
doi:10.14311/APP.2017.11.0001
Acta Polytechnica CTU Proceedings 11:1–5, 2017 © Czech Technical University in Prague, 2017

available online at http://ojs.cvut.cz/ojs/index.php/app

COMPARISON OF LANGUAGE SUBSET AND LANGUAGE
EXTENSION BY SAFE RELATED INFORMATION APPROACH TO

SAFE SYSTEM DEVELOPMENT

Tomáš Brandejský∗, Vít Fábera

Department of Applied Informatics in Transportation, Faculty of Transportation Sciences, CTU in Prague
∗ corresponding author: brandejsky@fd.cvut.cz

Abstract. Presented contribution is dedicated to discussion of two different approaches into increase
of programming language safety. They are language subset and extension of original safety mechanisms.
As examples we used MISRA C/C++ subset and SPARK language builded on the base of ADA
language. In the last chapters we discuss novel approaches based on application of programmable
hardware which is described in VHDL language, which is also modification of ADA language. Especially
SPARK and VHDL languages represents novel approaches to safe system development which are now
discussed in relation to new Railway SW projects.

Keywords: MISRA, ADA, SPARK, VHDL, programmable hardware, software safety.

1. Introduction
Nowadays we can observe two opposite approaches to
modification of programming languages to be more
suitable to safe system development. The first is the re-
duction of chosen programming language expressions
to safe subset, like MISRA C/C++ [1, 2] and this
approach is also supported by today standards of safe
software development like ISO61508 [3] or EN50128
[4]. In the last few years, novel and partially opposite
development is expanded. It is based on extension of
original language by additional explanations contain-
ing description of such aspects of software, that are
not described enough by original language. Typical
example is SPARK [5] language precisiating original
ADA one [6] even though it was originally designed
as language specialized to safe control system devel-
opment.

2. MiSRA C/C++
MISRA C (Motor Industry Software Reliability As-
sociation) C language subset was developed in 1998,
latter it was updated and also there was developed
analogical support for C++ (MISRA C++). MISRA
C/C++ defines itself as guidelines. It defines language
subset in the form of rules partially suggesting good
practice solutions, frequently warning programmers
away of wrong application of the language. Especially
valuable of MISRA guideline are parts explaining why
was each rule formed, explaining what is the subject
of possible future problem. Applying of this rules
allows to write robust code with decreased probability
of malfunction.
Now it is possible to apply compilers and source

code checkers implementing MISRA guidelines to al-
low automatic static analysis of code. Even, there
exists free software tool clang-misracpp2008 [7] but
the development of this tool probably stopped be-

fore two years. From the practical viewpoint, MISRA
guidelines checker implemented in compiler is also
very interesting. It is even better than standalone
checker because checking in compiler runs in each
code making and does not require additional checking
operation step. Many companies producing compilers
for development of embedded systems based especially
on single chip micro-controllers, for example Keil soft-
ware company which is widely used by railway control
system developers community in our country.

There exists effort to implement MISRA rules into
GNU C/C++ compilers because these compilers are
free, proven in use and supports many processors and
micro-controllers. One of the first works in this areas
was [8], where authors describe its checker for GNU C
which is written in Ciao Prolog language into which
MISRA rules they were transformed. Ciao Prolog is
similar to GNU Prolog and is also free and compatible
with GNU one but it seems to be more advanced than
GNU Prolog in its design. This project probably is
not active now.

There was also European project within the frame of
ITEA3 call for development of GCC fork called GGCC
[9] with aim to implement MISRA rule checking into
GCC compiler. This project probably newer started
or produced no reasonable result. Thus it is possible
to conclude that now there is no applicable support of
MISRA for GNU C compilers and that GNU compilers
development effort now focuses rather to support of
parallel (super-)computers, like implementation of
ACC extension of standard C/C++ languages.

MISRA C specification is not public domain and this
fact might also cause small interest of GNU community
to implement this subset.

There exist also similar subset called High Integrity
C++ [10] by Programming Research, but also this
specification is not public domain as well as checking
tools.

1

http://dx.doi.org/10.14311/APP.2017.11.0001
http://ojs.cvut.cz/ojs/index.php/app


Tomáš Brandejský, Vít Fábera Acta Polytechnica CTU Proceedings

3. ADA language
Origin of ADA language falls into falls into 80’s of
previous century. This language was developed for
US Army applications as safe, strong typing program-
ming language supporting parallelism, inter-process
safe communication and defensive programming style
preventing programmers errors and decreasing the
need of testing. This Pascal (or Algol) like language
was adopted in avionics and nuclear industry and
it is referred by safe software system development
standards [3, 4].
Because the language was designed with respect

to extremely large scale control system design oper-
ated by US Ministry of Defence, it was designed to
eliminate maximum of programmers errors, ability to
detect large percentage of them during compilation
of code and with ability to operate in distributed en-
vironment with respect to possible communication
errors and system component faults.

