
1 Introduction and summary
A more or less satisfactory explanation of the numerous

experimental observations that the states of molecules, atoms
and atomic nuclei are quantized belongs to the most impor-
tant achievements of physics made, predominantly, during
the first few decades of the twentieth century [1]. It is, there-
fore, slightly surprising that the situation is still not yet en-
tirely satisfactory at present. In particular, one often has to
rely upon phenomenological models in nuclear physics where
our uncertainties concerning the “correct form” of the inter-
actions between individual nucleons are combined with the
enormous mathematical difficulties arising in connection
with a sufficiently reliable numerical solution of the underly-
ing quantum-mechanical many-nucleon problem.

One of the ways out of the latter theoretical as well as prac-
tical trap has been found in the elimination of as many irrele-
vant degrees of freedom as possible. Perceivable success has
been encountered in the so called interacting boson models,
where practical solvability of the complicated (i.e., partial
differential or integro-differential) linear Schrödinger equa-
tions for bound states,

H E nn n n� �� �, , ,0 1 �

has been achieved via their reduction to the “effective”, sim-
plified form

H E n neff
n
eff

n
eff

n
eff( ) ( ) ( ) ( )

max, , , ,� �� � 0 1 � ,

where H(eff ) is a finite-dimensional and, often, real and sym-
metric matrix.

In the latter context as briefly reviewed, e.g., in [2], a con-
flict survives between the numerical reliability and practical
tractability of the effective models. In the context of the so
called Dyson-mapping approximation technique, for exam-
ple, it was originally felt as an unpleasant surprise that the
requirement of the smallness of the dimension of the matrix
H(eff ) emerged in an apparently inseparable combination
with the necessity of moving to a less standard Hilbert
space H(physical) of states where the definition of the inner
(“scalar”) product between elements � � H(physical) and

� � H(physical) had to be modified,

� � � �� � �� � �, † 0 (1)

This trick very easily extends the applicability of the for-
malism of standard textbook Quantum Mechanics by the
transition to the various nontrivial, “non-Dirac” metric
operators. Of course, all the observable quantities must be
then represented by the operators �

(physical) which are self-
-adjoint in �

(physical).

Whenever one chooses a nontrivial metric �(physical)
� � in

�
(physical), all the operators �(physical) which are self-adjoint

in �
(physical) must obey the consistency condition

� �� �
( ) † ( )physical physical� �� � 1 . (2)

Unfortunately, confusion may (as it often does [3]) immedi-
ately arise in all the models where one employs, in parallel,
another, auxiliary but much more easily tractable Hilbert
space �

(unphysical), the scalar product in which is specified by
the unit metric �(unphysical) � I. For this reason, it has been
recommended [2] to call the operators �

(physical) [of eq. (2),
with � � I] “quasi-Hermitian”, while reserving the name
“Hermitian” solely for the subset of operators � for which
eq. (2) holds at the traditional “Dirac” special metric � � I.

The latter convention is believed to minimize the possible
misunderstandings, in spite of the apparently counterintui-
tive fact that all the operators of observables �

(physical) may
be called, strictly speaking, “non-Hermitian”, at least from
the point of view of the more conventional, albeit auxiliary,
Hilbert space �

(unphysical). The latter, apparently innocent-
-looking paradox demonstrated its full strength and impact
when Bender and Boettcher published their apparently sur-
prising observation [4] that certain remarkably elementary
(viz. ordinary differential) Hamiltonians H(BB) possess, in
spite of their manifest non-Hermiticity (with respect to the
most common Hilbert space L2(�	, 	)), real and discrete (i.e.,
bound-state-like) spectra.

It took a few years before the Bender’s and Boettcher’s
apparent puzzle was resolved. Independently, several groups
of people realized that in our present language and for
all the models in question we have L2(�	, 	) 
 �

(unphysical) [5,
6, 7, 8, 9, 10, 11, 12, 13, 14]. This means that inside a certain
quasi-Hermiticity domain � of parameters where the ener-
gies remain real [4, 7], all the models H(BB) � [H(BB)]† do sat-
isfy the necessary quasi-Hermiticity condition (2). One even
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realizes [2], [10] that there exist quite a few different metrics
� � �(physical) � I which can all be assigned to the “candi-
date-for-the-Hamiltonian” operator H � H†.

