
doi:10.14311/APP.2015.1.0029
Acta Polytechnica CTU Proceedings 2:29–33, 2015 © Czech Technical University in Prague, 2015

available online at http://ojs.cvut.cz/ojs/index.php/app

X-COPTER STUDIO

Michal Koutný∗, Ondřej Pilát, Patrik Černý, Maroš Kasinec

Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, Prague, Czech Republic
∗ corresponding author: xm.koutny+pair@gmail.com

Abstract. We present a project that aggregates various existing robotic software and serves as
a platform to conveniently control a quadrocopter, mainly for research or educational purposes. User
interface runs in a browser and other components are also made with portability in mind. We provide
a common interface that unifies different quadrocopter models and we implemented it for the Parrot
AR.Drone 2.0. The platform is data oriented, i.e., it is based on dataflow between user objects. We
implemented several such objects for: data recording and replaying, inertial and visual localization and
following a given path.

Keywords: robotics, quadcopter, IDE.

1. Motivation
Despite the fact that cheap hardware (such as Par-
rot AR.Drone 2.0 [1] or ready kits [2]) is available,
there are not many possibilities for application pro-
grammers to develop software for these robots without
need to distinguish between individual models.
Our aim is to provide a platform for development

of software for quadrocopters. The target users are
AI programmers or students and expected tasks are
general algorithms (basic example in Figure 1) for
quadrocopters. The result should work with any robot
compatible with our software (section 4.3). The test-
ing should be further simplified by running the ap-
plication without physical access to a quadrocopter
either by using a simulator or data previously captured
during live flights.

at(xcheckpoint.reachedCheckpoint) {
xcheckpoint.checkpoint =

nextCheckpoint();
},;

// x = 3 m, y = 1 m, z = 1.5 m
var cp0 = Checkpoint.new(3, 1, 1.5);
xcheckpoint.checkpoint = cp0;

Figure 1. Sample script that flies through computed
checkpoints. It assumes there is created a dataflow
graph with the node xcheckpoint in it.

2. Related Work
2.1. Middleware for Robotics
Probably most popular middleware for robotics is the
Robot Operating System (ROS) [3]. It supports com-
munication between objects using publish–subscribe
mechanism. It is open source, mainly targeted on
Linux platforms.

Similar project is Urbi SDK, developed by former
private company Gostai [4]. The current maintainer
is Aldebaran Robotics [5], unfortunately the commu-
nity around Urbi SDK is much smaller and much less
active in comparison with ROS. Reasons why we chose
Urbi SDK despite this fact are in the section 3.2.

2.2. Parrot AR.Drone 2 API
Part of our project is an API for Parrot AR.Drone 2.
Various other projects are dealing with this. There
is the official SDK [6] with C++ API, Con-
trolTower [7] that provide Java interface, a ROS pack-
age ardrone_autonomy [8], UObject for Urbi SDK [9]
or implementation of Czech Technical University [10].
Because none of the aforementioned fit to our re-

quirements for OS portability, stability, functionality
or documentation, we implemented our own (see the
section 4.3).

2.3. Ground Control System
There is official application for Parrot AR.Drone [11]
intended for mobile phone users allowing manual con-
trol and displaying only limited data from sensors.
The PC application ControlTower [7] allows control-
ling quadrocopter with specialized computer periph-
eries and has airplane-like GUI. More complex appli-
cation is QGroundControl [12] that cooperates with
Pixhawk project [13] that encompasses own hardware
and uses visual localization.

3. Used Technology
3.1. Architecture
Our system is divided into three components. First
interacts directly with a user, second controls the
robot and the last one connects the former two.
The components are separate processes that com-

municate with each other over network, with intention
to run components on different machines.

29

http://dx.doi.org/10.14311/APP.2015.1.0029
http://ojs.cvut.cz/ojs/index.php/app


M. Koutný, O. Pilát, P. Černý, M. Kasinec Acta Polytechnica CTU Proceedings

3.1.1. Client
Client software is used to create and launch user
scripts, edit them, manually control the robot and
visualize data (e.g., directly from quadrocopter’s sen-
sors).

