g. experience
with the second party, various social relations, the profit ea-
gerness of the first party or “good manners”). Overall, the
setting of a contract price and a penalty may predetermine
the acceptability of such a bid for the customer, i.e. the fruit-
fulness of the contact.

Let us propose an algorithm for setting a contract price.
The scenario is as follows: there are two actors – a customer
and a service provider. The customer proposes contracts of
different sizes and calls for bids. The service provider calcu-
lates the bids and proposes the prices to the customer. Let the
coefficient of variable costs with respect to contract size be
common for all agents, and let the customer’s private prefer-
ence be to accept bids with a margin up to e.g. 10 % of the
variable costs. (This is inspired by the real-world contracting,
where a customer is willing to accept a price only up to a cer-
tain limit.) The service provider does not try to do more than
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cover all the costs (variable and fixed). It calculates the vari-
able costs and projects the actual fixed costs to be covered to
the margin. (The fixed costs are constant for a time unit, but
are generally accumulated or reduced based on whether the
provider’s business was successful in the past.) Let the margin
be finally limited in three different ways: (i) simple limitation,
(ii) learned safe limitation and (iii) learned speculative limitation:
� simple limitation – the margin is not limited until it attacks

a certain bound with respect to the variable costs – let us say
50 % of the variable costs;

� learned safe limitation – the margin is limited either to an
average value of the previously accepted margins or to a
half of a minimum previously rejected margin;

� learned speculative margin – the margin is limited to mid
way between the maximal accepted (lower boundary) and
minimal rejected (upper boundary) margin from the past;
until both boundaries are obtained the margins are either
increased by 50 % or decreased by 20 %.

Obviously, the first approach does not guarantee the pro-
vider a profit in the long-term. The other two approaches do,
because the provider learns from the past (provided the total
turnover can cover the fixed costs). The latter limitation then
promises the maximum possible profit (experiments are de-
scribed in the section 4).

3.3 Negotiation and acquaintance model for
competitive contracting

The process of contracting and contract maintenance
consist of two fundamental processes: (i) negotiation and (ii) de-
liberation. Negotiation is a process of exchanging messages
among the agents in accordance with interaction protocols
agreed in advance. Deliberation is a complex process of
knowledge maintenance, evaluation of different decision al-
ternatives, and choice of the appropriate one (decision
making) with respect to knowledge of the actual situation in
the surrounding environment, decision strategies and indi-
vidual goals.

Many interaction protocols implementing various negoti-
ation methodologies have been developed. A well known and
very popular methodology is the a Contract-Net Protocol,
which implements a CNP auction that has been standardized
by FIPA [9]. However, this interaction protocol (and most of
the widely-used related protocols, some of them also imple-
mented by FIPA), was developed rather for collaborative envi-
ronments [5]. The most interesting multistage negotiation
protocol for flexible negotiation in competitive environments
was presented by Bergenti et al. in [2]. This protocol allows
the agents (the initiator and the responder) to propose and to
counter-propose till they reach an agreement, or until one of
them decides to withdraw from the negotiation. If agreement
is reached, any of the parties may decommit and the contract
becomes void. If the contract is successfully completed, the
responder informs the initiator about it.

One of the means used for decision making involves ac-
quaintance models. An acquaintance model is a computational
model of agents’ mutual awareness, stored in the interaction
wrapper of each of the agents. The acquaintance model is
a collection of the agent’s social knowledge [14] available
from previous interactions or provided by independent moni-

toring mechanisms. There are various implementations of
acquaintance models, e.g. the tri-base (3bA) acquaintance
model [17], the twin-based model [4] or the acquaintance model
in ARCHON [21].

The contracting algorithm proposed in section 3.2 uses
quite a simple acquaintance model that enables only tracking
the history of contracts for each customer that the provider
interacts with, and the decision making process is rather
myopic. Moreover, in a competitive environment more con-
siderations need to be employed, because it is necessary to
reflect e.g. contract profitability, partners’ reputations, actu-
al contract commitments, availability of resources, longterm
strategies, etc. Therefore, we propose an acquaintance model
consisting of three modules:
� profitability module – maintains both the own economy

model and the economy models of the partners; the mod-
ule determines the profitability of incoming contract offers
from various points of view – e.g. their contribution to
covering fixed costs, attainable profit, increase/decrease of
own reputation, a strategic measure taking into account
long-term cooperation with the particular partner, etc.

