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Abstract. The paper describes a new numerical code for multigroup transient analyses with a thermal
feedback. The code is developed at Institute of Nuclear and Physical Engineering. It is necessary to
carefully investigate transient states of fast neutron reactors, due to recriticality issues after accident
scenarios. The code solves numerical diffusion equation for 1D problem with possible neutron source
incorporation. Crank-Nicholson numerical method is used for the transient states. The investigated
cases are describing behavior of PWR fuel assembly inside the spent fuel pool and with the incorporated
neutron source for better illustration of the thermal feedback.
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1. Introduction
Nuclear reactors are most reliable source of energy at
present time. The advantage of new fast neutron reac-
tor concepts is the possibility of the transmutation of
the 238U into the fissionable 239Pu, so the worldwide
resources of fissionable materials could be enlarged
when the fast neutron reactors will be commercialized.
However, it is necessary to carefully investigate the
transient states of these new concepts, because the re-
criticality after accident scenario may be achieved [1].
For this purpose, a new numerical code has been

developed within the frame of neutronic calculation
group at the Institute of Nuclear and Physical En-
gineering (INPE). The code has been used as the
basic step in understanding of transient state and
fast reactor R&D and we refer to it as TRANSOS.
The TRANSOS code is able to solve a time depen-
dent neutron flux distribution of slab systems with
respect to the thermal feedback in multigroup ap-
proximation. The power method with infinity norm
(Manhattan norm) is used for a calculation of station-
ary state [2]. The transient state is calculated by the
Crank-Nicholson numerical method [3]. It is possible
to define the geometry in the form of coarse mesh
intervals with material parameters assigned to each of
the mesh interval. Point and linear neutron sources
can be incorporated to the design with different flu-
ency for each investigated energy group of neutrons.
The boundary conditions have to be specified in con-
junction with design parameters such as temperature
of the system and power generation rate. Initial state
of neutron flux should be given for successful run. The
developed code can be used for academic purposes at
the faculty and for investigation of simple systems.
This paper follows the previous work [4] and next

sections describe calculation methodology of time de-

pendent and in-dependent solution, accuracy of the
methodology and analysis of two nuclear systems with
different 235U enrichment. Higher impact of the ther-
mal feedback can be observed on microscopic cross
section properties for low energy neutron interaction
with matter, so the thermal systems are investigated
to show this effect.

2. Calculation Methodology
2.1. Stationary state (time in-dependent

solution)
The code solves common neutron diffusion equation
with internal sources for the stationary state given
by [5]

Dg∆φg − Σa,gφg −
∑
h

Σg→hφg+

+
∑
h

Σh→gφh + χg
∑
h

νΣf,hφh = 0. (1)

Lower index g in all equations represents the neu-
tron energy group and D stands for the associated
diffusion coefficient. The first term represents the
leakage of neutrons from the system, the second term
represents absorptions (radiation capture), the third
represents scattering from the group to another group
h, the fourth represents contributions of scattering
from another group and the last term describes the
contribution of fission source to specified energy group
(χg is the proportion of neutrons emitted by fission
in group g, ν is an average yield of neutrons from
the fission). The Box Scheme was used for the dis-
cretization of examined area and therefore (1) can be
written in a numerical form (2) for two energy groups
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of neutrons [2, 4],
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where Σr represents the removal macroscopic cross
section (3), k represents spatial node, hk is the length
of the spatial interval, λ stands for the fundamental
eigenvalue, Σf is the fission macroscopic cross section,
Σs is the scattering macroscopic cross section between
energy groups of neutrons, and D̃ arbitrary coupling
coefficient (3) [2].
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2.2. Transient state (time dependent
solution)

2.2.1. Crank-Nicholson numerical method
The Crank-Nicholson method is often applied to the
diffusion problems and achieves good numerical sta-
bility for the transient states. The finite difference
method is used as for the stationary state. This
method is able to solve heat equation and similar
partial differential equations [3]

M
∂2U(x, t)
∂x2 = ∂U(x, t)

∂t
, (4)

where M represents material parameters and U is so-
lution of the differential equation. Applying the finite
difference method, the central node of the common
diffusion equation can be rewritten numerically for
the transient state as
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where the index k represents spatial node, index j
represents step time ( U ·,j stands for initial condition
of the function at present time step, U ·,j+1 is initial
condition of the function at next time step), the hk
length of the spatial interval, ht length of the time in-
terval, f(hk) is increment of the function U (particular
solution). The variables and unknowns from (5) can
be rewritten in the form (6) for the neutron diffusion

equation (1) and (2).
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where the last term S represents the external neutron
source. The heat diffusion equation

K

ρc

∂2T (x, t)
∂x2 + q̇ = ∂T (x, t)

∂t
(7)

can be similarly rewritten to [6]
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where
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Kk
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and where K represents material conductivity, ρ is
material density, c stands for material heat capacity,
q̇ is power generation, T stands for temperature, E
is an average released energy per fission in eV and
parameter e is an electron charge. Accuracy of the
above mentioned method is discussed in the next
subsection.