Despite the technology challenges the client is thin –
running in a web browser.1

3.1.2. Server
The server component conveys communication be-
tween the client and the actual control machine (fur-
ther onboard). Its task is to control the access to
the onboard and monitor quality of the connection
between the client and the onboard. In the case the
overall connection latency (Client–Server and Server–
Onboard) exceeds preset limits, a warning message
is shown to the user. If the connection is lost, onboard
execution is correctly terminated and user is notified
too.

3.1.3. Onboard
The onboard is the main executive component. The
robot control and data processing run here because
it is closest to the robot. The onboard is executing
commands obtained from the client and sends back
various data selected by user.

The onboard component is supposed to run under
normal operating system.2 Our implementation ex-
ploits a PC that communicates with quadrocopter
via Wi-Fi. We did not test the onboard component
directly on a robot.3

3.2. Urbi SDK
Urbi SDK is a C++ middleware for robotics, which
we based the onboard component on. Basically it
provides support for communication between user
objects (UObjects) and schedules user jobs.
Communication is possible via so called UVars,

which are slots of UObjects. Sender just writes
to these slots and a receiver’s callback handles the
change of UVar’s value. This allows both apparently
asynchronous communication and really asynchronous
when a thread pool is used to run the callbacks. Fur-
ther, UObjects can run in different processes and Urbi
SDK ensures transparent messaging via TCP or UDP
sockets.
Orchestration user scripts (written in Urbiscript)

can be executed by the Urbi runtime. Urbiscript
is a prototype-based object-oriented language concep-
tually similar to JavaScript. It is possible to imple-
ment UObject functionality exclusively in the Urbis-
cript.

We chose Urbi SDK because of its portability (Linux
and Windows systems are supported) and the own

1Google Chrome is strongly recommended, though Mozilla
Firefox will also get by (without visualization of video data).

2We support Windows 7/8 and Ubuntu 14.04 systems.
3The hardware of Parrot AR Drone 2.0 theoretically should

be able to run our onboard with limited performance.

scripting language and runtime. Considered alterna-
tive was Robot Operating System.

3.3. NodeJS
NodeJS is a server-side JavaScript engine. Recently,
it became quite popular among developers of interac-
tive web applications and various modules [14] exist
that extend core functionality. It suited our needs for
the server component.

3.4. HTML5
Thanks to the standardization efforts many features
that were earlier common only for desktop applications
or via third party plug-ins (Flash, Java applets, native
plug-ins) are now implemented directly in the browser,
generally referred to as HTML5.
To make client as multi-platform as possible, we

decided to implement the client for the browser using
aforementioned HTML5 technologies. Most impor-
tantly, we use the web socket API [15] for sending
data back to the client and <video> tag to display
streamed video.

3.5. C++
The executive parts of the onboard component are
written in C++ (which is consequence of using Urbi
SDK). We utilize features of the C++11 standard,
mainly for threading and memory management.

4. Features
4.1. Dataflow Graph
We chose dataflow driven approach to describe the
user’s program. It consists of units of operation which
we call nodes. Each node has at least one input or at
least one output. Any operations are either results
of changes on the node inputs or are launched by an
external event hidden in a node (e.g., timer expiration,
a socket received data).

Urbi SDK itself encourages dataflow control by its
communication paradigm. We extended the original
mechanism to ensure syntactic and semantic compati-
bility between nodes.
Dataflow bears following advantages for the end

user.

4.1.1. Implicit Parallelism
Nodes are implicit synchronized on outputs-inputs
connections, thus avoiding excessive user effort. This
also ensures certain level of scalability on multiple
CPUs machines.

4.1.2. Separating Abstraction Levels
User can concentrate on high level objectives only,
implementation details are hidden in particular nodes.
On the other hand, a creator of a node is limited by
a particular node interface.