� reputation module – maintains track of former interac-
tions with partners. These are used for building reputation
models for all partners as well as an estimate of one’s own
reputation with the other partners; the module determines
the safety/risk of concluding a contract (both incomming
and outgoing opportinuties) with a particular partner, and
advises on decisions or adjustments concerning the con-
tract – e.g. whether or not conclude the contract, under
which conditions to conclude it with respect to possible
delays (setting a reserve in service delivery time), service
quality or total failure (setting penalties), payment delays
(setting a reserve in the contract price as opportunity cost
insurance), etc.

� commitments-resources module – maintains both a re-
cord of the actual contracts (i.e. both the commitments
of the agent to the partners and the commitmentsof part-
ners to the agent) and user’s own resource availability
schedule bound with the contracts; the module supports
scheduling of incoming contracts, provides information
about resource availability and facilitates computation of
the feasibility of the contract, simulation of overbooking of
resources with a risk evaluation (i.e. level of penalties for
delays or decommitments in the case of unavailability of
resources), simulation of resource relaxation based on out-
sourcing, etc.

As the contracting process and contract maintenance in a
competitive environment are based on the agent’s local know-
ledge only, the acquaintance model is built iteratively based
on the experience of the agent during interactions with the
partners (other agents). Thus, model building is an insepara-
ble part of the decision making processes. The acquired
knowledge is then used by an inference machine based on
a rule system that either provides advice to a human opera-
tor (manager) concerning the incoming and ongoing
contracts or carries out decisions by means of pre-defined
rules (i.e. contract acceptance or rejection, decommitments or
outsourcing, etc.). Administrative activities like updating the
company ERM/CRP system or payments to partners are then
carried out automatically.

©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 5

Acta Polytechnica Vol. 46  No. 4/2006



3.4 Reconfiguration in competitive
environments

Although there are some domain-dependent application
implementations of reconfiguration in multi-agent systems
(MAS) - e.g. [6, 11, 3], the first deep study of a reconfiguration
and its formalization was published only recently published
by Dunin-Keplics in [7]. The multi-agent environment has
been assumed to be collaborative. Thus, if a failure occurred,
all the agents involved in achieving their common goal did
their best to establish a recovery, in order to complete their
task successfully (a reconfiguration occurred). This behaviour
due to by their persistent collective intention to achieve their
common goal in accordance to the definition of a joint persis-
tent goal [12].

However, in competitive environments the collective in-
tention does not need to be kept unconditionally by all the
agents – any agent may decommit from the actual contract
(e.g. on account of a more profitable third-party contract of-
fer). Decommitment as a concept was not taken into account
in the above-mentioned research, while according to [22] it
may become a means for optimizing the agents’ individual
profits.

While the implementation of a reconfiguration in collabo-
rative environments was facilitated by the agents’ primary
motivation (i.e. maximization of their social welfare), in com-
petitive environments it is even more difficult. In collabora-
tive environment, decommitment or replanning is driven by a
common goal. It is obvious that both partners to the ’contract’
have the same motivation to keep it or change it. In a compet-
itive environment, the agents need to be motivated not only
to agree on a contract and to keep their commitments, but
also to perform a reconfiguration, if necessary. A self-inter-
ested agent will be reluctant to take on further obligations if
they are not rewarded, or if they even entailed lost of profit.

One of the available motivations is to use reconfiguration
as an alternative to decommitment, if keeping the current
contract does not contribute to the maximization of the
agent’s individual utility (e.g. if a more profitable offer has ap-
peared). For example, the agent may find a subcontract that
can be reimbursed from the reward promised by its contractor
and may decide to take advantage of both the current contract
and the new contract without decommitting. Of course, the
idea of decommitment may have resulted from of unan-
ticipated events, e.g. lack of resources, an unexpected delay
that may prevent the contract deadline being met, etc.
Thus, reconfiguration may appear to be useful for optimiz-
ing the resource load and also for maximizing the profit by
optimizing any possible or necessary decommitments. In a
collaborative environment reconfiguration is usually driven
by individual tasks (it is invoked top-down by decomposition)
rather than by the intention of the contracted agents. Table 1
shows an overview of various environment properties.