The language was equipped by specific typing mech-
anism supporting defensive programming to support
ability of error detection by compiler. Defensive pro-
gramming is related to strong typing, which means,
that magnitudes between variables of different types
cannot be shared without explicit conversion. Because
mainstream programming languages like C offer lim-
ited list of types (integer, real, character), the use
of type control is able to discover only limited num-
ber of programmer errors when such languages are
used. On the opposite side, ADA language offers
ways how to define new data types e.g. by constrain-
ing of definition domain of sample type (e.g. type
secondfloornumbers is range 200..253; defines
data type which magnitudes are constrained to really
existing scale of numbers and allows to compiler to
identify each impossible magnitude caused by pro-
grammer or communication error, e.g. 0). Because
strong typing might be exhausting, when it is required
in situations when it brings to benefit, in ADA it is
possible to define subtypes, which magnitudes are
transformed automatically without explicit type con-
versions between original type and all its subtypes.

All data structures use closing clause unambiguously
defining its end to prevent mistakes caused by wrong
understanding of nested structures in the time of
development, testing and maintenance. On the end
of function and procedure definition it is supported
its name stating.
For many years, in mainstream programming lan-

guages the support of concurrent programming was
extraordinary. ADA language contains it from its
origin in 70’s. ADA allows not only define processes,
but it contains strong support of safe inter-process
communication and process synchronization called
rendezvous. Each process has defined so called entries
to accept messages sent by other processes and is able
to send messages to entries of other ones. But not
only. It is possible to choose, which messages will be
accepted in given state of process and it is possible to

define reactions to unexpected situations, especially
to fact, that given message was not received for given
time. Each process might define its local variables
and separate itself from others.

Due to its real time orientation, ADA language sup-
ports exception handling to solve unexpected situation
without program fail. There is present concept of mod-
ular programming which applied templates (modules
without precisely defined types, operators, procedures
and functions which might be precisiated later in the
time of final program linking. It allows e.g. to write
sorting algorithm library without knowledge of sorted
data type. Such library si then applicable to any
data type implementing assignment and comparison
operators.

Latter ADA adopted object oriented programming
concept but it is not widely used as e.g. C/C++, Java
and some other languages, especially due to high price
of commercial compilers and need of specific education
of programmers. Similarly like for C/C++, also for
ADA language there was effort to develop safe subset
to increase its (high) safety. Also standards [3, 4]
refers this subset but in reality nothing such exists.
The improving of ADA language was moving different
way and tends to SPARK language, especially due to
impossibility do make such simple programmers errors
as they are solved by MISRA for C/C++. Significant
part of such errors can not occur in standard ADA
and thus its improvement is much difficult, because
even original (full scale) ADA operates on different
(much higher) level of safety than e.g. C.

There exist support of ADA language based on
GNU compiler collection, but it means that there are
supported especially versatile operating systems like
Linux and common purpose processors. There is also
interesting, that compiler is not named ADA compiler,
but by acronym GNAT. It is caused by licensing, when
ADA compiler term can be used only for compiler sat-
isfying large (and thus expensive) verification, which
is out of scope of GNU community.

SPARK language is not pure subset. It also extends
ADA code by additional information to eliminate po-
tential ambiguities and insecurities hidden in ADA
source codes. The main changes to standard ADA
language are the following:
• The use of access types and allocators is not per-

mitted (term access in ADA denotes pointer – more
frequent term known from the other programming
languages, its misuse might cause significant errors
hard to discover by testing).

• All expressions (including function calls) are free
of side-effects. This improvement was reached by
incorporating of additional description of use of
variables and symbols visible from neighborhood to
prevent e.g. mistaking of global and local variable
of the same name.

• Aliasing of names is not permitted in general but the
renaming of entities is permitted as there is a static

2



vol. 11/2017 Comparison of language subset and language extension

relationship between the two names. In analysis
all names introduced by a renaming declaration are
replaced by the name of the renamed entity. This
replacement is applied recursively when there are
multiple renames of an entity.

• The goto statement is not permitted.
• The use of controlled types is not currently permit-
ted.

• Tasks and protected objects are permitted only if
the Ravenscar profile (or the Extended Ravenscar
profile) is specified. Ravenscar profile denotes set
of pragmas influencing compiler work to prevent
some possibly unsafe construction in ADA code.
Ravenscar profile is available in standard ADA too,
in SPARK is is not option but he standard.