30



vol. 2/2015 X-Copter Studio

4.1.3. Visual Development
Each node defines an interface, which makes it possi-
ble to check what connections are possible (not only
syntactically but also semantically with flat system of
semantic types). In the end, user can assemble various
dataflow graphs interactively (Figure 2).

4.1.4. In-Time Data Inspection
Selected outputs of the nodes can be connected with
a special node that resends the data to the GUI where
the data are visualized on the fly (Figure 2).

4.2. Scripting
Only the dataflow graph of nodes is not enough for
controlling the quadrocopter. Thus, a user can write
scripts that are sent and executed on onboard. In such
scripts it’s possible to handle events occurring within
the dataflow graph or manually affect the dataflow.
The script execution can be paused and resumed (that
is a feature of Urbiscript, for instance useful for in-
tentionally infinite loops, see Figure 3 for Urbiscript
console).

4.3. Quadrocopters Unified API
The X-Copter Studio supplies a unified application
programming interface (denoted as XCI) for data
acquisition and control of quadrocopters. It is ready
for common sensors on quadrocopters and it can be
easily extended.
We implemented the XCI for one of the most pop-

ular quadrocopters – Parrot AR.Drone 2.0 and also
a simulated quadrocopter in the V-REP simulator [16].
Our Parrot implementation exploits asynchronous

socket events handling, which allows us to detect con-
nection failures and attempt to restore the connection
with the quadrocopter. The implementation further
supports full configuration of the Parrot AR.Drone 2.0
and reading data from all available sensors.

We use Parrot for its price, robustness and popu-
larity among research groups. The cost for this is ex-
tensibility – neither the hardware nor the software
on Parrot can be expanded. We have to deal with
unreliable communication over Wi-Fi and connection
failures.
Physical dimensions of the AR.Drone 2 with the

hull are 53 cm × 52 cm and it weights 420 g including
battery. It can fly for about 15 minutes with the more
powerful battery version (1500mAh).

The AR.Drone 2 provides a video stream in high def-
inition (720p) with 30FPS from front camera aimed
forward or QVGA stream with 60FPS from bottom
camera aimed to the ground, three-axes gyroscope,
three-axes accelerometer, three-axes magnetometer,
pressure sensor and ultrasound altimeter. The quadro-
copter sends raw and adjusted measurement from
gyroscope, accelerometer, ultrasound sensor and pres-
sure sensor with frequency of 200Hz. All data from
these sensors are accessible for user in the dataflow.

Quadrocopter firmware uses aforementioned sen-
sors to maintain tilt, rotation and vertical velocity of
the quadrocopter according to an external fly control
command. This control command u = (Φ, Θ, Ψ, ż) ∈
[−1, 1]4 consists of quadrocopter’s roll Φ, pitch Θ, yaw
rotation speed Ψ and vertical velocity ż. It should be
sent every 30ms for smooth movements.

4.4. Data Recording and Replaying
Thanks to the structured dataflow architecture, any
potentially interesting data can be captured and stored
in a file. We use text format which is portable and
allows convenient processing with data processing
tools. Data that are inherently binary aren’t sup-
ported, however, special case – image data are stored
with compression to a separate video file.

Recorded data are stored together with timestamps,
so it’s possible to “replay” them and test or debug
system’s response with real timing.

4.5. Localization in Unknown
Environment

We use quadrocopter’s onboard sensors to give the
end user information about the absolute position of
the aircraft. The localization is a node within the
dataflow graph, thus it runs exclusively on the onboard
component.

4.5.1. Inertial Localization
Our implementation expects accelerometers with ag-
gregated outputs in a form of horizontal velocity, al-
timeter and drone pose sensors (i.e., accelerometers
for roll and pitch angles and gyroscope and/or mag-
netometer for yaw angle). Sensor data are filtered
with extended Kalman filter (EKF) where we engage
physical model based on a similar project [17].