Let us provide an example of a reconfiguration and its po-
tential. Customer 1 grants a contract Contract 1 to a group of
agents – coalition [15] – coordinated by Provider Leader. While
the contract is being executed, a coalition member Provider
Traitor receives a proposal for a more profitable contract Con-
tract 2 and decides to participate in it. However, its resources
are not sufficient for both contracts, and therefore Provider
Traitor considers a decommitment from Contract 1. It may still

save the decommitment penalty if it finds a subcontractee Pro-
vider Subcontractee that takes on its obligations.

If Provider Traitor succeeds and subcontracting is less costly
than fulfilling Contract 1 by Provider Traitor, it may benefit on
both contracts. The maximal rational cost of subcontracting is
the sum of the profit on fulfilling Contract 1 and the decom-
mitment penalty for Contract 1. If Provider Traitor does not
succeed in subcontracting, it decommits from Contract 1. In
this case, although Provider Leader collects the decommitment
penalty from Provider Traitor, it tends to find subcontracting
on its own in order to avoid paying a penalty to Customer 1. If
this succeeds, the coalition leader may keep the penalty as a
reward and perhaps also the difference in the prices, pro-
vided the subcontracting is cheaper than Provider Traitor’s
services. If it does not succeed, it pays the collected penalty to
Customer 1.

There may be other reconfiguration scenarios – e.g. Pro-
vider Leader may receive a more profitable bid from Customer
2, or it may find a Provider Substitutor that may be cheaper
than one of the current coalition members. However, recon-
figuring and taking advantage of such opportunities is even
more difficult than in the above-mentioned example.

In any case, reconfiguration strongly depends on the con-
tract setting and vice versa. This needs to be reflected in
the contracting algorithm. Extending the basic algorithm
proposed in section 3.2, in this sense, requires taking into ac-
count, e.g. long-term business strategies, reputation, etc., as
the basic version is still rather guesswork than a deliberative
calculation. The implementation of a more sophisticated con-
tracting algorithm using the proposed acquaintance model
and thus capable of reconfiguration and also handling e.g.
customer’s adaptive behaviour is currently under research.

4 Experiments
The provided experiments show the properties of our al-

gorithm (in three variants), as proposed in section 3.2. Our
model implementation defined two types of agents – the cus-
tomer and the provider. The sizes of the contracts proposed by
the customers were arbitrary, within a bounded interval and
varied in number from none to several per day. The cus-
tomer’s margin boundary was set to 12 %. The variable-costs
coefficient and the provider’s daily fixed costs were set to
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collaborative environments:

maximized criteria social welfare

commitments full

decommitments common-goal driven

reconfiguration contract based

competitive environments:

maximized criteria individual utility

commitments full, levelled

decommitments individual-utility driven

reconfiguration contracted-agent based

Table 1: Overview of various environment properties



fixed values. For each algorithm variant 50 runs of the simula-
tion were performed and the results were averaged. (Due to
both the randomness of the contract sizes and the absence of
contracting history, the mean square deviation at the first day
was cca 0.24. However, it tended to decrease to zero quickly
during the simulation.) Let us describe the results in detail.
Fig. 1 introduces a comparison of the margin setting for all
three algorithm variants with respect to the customer’s mar-
gin boundary.

The first variant of the algorithm implements simple limi-
tation of margins. As the agent does not take into account past
experience, and its only concern is to cover its current fixed
costs, the success ratio (the ratio of the number of successful
contracts to the number of all contracts) decreases together
with the growth of the debts reflected in the margin set (see
Fig. 2). Although a contract sometimes arrives that is big
enough for the fixed costs to be dissolved in the overall con-
tract price and the bid is accepted (the customer’s margin
boundary is not attacked, and thus the fixed costs are cov-
ered), thia happens only seldom, and mostly the agent has to
cover its expenses from its reserve. This is the most obvious
drawback of this algorithm variant – once the agent gets into
debts, there is a little probability that it will get a chance to pay
them back.