• Raising and handling of exceptions is not currently
permitted (exceptions can be included in a program
but proof must be used to show that they cannot
be raised).

MISRA C/C++ especially eliminates confusing struc-
tures which might be understand differently by com-
piler, programmer and structures which are differently
understand by different compilers, especially due to
vague language definition (it is especially problem of
C language, C++ in its last version was significantly
improved, precisiated). For example if there is used
condition ((x==A)&&(y==B)), there is not defined
in language specification if the sub-expression (x==A)
is evaluated as the first or the second. It is no prob-
lem until we do modification of this condition to form
((x()==A)&&(y()==B)). In this new condition x and
y are not static objects (variables), but they are func-
tion calls and functions might contain so-called side
effects, in this case they might operate the same global
variable and thus the results of calls of functions x()
and y() might be influenced by call order.

This subset has also many rules eliminating confus-
ing structures causing misunderstandings by program-
mers and testers. MISRA subsets contain tens such
confusing structures. E.g. it is possible to mention
constants starting with zero (they are understood by
compilers as octal numbers by definition), problem of
nested structures if-else which might not contain else
branch and no terminal symbol stopping this structure
is defined in the language and so on.

4. SPARK
SPARK language introduces explicit description of
use of global objects (and commonly objects defined
on higher level of visibility) called dependencies. The
use of these additional descriptions is known from
design by contract methodology, which was on the
origin of such languages as Eiffel [11]. This methodol-
ogy prescribes that software designers should define
formal, precise and verifiable interface specifications
for software components, which extend the ordinary
definition of abstract data types with preconditions,

postconditions and invariants. Preconditions are con-
ditions which must be satisfied to enter the following
section. Opposite postcondition must be satisfied on
the end of the block and the invariant must be valid
inside the block.

5. VHDL
VHDL (VHSIC Hardware Description Language)
[12] is now frequently used in programming of
field-programmable gate arrays. It describes structure
and/or behaviour of digital hardware. VHDL is
similar to ADA language both in concept and
syntax (parallel processes, subtypes, ...). It was
primarily proposed for simulation, now the VHDL
description is an input for synthesis tool instead
of schematic diagram to produce final design. The
interesting question is, if the similarity of VHDL
and ADA languages cannot be used to description
of both SW a FPGA implementation of systems
with high requirements to Reliability, Applicability,
Maintenance and Safety. Simulation of system
described by VHDL language is not straightforward
due to need to respect signal and not process oriented
nature of FPGA. This nature caused presence of
sensitivity list in VHDL code. In VHDL, the proces
statement has an part called sensitivity list. The
syntax is as follows:
[process_label:]process[(sensitivity_list)]
declarative_part
begin
statement_part
end process[process_label];

Example:
ANDGate1: process (A,B)
begin
Y <= A and B after 5 ns;
end process;

The sensitivity list consists of input signal iden-
tifiers separated by commas. Sensitivity list is
important at the moment of the simulation. During
the initialization phase of simulation, the process
runs and it assigned initial values of signals and
variables (signal Y in our case). Then the process is
suspended. If the any signal listed in the sensitivity
list is changed, the process is resumed and executed.
The sensivity list after the process keyword is
syntactically optional, but we can really say that
is mandatory. The sensitivity list placed after
the process keyword can moved at the end ot the
process section and written like the wait on statement:

ANDGate1: process
begin
Y <= A and B after 5 ns;
wait on A, B;
end process;

3



Tomáš Brandejský, Vít Fábera Acta Polytechnica CTU Proceedings

Figure 1. Corresponding schematic diagrams to
VHDL code related to simulation.

The process having sensitivity list after process
keyword must contain no wait on statement. If
some signal is missing in the list, it affects nat-
uraly the simulation. For example, signal B is missing:

ANDGate1: process (A)
begin
Y <= A and B after 5 ns;
end process;

Let consider the set of simulus: both signals are
set to 0 at time 0ns, A signal is changed to 1 at
10ns, B signal is changed to 1 at 20 ns. The result
of simulation in Isim (a part of XILINX ISE Design
Pack) is constant zero signal Y, because the process in
not activated at the time 20 ns due to missing signal B
in the sensitivity list. While process ANDGate1 really
describes combinational AND, ANDGate2 process has
sequential behavior.