In what follows we intend to return to the problem of the
ambiguity of the assignment of an “optimal” �(physical) to a
given H � H†. For the sake of clarity we shall restrict our atten-
tion to the effective-Hamiltonian models described by the fol-
lowing real matrices of the chain-model form,

H

N g
g N g

g N
g g

N

N( ) �

�

� �

� �

�

�

1 0 0 0
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�

�
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�
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1
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�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

. (3)

Complicated as the problem may look for the general
N, we shall recollect and summarize some results of refs.
[15]–[20] and show that, and why, these models remain tracta-
ble, up to a large extent, by certain analytic, perturbative or
algebraic non-numerical techniques.

After a compact and more or less self-contained review of
the underlying physics in Section 2 we shall formulate our
project in Section 3. At the first few lowest dimensions N, we
shall then derive some consequences of the implicit secu-
lar-equation definitions of the energy spectra in the respective
Sections 4–9, with particular emphasis on non-perturbative,
strong-coupling results. Sections 10–12 will finally summarize
our observations and, in a climax of our present message, they
enable us to conjecture an extrapolation of some of the for-
mulae to all the finite dimensions.

2 ��-symmetry of the chain model (3)
Once we assume that all the matrix elements of H(N)-

remain real we observe that

� �H HN N( ) † ( ),� � �� �

�

�

�



�
�
�
�
�
�

�

�

�
�
�
�

1 0
0 1 0

0 1 0
0 1

�

�

� �

� �

� � �

�
�

. (4)

In the literature the latter formula is usually called �-pseu-
do-Hermiticity [10]–[13] (or, in the context of physics [4, 21],
��-symmetry) of H(N). Due to the exceptional simplicity of
its “parity-reversal” matrix factor �, the validity of eq. (4)
may also significantly simplify an explicit re-construction of
�(physical), proceeding in three steps. In the first step we imag-
ine that H(N) is non-Hermitian so that we may and have to
solve not only the standard Schrödinger’s linear-algebraic
eigenvalue problem

H n q n n NN
n

( ) , , , ,� �1 2 �

(giving all the right eigenvectors n of H(N) as its result) but
also the parallel, “left-eigenvector” linear algebraic problem
at the same eigenvalue,

m H m q m NN
m

( ) , , , ,� �1 2 � (5)

(note that n n� for the generic H HN N( ) ( )†� ). In the

second step we assume that the eigenvalues remain real

and non-degenerate (thus, in our notation, all our coupling
constants gj stay inside a real quasi-Hermiticity domain �) and
recollect the following explicit general formula for the metric,

� � �
�

� n nn
n

N

n� �

1

0, (6)

(cf., e.g., [10]–[13]) where any choice of the N-plet of the
real parameters �n defines an eligible Hilbert space �

(physical)

equipped with the inner product (1).

In the final step we notice that the “additional” problem
(5) can be re-written in the equivalent form

H n q n n NN
n

( )† * , , , ,� �1 2 � . (7)

Obviously, its solution [i.e., a key assumption of the feasi-
bility of an evaluation of the sum (6)] can be circumvented
because in the light of eq. (4) the “unknown” left eigen-ketkets
are all proportional to the “known” right eigen-kets multi-
plied by a diagonal matrix,

n Q nn� � .

Here the coefficients Qn are arbitrary. Their variability
represents in fact the freedom in the normalization of our (as
we can prove, biorthogonal [7]) basis (composed of the left
and right eigenvectors of H(N)). In the case of the real spec-
trum qn one can easily fix their choice in such a way that the
inner product becomes positive definite. Whenever necessary,
we may even re-scale their values to �1, – that’s why we called
these coefficients “quasiparities” in [7].

