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Abstract. Cost of experimental testing of materials and structures subjected to mechanical loading
often constitutes a significant portion of a project budget. Therefore a collection of data in a maximum
possible amount is desirable. Extensometers and strain-gauges attached to the specimen surface often
fail and cannot provide full-field information about the development of displacements and strains.
Digital Image Correlation (DIC) is capable of providing such information. Unsuitable texture or
artificially applied pattern, essential for DIC analysis, can spoil the DIC outcomes completely. An
additional investment into preparation of new experimental testing can be avoided with the use of tools
employing algorithms for stochastic pattern assessment. The development of such algorithms and their
implementation into an open-source DIC software is the goal of the presented research.
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1. Introduction

The measurement of strains and displacements is uti-
lized when investigating behavior of materials or spec-
imens in laboratories, but also for assessment of ex-
isting structures. Traditionally, contact measurement
techniques have been used, but these introduce chal-
lenges in terms of accuracy, require sufficiently flat
surface, and their attachment requires a lot of ef-
fort. The group of contact methods includes strain
gauges, extensometers, or linear variable differential
transformers (LVDTs) [1].

Contact methods techniques have a few drawbacks
compared to optical full field monitoring: the strain
must be within a certain range and is averaged over the
strain-gauge length, the measurement is accomplished
at discrete locations, and the investigated surface must
be smooth enough to attach the gauge.

Quite recently alternatives to non-contact mea-
surement have been developed. These include
e.g., laser vibrometry, laser range finders, opti-
cal correlation methods, interferometry, moiré, or
photo/videogrammetry [2, 3]. Optical measurements,
such as Digital Image Correlation (DIC), are capable
of capturing even the most complex deformation until
the ultimate material failure [3, 4]. Because of that
reason, optical methods became accepted in the field
of experimental solid mechanics. The availability of
compact and sensitive light sources, detectors, opti-
cal components, and powerful computers have been
promoting the use of DIC in both commercial and
academic research. The full-field data can be easily
processed and provides data valuable for engineers
who are used to employing finite element programs in
their calculations.

2. Digital Image Correlation
DIC became indispensable to monitoring and analyz-
ing a development of displacement or strain fields over
time by matching stochastic pattern of deformed im-
ages with respect to a reference one [5]. The method
is capable of capturing strain localization on a surface
of a loaded structure (such as plasticity or cracking) in
any direction. As DIC tools for 3D analysis emerge [6],
the method is becoming more versatile and widely
used in the industry and research.

DIC is not only limited to the relative measurement
of discrete points as conventional contact methods and
is frequently more accurate than monitoring by means
of extensometers or strain-gauges that often suffer
from imperfect attachment to the measured surface.
Moreover, the use of DIC can significantly reduce the
cost of the experiment. DIC reached its maturity
during last decade owing it to the fast and successful
development and elaboration of computers, digital
cameras and specialized software for image processing.
DIC has even been characterized as “a major develop-
ment in the art of experimental mechanics” [7]. The
boom of DIC has been reflected in the emergence of
new commercial and open source software to perform
DIC with differently optimized correlation functions
and calculation methods, most recently summarized
by Pan et al. [8].

2.1. DIC Algorithms
DIC utilizes a correlation algorithm to obtain displace-
ments and subset deformations by identifying areas
of matching grey-scale values between the speckle
pattern in each subset of deformed and underformed
(reference) images (Figure 1). To facilitate the corre-
lation, a stochastic speckle pattern must be applied
(if not present naturally) to a specimen surface in
order to provide a random grey-level variations at
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the sufficient quality of which is fundamental to the
precision of the measured displacement data. It is
well established that the trade-off between the data
resolution and precision is affected by the quality of
a pattern.
To perform DIC, each image must be divided into