4.5.2. Visual Localization
To enhance absolute position estimate, we are pro-
cessing the video stream from the onboard camera.
We use monocular SLAM framework PTAM [18] that
estimates camera pose and position for each frame and
also builds a map of observed feature points. First, the
map is initialized from a pair of images where point
correspondence is based on optical flow and the initial
scale is estimated thanks to inertial localization. After
the initialization, the scale estimate is continuously
refined using method described in [17].

Data both from inertial and visual localization are
merged together in the extended Kalman filter (see
Figure 4) in separate update steps. The result from
PTAM (absolute position and quadrocopter’s pose)
is used to update the EKF, taking into account a delay
of visual localization and then recalculating prediction
of the current state.

31



M. Koutný, O. Pilát, P. Černý, M. Kasinec Acta Polytechnica CTU Proceedings

Figure 2. X-Copter Studio GUI. Top navbar indicated connection quality, upper half is filled with widgets that
display data from the onboard, lower half accommodates the editor with repository of nodes on the left, and connected
nodes on the right. At the bottom there are (left to right): dataflow control buttons, scripting console control buttons
and manual flight control buttons. The scripting console is hidden.

Figure 3. Urbiscript console. On the top – script
editor, middle – output of executed script, bottom
left – script execution control (surrounded with other
controls of X-Copter Studio).

4.6. Following Given Path

Path is represented as a list of checkpoints that drone
strictly follows. A checkpoint is a composite of world
coordinates and a tangential vector.4

4This vector specifies direction of quadrocopter’s heading
at the given checkpoint. This is intended to be used when
checkpoints should be followed as a spline curve.

Checkpoint Attainment
Quadrocopter achieves a checkpoint when it is in
a sphere around the checkpoint with 10 cm diameter
(according to the localization) and immediately con-
tinues to the next checkpoint in the queue. Flight to
the checkpoint is controlled by 200Hz PID regulator.5
Regulator uses data from the extended Kalman filter
in order to eliminate data delay and predict quadro-
copter’s current position in the world. Output from
the regulator is sent directly to the quadrocopter.

4.7. Runtime Configuration
Any configuration (parameters, calibration constants,
settings, etc.) is stored in human readable and editable
text files and loaded during runtime, thus avoiding
necessity of recompilation to apply changes.

The same configuration can be accessed both from
C++ and Urbiscript API.

5. Conclusion
We hope the X-Copter Studio will become used (at
least) for educational purposes since it provides suffi-
ciently high-level interface, for instance to prototype
planning algorithms.

5The frequency is induced by the dataflow, in this case it is
refreshed frequency of data from quadrocopter.

32



vol. 2/2015 X-Copter Studio

-0.5

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1 1.5 2 2.5 3
x [m]

-0.5

0

0.5

1

1.5

2

2.5

3

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
x [m]

y
[m

]

heading
path

heading
path

Figure 4. Example of a path tracked by the EKF. A square 2m × 2m was set up and quadrocopter was navigated
(with PID controller) to its vertices using inertial localization only. Supposed position is shown on the left plot. As
you can see, plot on the right shows more realistic pose and position thanks to visual localization (applied to the
original data). Alas, we don’t have any reference data for absolute comparison.

If it is proved as useful and practical, it is possible
to extend the software for other types of robots, not
only quadrocopters.

References
[1] Parrot. AR.Drone 2.0. parrot new wi-fi quadricopter.
[2015-02-08], http://ardrone2.parrot.com/.

[2] Bitcraze. The Crazyflie Nano Quadcopter.
[2015-02-08], http://www.bitcraze.se/crazyflie/.

[3] Open Source Robotics Foundation. ROS.org.
[2015-02-08], http://www.ros.org/.

[4] Gostai. Urbi. [2015-02-08], http:
//www.gostai.com/products/jazz/urbi/index.html.

[5] Aldebaran. aldebaran/urbi. [2015-02-08],
https://github.com/aldebaran/urbi.

[6] ARDRONE open API platform. [2015-02-08],
https://projects.ardrone.org/.

[7] javadrone – AR.Drone Java API – Google Project
Hosting. [2015-02-08],
https://code.google.com/p/javadrone/.