The second variant implements the learned safe limita-
tion of margins. In the first run, the agent sets the margin
so that it covers its current fixed costs. If the bid is rejected
the margin is reduced. This is done until a bid is accepted.
Then the agent sets the margins to correpond to average
acceptedmargin value. The margin set in a particular contract
does not need to cover all the daily fixed costs. However, if
several contract proposals arrive in one day, they can cover
the fixed costs when added together or even make a reserve
for the future (the provider benefits from turnover). Such a
strategy is safe, as it guarantees the acceptance of all bids (the
margins are set to a certain value below the customers’ margin
boundaries) and the provider may even be better off over a
period of time. Obviously, the provider does not get as much
as it might have got if it had chosen a less safe strategy. More-
over, there a situation may occur in which the benefit from the
turnover does not suffice to cover the agent’s fixed costs and

the agent may end up with debts. On the other hand, the pro-
cess of running into debt may be slower than in the first algo-
rithm variant.

The third variant implements the learned speculative lim-
itation of margins. At the beginning of the simulation the pro-
vider speculates and tries to learn each customers’ margin
boundary. Thus, it is less successful at the beginning. On the
other hand, once it approaches the best possible and most
reasonable margin, it begins to benefit from the turnover. The
learned margin guarantees acceptance of all bids and also the
maximum pay-off from the particular customer. It may also
run into debt, if the customers’ margins are too low and the
maximum benefit from the turnover does not cover the pro-
vider’s fixed costs. On the other hand, the provider cannot
defend himself against this situation and it is obvious that it
will run into debt at the minimum possible speed.

Fig. 2 and Fig. 3 introduce a comparison among all three
algorithm variants. While in the first variant the provider runs
into debt, in the second and the third variant it begins to be
better off. Although the average success ratio of the third vari-
ant grows more slowly at the beginning than the success ratio
of the second variant (due to speculation at the beginning),
the account balance shows that the profit gained was worth in-
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Fig. 1: Comparison of all the proposed limitations: average mar-
gins and customer’s margin boundary

Fig. 2: Comparison of all the proposed limitations: average suc-
cess ratios

Fig. 3: Comparison of all the proposed limitations: account ratios



curring a loss at the beginning. Let it be noted that the success
ratio was computed with respect to whole the simulation du-
ration, i.e. the third-variant success ratio would converge to
the second-variant success ratio, which converges to 100 % in
an infinite time horizon. (This assumption is based on the
provider’s knowledge of the customer’s (stationary) strategy.
The margins are then set in such a way the bids are no longer
rejected.)

5 Conclusion
This paper focuses on cooperation in competitive envi-

ronments and on means of competitive contracting. The role
of reconfiguration for decommitment optimization is intro-
duced, and an algorithm for contracting is proposed.

The motivation of our research is to explore possibilities of
reconfigurating in competitive environments and to use it as a
means for decommitment optimization with respect to the
resource load and profit maximization.

The development of algorithms for contracting (i.e. set-
ting of contract price and decommitment penalties) is crucial
for establishing and processing a cooperation in a competitive
environment. Contract setting techniques that assume both a
global view of the economy and the possible business oppor-
tunities to be common knowledge among the business parties
are not applicable, as such information is unavailable in
a fully competitive environment. The proposed approach
supports individual contract setting for each agent independ-
ently (with respect to its current state, resource load and
profit), supports full agent autonomy, and corresponds to real
environments.

The simple customer-provider scenario used in the ex-
periments proves the presented algorithms in competitive
contracting. These basic algorithms use stationary models
of the customer’s business strategies, and therefore they
would not be able to handle adaptive behaviours of custom-
ers. Contract-setting algorithms capable of handling adaptive
customer behaviours would require more complex non-
-stationary models of their business strategies, taking into
account both long-term and short-term considerations, and
also the use of approximations of the whole market situation
– e.g. by building sophisticated acquaintance models of the
business community. However, the proposed approach to
contracting sets up a solid base for the future research on the
decommitments and reconfiguration.
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