3 The extreme exceptional points
Secular-equation definitions � �det ( )H E IN � � 0 of the

energies degenerate to the polynomial equations in E2 � s,

s P A B s P A B sJ
J

J
J

J� � � ��
�

�
�

1
1

2
2 0( , , ) ( , , )� � � . (8)

Here we abbreviated A g J� 2 , B g J� �1
2 , …, Z g� 1

2, with

� �J entier N� 2 . In the J-dimensional space of our new, non-
-negative coupling parameters A, B, …, Z, all the spectrum
of the energies E s� � remains real only inside a certain
compact, hedgehog-shaped domain �.

Our main attention will be paid to the “spikes of the
hedgehog”, i.e., to the 2 J points where the boundary ��

( )N

forms certain protruded spikes. In the context of physics
these spikes represent the strong-coupling extremes in the set
��

( )N tractable as Kato’s exceptional points occurring in the
real domain [22].

One can notice that at all these extreme exceptional points
(EEPs) [with coordinates A(EEP), B(EEP), …, Z (EEP)], all the en-
ergy levels degenerate to the single value of E (EEP) � 0. This
follows from the up-down symmetry of the unperturbed levels
as well as of their perturbations. As a consequence, the EEP
secular equation acquires the form (E�E (EEP)�N � 0 so that in
the light of eq. (8), all of the EEP coupling strengths will
have to satisfy the set of the following J-plet of polynomial
equations,
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( , , ) ,

( ) ( )
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EEP EEP

�
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0 0( , , ) .( ) ( )A BEEP EEP
� �

(9)

Although the simplicity of their solutions is amazing, their
derivation is from easy. Let us now study this problem with a
step-by-step increase of the dimension.

4 Two-dimensional model of paper
[15]
In ref. [15] we paid attention to all the ��-symmetric real

matrices

H
c a

a c
[15] �

� �

� �
�

�
��

�

�
��

1
1

. (10)

All of their eigenvalues (i.e., eigenenergies) are known in
the closed form,

E c a� � � �( )1 2 2 .

Once we decided to ignore the “pathological” case with
c � cpath � �1 (giving complex energies), an elementary re-
-scaling enabled us to put c � 0 and get the first nontrivial
one-parametric version of our present class of models H(N).

Our main result was that one can guarantee the reality of
the spectrum in an interval �

(2) � (�1, 1) of our couplings
a � cos 	 with, say, 	 
�( , )0 . We also discussed several eligible
ways of suppressing the ambiguity of the metric. This task
proved easily achieved: We simply extracted the general met-
ric from eq. (2) via a real, Hermitian ansatz

Q
t t
t t

�
�

�
��

�

�
��

1 2

2 3
.

This enabled us to reduce all the construction to the single
condition

2 03 1 2t t t� � �( ) cos 	 .

Two free parameters survived and the latter relation de-
fined the value of t3. Once we set t Z1 1� �( )� and t Z2 1� �( )�
we have t Z3 � cos 	 as well as the overall-scaling interpreta-
tion of Z [16].

Once we had constructed the metric � compatible with
eq. (2), it remained for us to guarantee that our � was positive
definite. Fortunately, both the eigenvalues of � are available
in closed form,

� � 	� � � �Z ( cos1 2 2

so that the derivation of the final constraint � 	2 2� sin is
trivial.

5 Three-dimensional model of paper
[17]
Out of the generic three-by-three model of ref. [17] with

two free parameters,

H
a

a a
a

[17] �

�

� � �

� �

�



�
�
�

�

�

�
�
�

2 � �

� � �

� � �

the present one-parametric chain model H(3) is obtained in
the limit � � 0. Thus, the determination of the interval of the
quasi-Hermiticity �

( ) ( , )3 2 2� � is trivial since the secular

equation � � � �E a E3 24 2 0( ) is exactly solvable in closed
form.