2.2.2. Accuracy of the Crank-Nicholson
method

The accuracy of the method for the initial and bound-
ary conditions (more in Section 3) is presented in
Fig. 1. The analytical solution of the differential equa-
tion for a homogenous slab system is sinus, so the
problem can be approximated by function f(x)

f(x) = a sin(bx) + c.
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Figure 1. Accuracy of Crank-Nicholson method.

In this case, the whole system is homogeneous sub-
critical nuclear system. It is necessary to insert the
external neutron source because the neutron flux will
never stabilize on non-zero value without it. The
external neutron source is linear, located between
217–227mm, with fluency 1.0× 106 s−1 in thermal
energy spectrum. Deviations between the modeled
problem and analytical solution are presented in Ta-
ble 1.

Parameter Mean value Dispersion Rel. error

a 111 935 126.1 0.1127 %
b 7.076 99 × 10−3 2.015 × 10−6 0.028 47 %
c −785.941 97.17 12.36 %

Table 1. Deviation between numerical and analytical
solution.

Amplitude (a) and shape parameter (b) are in accor-
dance with the analytical solution (Table 1). Deviance
in location parameter (c) is caused by the external
neutron source and by zero flux boundary condition.

3. Geometry of the Nuclear Slab
System

The investigated geometry represents middle cut of
one heterogenic VVER440 fuel assembly that is placed
in the middle. One edge of the investigated geometry
is represented by homogenous representation of the
heterogeneous fuel assembly. Control rod assembly
is placed on the opposite edge. This case was intro-
duced due to simulation of the transient state during
operational conditions.

Geometry is also simplified into one dimension and
some lengths are changed for faster convergence of
numerical calculation (Fig. 2). Red material repre-
sents UO2 (dimension d1 is 7 mm and is the same for
every red and orange material). Orange material is
the representation of UO2 with 3.35 % of 153Gd.
The two cases of the enrichment are investigated

(Table 2). Green is B4C (dimension d5 is 142 mm),

Figure 2. Graphical representation of investigated
nuclear reactor core.

Enrichment
Material Case 1 Case 2
UO2 5 % 22 %
UO2 + 153Gd 4.4 % 21.4 %

Table 2. Enrichment of UO2.

blue stands for H2O (dimension d2 is 5 mm, d3 =
19 mm, d4 = 10 mm). Purple is a mixture of the whole
area between x–y points (d5 is 142 mm). All cross
sections are obtained from ENDF/B-VII.1 library for
the temperatures of 296.3 K, 600 K and 1800 K, for the
discrete energies of 0.0253 eV and 2 MeV [7]. Isotropic
scattering is assumed and the diffusion coefficient can
be calculated according to (9) [8], where Σt stands
for the total macroscopic cross section, Σtr is the
transport macroscopic cross section, and µ̄0 represents
unsymmetrical parameter of neutron scattering (if
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isotropic scattering is applied µ̄0 = 0). In this case, a
molecular cross section of H2O is not considered, even
if the molecular cross section is higher than calculated
cross sections of particular nuclides [8].

D ' λtr
1
3 = 1

3Σtr
= 1

3
(
Σt − µ̄0Σs

) ≈ 1
3Σt

. (9)

More details about geometry input can be found
in [4]. It is necessary to note that this is the only the-
oretical approximation and that it is mainly because
the values of the macroscopic scattering cross section
were simplified with certain degree of uncertainty.