a grid of interrogation cells, or subsets, containing
a finite number of pixels. Resolution of the data is
maximized by reducing the size of the subsets, but as
the interrogation cell size decreases, the uncertainty
in the strain measurement increases due to a reduc-
tion in the number of features to track within the
subset [9]. Therefore, the resolution and accuracy
of the displacement and deformation fields are lim-
ited by the total number of pixels within the images.
The center position of each target subset is obtained
through searching the peak position of the correlation
coefficient field and its deformation is calculated using
an iterative approach [10, 11].
DIC has traditionally utilized subset-based local

approach [5] that has been very well developed and
widely used in commercial or academic DIC pack-
ages. However, there are certain drawbacks that make
the method useless for some applications, such as ex-
periments producing high strain gradients [12]. The
reason is non-continuity of the displacement field, as
the displacements of the subsets are sought separately.
Therefore smoothing of the noisy displacement field
is required [8, 9, 11]. A local polynomial smoothing
over a rectangular area (strain window) is usually
employed [8]. The amount of smoothing is controlled
by the subset size, step size, and strain window size.
The results are then highly dependent on setting these
parameters by a user [13].

An alternative global approach has been developed
quite recently based on the procedures used in the Fi-
nite Element Method (FEM) [14, 15]. Using the global
DIC approach, a complete element mesh is tracked on
images, ensuring C0-continuity1, resulting in elimina-
tion of noise in strain fields. This method was initially
proposed by Cheng et al. [16] and later Besnard et
al. developed the Q4-DIC [17] with implementation
of a bilinear (Q4) or quadratic (Q8) mesh. The global
algorithms may be refined using user experience, or
using adaptive mesh refinement [18].

2.2. DIC accuracy
The accuracy of DIC is an issue frequently discussed
by both, theoreticians and experimentalists [19, 20].
Although originally restricted to the size of one-pixel,
various sub-pixel techniques have been proposed and
used to improve the method accuracy. The most pop-
ular techniques include curve-fitting, gradient-based
and Newton-Raphson algorithms. The last two cases
are based on the identification of the parameters that
define the mapping of a subset of pixels in order to

1Ci differentiability class corresponds to the existence of i
derivatives of a function. The class C0 consists of all continuous
functions.

Figure 1. Example of the subset tracking procedure
using DIC.

maximize the image correlation. The results show
that the Newton-Raphson approach is considered as
the most accurate and stable. Other interesting ap-
proaches such as genetic algorithms, finite element
interpolations and B-splines are reported in [8] but
they generally appear to have a lower performance.
Bing et al. [21] compared performance of three most
used sub-pixel techniques by simulating image distor-
tions, demonstrating the suitability of Newton-Rapson
approach.
Besides the choice of the most suitable DIC algo-

rithm, other factors substantially influence the DIC
accuracy. The measurement errors may be classified
into two categories: (i) systematic experimental errors
such as bad calibration and setting of image acquisi-
tion system and (ii) errors produced by correlation
algorithm.

The experimental errors are related to variations in
illumination and the quality of the acquisition system,
i.e., the noise during the acquisition and digitaliza-
tion, image distortion, or position of the camera with
respect to the monitored surface. The errors related
to the correlation algorithms arise from inappropriate
selection of correlation methods or input parameters,
such as subset size, correlation function, sub-pixel
algorithm, shape function, or interpolation scheme.

3. Stochastic Pattern Assessment
A majority of research into the accuracy of DIC is
focused on correlation algorithms and processing pa-
rameters (recall Section 2.2), such as subset size [22],
shape function selection [23], or methods of obtaining
sub-pixel accuracy [24]. Less attention has been paid
to the effect of the quality of the speckle pattern. It
is important for the artificial pattern or natural tex-
ture to be adjusted in accordance with the expected
displacement field in order to maximize measurement
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accuracy, as speckles can be both too large and too
small for the particular measurement [25]. Quantita-
tive error analysis [26–29] shows that the measurement
error depends crucially on the presence of large in-
tensity gradients within the pattern. Therefore, the
technique in most cases requires a specimen prepara-
tion procedure to enhance the surface texture, since
the natural one does not provide a required quality
in terms of intensity gradients and speckle-size distri-
bution.
Pattern assessment has been discussed by a few