We show one more example of code and correspond-
ing schematic diagrams to simulation (Fig. 1).

multiplexor1: process (S, I0, I1)
begin
if S = ’0’ then Y <= I0;
else Y <= I1;
end if;
end process;

multiplexor2: process (S)
begin
if S = ’0’ then Y <= I0;
else Y <= I1;
end if;
end process;

In simulation, the output Y of multiplexor2 process
changes only if event on S occurs. It means that
output Y follows the value of I0 at the moment of
falling edge on S and value of I1 at the moment of
rising edge on S.

6. Synthesis
Processes ANDGate2 and multiplexor2 have sequen-
tial behaviour during the simulation with ISim. How

process these codes synthesis tools XILINX ISE 12.4?
If a signal is missing in the sensitivity list, tools writes
a warning like "I0 should be on the sensitivity list
of the process". If signal Y is listed in the sensivity
and it Y an output of the entity, the VHDL compiler
writes an error "y with mode ’out’ cannot be read". If
Y is an internal signal, it can state in the sensitiv-
ity list without warning or error. But all variants of
code lead to the same RTL (Register Transfer Level)
– combinational logic – AND Gate and multiplexor.
Syntesis tool decides if it uses combinational logic or
flip-flop according to typical VHDL code structures
(if clk’event and clk = ’1’ then for flip-flops).

So, if we forget to put a signal in the sensitivity list
and if we ignore warnings, the simulation of the code
and the behavioral of the target design can be different.
The reason is: to put all input signal in the sensitivity
list and or use a variant of the sensitivity list with
keyword all, which was added into new specification
of the language. The gcc compiler has -wall switch,
that cause to stop compiling also if a warning occurs.
Switch -wall is recomended in C language if we create
a safety software. Synthesis tools (XILINX ISE) have
usually no switch like -wall, Vivaldo Design Suite
from XILINX makes possible to change severity from
warning to errors.

As seen, VHDL, although declared as language
with safety properties, has also some weak points. A
question is: Wouldn’t it be suitable to extend VDHL
compilers in the sense of -wall switch and to add a
variable list like in SPARC, espetially, if VHDL is
speculated as a language for railway systems? By the
way, rules for safety design using VHDL was presented
in [13].

7. Discussion
VHDL language uses control structures and program-
ming methodology analogical to original ADA lan-
guage. It is the subject of future research, if it is
possible to modify it in the way analogical to SPARK
to increase its safety and analysis if such extension
could bring significant increase to safety due to influ-
ence of hardware (gate array) to it.

8. Conclusion
The presented paper brings analysis of impact of two
basic methods to increase language safety to cover
safety requirements of systems working on high safety
integrity levels, e.g. on railways. It is not only focused
to comparison of ADA and SPARK languages but it
is illustrated on problems bring by implementation of
VHDL simulator designed with respect to describe safe
system by single language without need to distinguish
if this system will be implement by HW or SW.

References
[1] Guidelines for the use of the c language in critical
systems, March 2013. ISBN 978-1-906400-10-1
(paperback), ISBN 978-1-906400-11-8 (PDF).

4



vol. 11/2017 Comparison of language subset and language extension

[2] Guidelines for the use of the c++ language in critical
systems, June 2008. ISBN 978-906400-03-3 (paperback),
ISBN 978-906400-04-0 (PDF).

[3] Iec 61508 – electronic functional safety package.
[4] En50128: Railway applications – communications,
signaling and processing systems – software for railway
control and protection systems, 2011.

[5] Iso/iec 8652:2012(e). ada reference manual. Copyright
©1992, 1993, 1994, 1995.

[6] Spark 2014 reference manual. Copyright ©2013-2016.
[7] "https://github.com/rettichschnidi/clang-
misracpp2008".

[8] G. Marpons. A coding rule conformance checker
integrated into gcc [online]. "babel.ls.fi.upm.es/ gmar-
pons/pubs/PROLE08Codingrules.pdf".

[9] Ggcc reseny mandrivou v ramci itea3.
[10] "http://www.codingstandard.com/section/index/".
[11] Eiffel language [online]. "http://www.ecma-
international.org/publications/standards/Ecma-
367.htm".

[12] Ieee standard vhdl language reference manual, 2000.
[13] T.Musil. Návrh metodiky pro vývoj a verifikaci
bezpečných algoritmů implementovaných v dynamicky
rekonfigurovatelných FPGA (Methodology for design and
verification of algorithms with demands for safety on
dynamically reconfigurable FPGA), doctoral thesis.
Czech Technical University, 2015.

5


	Acta Polytechnica CTU Proceedings 11:1–5, 2017
	1 Introduction
	2 MiSRA C/C++
	3 ADA language
	4 SPARK
	5 VHDL
	6 Synthesis
	7 Discussion
	8 Conclusion
	References