4. Initial and Boundary
Conditions

The zero incoming current boundary condition is used
in all cases of the neutron diffusion

α = J

φ
= 0.5,

where J is the neutron current and φ is the neutron
flux. This can be interpreted as that the environment
behind the boundary of the nuclear system is vacuum.
According to (2), the stationary state is represented by
proportional neutron flux distribution that is normed
to maximal value 1. It is necessary to set the initial
condition in the form of total power generation

P =
∫
V

E
( 2∑
g′=1

Σfg′φg′

)
edV. (10)

The absolute value of the neutron flux distribution
is calculated from the proportional neutron flux dis-
tribution (2) and from the initial power generation
condition (10). The power generation rate is calcu-
lated for the case 1 from the typical power generation
of VVER reactor (1375 MWth) and it is approximately
1.576 kW/m per the assembly

P [W/m] = Pth
ASSEMBLY NR ·HEIGHT =

= 1375× 106

349 · 2.5 = 1576,

where ASSMEBLY NR is the total number of fuel as-
semblies in the reactor and HEIGHT represents height
of the core. The power generation rate is the same for
the case 2 with higher enrichment to lower impact of
the thermal feedback to ensure the nuclear system’s
subcritical state. Temperature is kept at constant
296.3 K at the boundaries that correspond to Dirich-
let boundary condition. Temperature of the whole
system is also set to 296.3 K before the transient for
all cases. No thermo-mechanical physics is applied
(the densities of the particular materials are constant).
Also no fluid mechanics is applied (the heat diffusion
equation solves just thermal conduction equation) and
this simplification results in total temperature increase
of the whole nuclear system.

5. Results
5.1. Case 1
keff = 0.282 601 is calculated from the stationary state
of TRNASOS code for this scenario. This condition
may be achieved in spent fuel pool. The worst case
is simulated by the neutron flux corresponding to
the operational state before the transient (the power
generation is 1.576 kW/m). It is possible to observe
(Fig. 3) that the thermal energy spectrum of neutrons
decreases rapidly due to deep subcritical state of the
nuclear system. The same evolution can be seen in
case of fast energy spectrum of neutrons in Fig. 4.
The temperature is set to 296.3 K at the beginning of
the transient state. The power is generated by (10)
according to the neutron flux and the temperature
evolution is shown in Fig. 5. The temperature in-
creases up to 460 K and according to the temperature
change, the microscopic cross sections are modified.
The whole system is below melting point temperature
of the fuel.

Figure 3. Neutron flux distribution for energy group
0.0253 eV in Case 1 (the neutron flux decreases with
time evolution due to deep subcritical state).

Figure 4. Neutron flux distribution for energy group
2 MeV in Case 1 (the neutron flux decreases with time
evolution due to deep subcritical state).
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Figure 5. Temperature evolution in Case 1 with
keff = 0.282601 (the temperature decreases with time
evolution – the nuclear system is brought into safe-
conditions).

5.2. Case 2
The keff is equal to 0.982 693 in this case, due to
higher enrichment of 235U (Table 2). The neutron
source is incorporated within the core and its total
emission of neutrons is 1.1× 106 s−1 in the area be-
tween 217–227mm on x-axis. It corresponds to the
concept of super-thermal liquid-helium (4He) source
(UCN) [9] and portion of 1.0× 106 s−1 is in the ther-
mal energy spectrum. Subcritical multiplication can
be derived from

N∞ = S
1

1− keff
= 1.1× 106 1

1− 0.982 693 ≈ 108.

The result of subcritical multiplication formula is
consistent with the calculated results that are shown
in Fig. 6 and Fig. 7. The whole system starts from zero
power level. The transient state of the neutron flux is
stabilized approximately after 50 000 s. However, the
transient of the temperature evolution is represented
by higher inertia and the transient state is stabilized
in the region of 140 000 s (Fig. 8). The temperature
does not exceed 380 K.

Figure 6. Neutron flux distribution for energy group
0.0253 eV in Case 2 (nuclear system is stabilized after
subcritical multiplication for keff = 0.982 693).

Figure 7. Neutron flux distribution for energy group
2 MeV in Case 2 (nuclear system is stabilized after
subcritical multiplication for keff = 0.982 693).

Figure 8. Temperature evolution in Case 2 (temper-
ature is stabilized below melting point of fuel material
for keff = 0.982 693).

6. Conclusions
The successful application of the TRANSOS code was
demonstrated. It has been found that the maximum
value of the neutron flux and its temperature is located
in the middle of the system within the heterogeneous
region. On the other hand, the diffusion theory is
more appropriate for the homogenous problems and
calculation error increases with greater heterogeneity.
In all cases, the temperature does not exceed melting
point of fuel material. The code that was written
in C++ can be used for academic purposes at the
institute and for solution of simple nuclear systems.
It has been confirmed that the diffusion theory is

suitable for fast calculations and it is used during
development of theoretical reactor design. Therefore,
development of simple codes increases the knowledge
level of neutron physics and it can result in enhancing
of nuclear safety.
The contribution of 238U thermal feedback with

thermo-hydraulic properties of the system has to be
investigated in the future.
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