6 Four-dimensional model of paper
[18]
The four-dimensional model of paper [18] contains four

free real parameters, but it contains our present two-paramet-
ric chain model with N � 3 as a special case. Such a reduction
simplifies the N � 4 secular equation

det

3 0 0
1 0

0 1
0 0 3

0

�

� �

� � �

� � �

�



�
�
�
�

�

�

�
�
�
�

�

E b
b E a

a E b
b E

and makes it equivalent to the quadratic equation for s � E2,

s b a s b a b2 2 2 2 2 410 2 9 6 9 0� � � � � � � � �( )

solvable in closed form,

s s b a b a b a a� � � � � � � � �� 5
1
2

1
2

64 64 16 42 2 2 2 2 2 4 . (11)

The discussion of the two-dimensional domain �
(4) of the

reality of these energies is entirely analogous to the previous
case. Also the set of the polynomial EEP equations remains
elementary,

A B B A� � � �2 10 3 92, ( ) .

The elimination of A leads to a quadratic equation for
B�3 giving a spurious solution A � 64 and B � �27 (which
would imply an imaginary coupling b) and the unique correct
solution A(EEP) � 4 and B(EEP) � 3.

7 Five-dimensional case
The model

H

b
b a

a a
a b

b

( )5

4 0 0 0
2 0 0

0 0 0
0 0 2
0 0 0 4

�

�

�

� �

� �

�



�
�
�
�
�
�

�

�

�
�
�
�
�
�

gives the central constant energy E0 � 0 so that its secular
equation

� � � � � � � � � �s b a s b a b a b2 2 2 2 2 4 2 220 2 2 64 16 32 2 0( ) (12)

is solvable in closed and compact form again,

E a b a a b� � � � � � � � �1
2 2 2 4 210 36 12 36

E a b a a b� � � � � � � � �2
2 2 2 4 210 36 12 36
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Thus, the triplet of the necessary inequalitites com-
prises the trivial simplex condition 10 � A�B, condition
36�12A�A2 � 36B [showing that B must lie below a parabola
Bmax � Bmax(A)] and condition ( ) ( )8 32 22� � �B B A [giving
the upper bound for A A A B� �max max( )]. In the EEP
context, two coupled conditions degenerate to the single
quadratic equation with the unique non-spurious solution
A(EEP) � 6 and B(EEP) � 4.

8 Six-dimensional case
The secular equation at N � 6,

det

5 0 0 0 0
3 0 0 0

0 1 0 0
0 0 1 0
0 0 0 3
0

�

� �

� �

� � �

� � �

E c
c E b

b E a
a E b

b E c
0 0 0 5

0

� � �

�
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�
�
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�
�
�
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�

�
�
�
�
�
�
�

�

c E

in its polynomial form for s � E2,

s b c a s

b c a b c a c

3 2 2 2 2

4 2 2 2 2 2 4

2 35 2

2 44 28 34 2

� � � �

� � � � � � �

( )

( 59 2

10 30 225 30 25

2

2 2

2 4 2 2 2 2 2 2 4 4

�

� � � � � � �

�

b c s

a c b c c a a c c b

)

25 150 02� �b

is still solvable in closed form. In the EEP extreme the full
solution of the triplet of eqs. (9) ceases to be easy but it still
remains feasible, giving

A B C N( ) ( ) ( ), , ,EEP EEP EEP� � � �9 8 5 6. (13)

9 Seven-dimensional case
By the same Gröbner-basis method as above we derive the

result
A B C N( ) ( ) ( ), , ,EEP EEP EEP� � � �12 10 6 7. (14)

It is again unique because one of the two rootsC� � �27 9 21
of the “first alternative” Gröbnerian “effective” equation
C C2 54 972� � and both the roots � �354 60 34 of the “sec-
ond alternative” equation C C2 708 2916 0� � � are negative,
while the only remaining positive root C� � 68 24318125.
gives the negative B C� �28 3 .

10 Extrapolation formulae of paper
[19]

By construction, quasi-Hermiticity domain � must lie
inside a simplex S,

A B C Z g g
K K

N K

J k
k

J

� � � � 
 � �
�

� �
�

�

�2 2
4

3

2

2 2

1

1 3
( ) ,�

even

(15)

and

A B C D Z
M M M

N M

� � � � � �
� �

� � �

�
2 3

3
2 1

3 2
,

odd.