[8] M. Monajjemi. ardrone_autonomy – ROS Wiki. [2015-
02-08], http://wiki.ros.org/ardrone_autonomy.

[9] UrbiForge projects/Urbi 4 AR Drone. [2014-08-28],
http://www.urbiforge.org/index.php/Projects/
Urbi4ARDrone.

[10] T. Krajník, V. Vonásek, D. Fišer, J. Faigl. AR-drone
as a platform for robotic research and education. In
Research and Education in Robotics - EUROBOT 2011,
pp. 172–186. Springer Science + Business Media, 2011.
doi:10.1007/978-3-642-21975-7_16.

[11] AR.Freeflight. [2015-02-08],
http://ardrone2.parrot.com/#freeflight.

[12] L. Meier. QGroundControl GCS. [2015-02-08],
http://www.qgroundcontrol.org/.

[13] L. Meier, P. Tanskanen, L. Heng, et al. PIXHAWK:
A micro aerial vehicle design for autonomous flight
using onboard computer vision. Auton Robot
33(1-2):21–39, 2012. doi:10.1007/s10514-012-9281-4.

[14] Node Packaged Modules. [2015-02-08],
https://www.npmjs.org/.

[15] A. M. I. Fette. RFC 6455 – The WebSocket Protocol.
[2015-02-08], http://tools.ietf.org/html/rfc6455/.

[16] C. R. GmbH. Coppelia Robotics v-rep: Create.
Compose. Simulate. Any Robot. [2015-02-08],
http://www.coppeliarobotics.com/.

[17] J. Engel, J. Sturm, D. Cremers. Camera-based
navigation of a low-cost quadrocopter. In 2012
IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2012.
doi:10.1109/iros.2012.6385458.

[18] G. Klein, D. Murray. Parallel tracking and mapping
for small AR workspaces. In 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented
Reality. IEEE, 2007. doi:10.1109/ismar.2007.4538852.

33

http://ardrone2.parrot.com/
http://www.bitcraze.se/crazyflie/
http://www.ros.org/
http://www.gostai.com/products/jazz/urbi/index.html
http://www.gostai.com/products/jazz/urbi/index.html
https://github.com/aldebaran/urbi
https://projects.ardrone.org/
https://code.google.com/p/javadrone/
http://wiki.ros.org/ardrone_autonomy
http://www.urbiforge.org/index.php/Projects/Urbi4ARDrone
http://www.urbiforge.org/index.php/Projects/Urbi4ARDrone
http://dx.doi.org/10.1007/978-3-642-21975-7_16
http://ardrone2.parrot.com/#freeflight
http://www.qgroundcontrol.org/
http://dx.doi.org/10.1007/s10514-012-9281-4
https://www.npmjs.org/
http://tools.ietf.org/html/rfc6455/
http://www.coppeliarobotics.com/
http://dx.doi.org/10.1109/iros.2012.6385458
http://dx.doi.org/10.1109/ismar.2007.4538852

	Acta Polytechnica CTU Proceedings 2:29–33, 2015
	1 Motivation
	2 Related Work
	2.1 Middleware for Robotics
	2.2 Parrot AR.Drone 2 API
	2.3 Ground Control System

	3 Used Technology
	3.1 Architecture
	3.1.1 Client
	3.1.2 Server
	3.1.3 Onboard

	3.2 Urbi SDK
	3.3 NodeJS
	3.4 HTML5
	3.5 C++

	4 Features
	4.1 Dataflow Graph
	4.1.1 Implicit Parallelism
	4.1.2 Separating Abstraction Levels
	4.1.3 Visual Development
	4.1.4 In-Time Data Inspection

	4.2 Scripting
	4.3 Quadrocopters Unified API
	4.4 Data Recording and Replaying
	4.5 Localization in Unknown Environment
	4.5.1 Inertial Localization
	4.5.2 Visual Localization

	4.6 Following Given Path
	4.7 Runtime Configuration

	5 Conclusion
	References