(16)

This provides important information about the shape of
the domain �, obtained fairly easily by the extrapolation tech-
nique (cf. [19]).

In the light of the simplicity of all our previous EEP for-
mulae the extrapolation trick can be applied to them as well.
At the even N � 2K such an approach leads to the extrapola-
tion conjecture

A K B K

C K D K

( ) ( )

( ) ( )

, ,

, ,

EEP EEP

EEP EEP

� � �

� � � �

2 2 2

2 2 2 2

1

2 3 �

(17)

the validity of which we tested up to K � 6. In parallel one ar-
rives at the following odd-dimensional formula

A M M

B M M M M

C M

( )

( )

( )

( ),

( ) ( ) ,

(

EEP

EEP

EEP

� �

� � � � � � �

�

1

1 1 2 1 2

M

D M M

� � �

� � � �

1 2 3

1 3 4

) ,

( ) ,( )EEP
�

(18)

when N M� �2 1.

11 Verifications: Eight-dimensional
case

Even dimensions N � 2K are “anomalous” in having the
coupling a in the matrix

H

K z
z

b
b a

a b
b

K( )2

2 1 0

0 3 0
1 0

0 1 0
0 3

�

�

�

�

� �

� �

�

� � � �

� �

� � �

� �

� �
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z
z K0 1 2� �
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�
�
�
�
�
�
�
�

just once. This is reflected by the specific, “anisotropic” form
of the simplex (15).

Once we had revealed the general N-dependence of the
similar formulae, it was necessary to test these conjectures.
The eight by eight model with K � 4 played a key role in it
since the complexity of its non-numerical description is al-
ready quite perceivable. The situation is still not bad when the
circumscribed simplex with the definition

A B C D� � � �2 2 2 84

is sought. The subsequent EEP construction is much more
difficult. It is based on simultaneous solution of the quadratic,
cubic and quartic polynomial equations P A B C D2 0( , , , ) � ,
P A B C D1 0( , , , ) � , and P A B C D0 0( , , , ) � containing 13, 19 and
20 individual terms, respectively. Just a marginal simpli-
fication exists, e.g., in the P2 – case reducible to the 9-term
equation

1974 2 2 2

83 142 70 50

2� � � � � �

� � � �

( )B C D AD BD AC

A B C D

Still, a decisive formal merit of our model is reflected by
the survival of the simplicity of the final formula

A B C D N( ) ( ) ( ) ( ), , , ,EEP EEP EEP EEP� � � � �16 15 12 7 8. (19)
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In a test of the uniqueness of solution (19) one finds out
that it possesses seven real and positive roots D. Out of these,
the following three of them are negative and, hence, mani-
festly spurious,�203.9747095, �156.6667001, �55.49992441.
The proof of the spuriosity for the remaining four roots
0.4192854385, 5.354156128, 1354.675195 and, however
straightforward, becomes unpleasant and clumsy. For exam-
ple, the values of A are given by the rule 	×a � (a polynomial
in D of 16th degree) where the number of digits in the auxil-
iary integer constant 	 exceeds one hundred.

12 Odd dimensions and the test at
N � 9

It remains for us to discuss the models with odd dimen-
sions N � 2M�1,

H

M z
z

a
a a

a

M( )2 1

2 0 0 0 0 0
0 0 0 0

0 2 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0

� �

�

�

� �

� �

�

�

0 0
0 0 0 0 0 2

� � z
z M� �

�
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�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

and to test and verify the validity of the extrapolated formulae
at N � 9.

At M � 4 we were still able to evaluate the explicit form of
the secular equation,

14745600 7372800

2 220 2 2 2 04 5

� �

� � � � � � � �

A

C B A D s s

�

( )

and to re-derive the expected M � 4 EEP values by its direct
solution,

A B C

D N

( ) ( ) ( )

( )

, , ,

, .

EEP EEP EEP

EEP

� � �

� �

20 18 14

8 9
(20)

At a few higher M>4 we just re-confirmed the validity of
the extrapolated formulae (18) by their insertion in secular
equations.
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