authors [5, 30, 31], offering a number of methods to
evaluate the quality of applied patterns. Pan et al. [32]
presented a number of assessment criteria based upon
the local subset intensity gradients [20] and the global
mean intensity gradient (MIG) throughout the image.
The latter criteria showed a good agreement to re-
sults obtained numerically. The benefit of applying
the global criteria is that these are astraightforward.
High MIG values typically result in smaller bias and
less dispersion in DIC measurements. On the other
hand, Crammonde et al. [33] objected that global pa-
rameters, such as MIG, are not sufficient to evaluate
strain accuracy. Based on their findings, simple means
of a randomness assessment is to employ the outcomes
of the Shannon entropy theory [34].
Cintrón et al. [35] demonstrated that the speckle

size should range from 2×4 px for a high accuracy
in the strain measurement. The speckle size should
have a lower limit according to the study by Sutton
et al. [5] of 3×3 px.
In the presented study, various patterns produced

by the spraying white / black dots on a contrast
background were investigated. In addition, natural
textures of various materials were studied as well,
to demonstrate their performance. The knowledge of
a texture suitability is essential when monitoring exist-
ing structures where application of artificial patterns
is not possible. To eliminate the impact caused by
image acquisition system (such as the distortion of the
camera lens, lighting variation, etc.) during the exper-
iment, numerical approach was utilized to investigate
the relationship between Shannon entropy, mean in-
tensity gradient, values of correlation coefficient, and
error in DIC measurements. The explanation of the
mentioned parameters is provided next.

3.1. Normalized Cross-Correlation
Correlation between two signals (also reffered to as
cross-correlation) is a standard approach to feature
detection and image registration [36–38]). The nor-
malized form of correlation takes into account intensi-
ties relative to the highest one, thus eliminating the
sensitivity to changes in illumination intensity. How-
ever, it does not have a correspondingly simple and
efficient frequency domain expression. For this rea-
son, normalized cross-correlation must be computed
in a spatial domain and fast spatial domain matching
methods had to be developed. Detailed description of

cross-correlation equation is beyond the scope of this
article. Reader can find it in Barnea et al. [39].

3.2. Mean Intensity Gradient (MIG)
MIG was proposed by Pan et al. [32] as a global pa-
rameter for evaluating the quality of a speckle pattern
over the entire domain. Both, a mean bias error and
standard deviation of measured displacements are in-
fluenced by the MIG of the speckle pattern. The
speckle pattern with a large MIG is supposed to pro-
duce small displacement measurement errors. MIG is
defined as

δf =
W∑
i=1

H∑
j=1
|Of (xij)|

1
W ×H

, (1)

where W and H are the image width and height in
pixels, |Of (xij)| =

√
fi (xij)2 + fj (xij)2 is the modu-

lus of the local intensity gradient. fi (xij) and fj (xij)
are the i- and j-directional intensity derivatives at
pixel (xij) respectively, which can be computed using
a central difference algorithm.

3.3. Shannon Entropy
A high Shannon entropy value indicates a high level of
texturing, or broadness in the greyscale distribution
of the image, beneficial for maximizing the correlation
function peak when a correct match has been found.
The Shannon entropy parameter is defined as [40]

Ψ =
W∑
i=1

H∑
i=j

f(xij)log (f(xij)) . (2)

4. Assessment of Patterns and
Textures

Randomly distributed speckles must not exhibit any
preferential directions. High contrasts are required
to provide sharp peaks in the correlation function.
To test this requirement, initial synthetic tests on
samples of 400×400 px were performed on six model
patterns (Figure 2). The patterns / textures were
tested with respect to four quality indicators: value
of cross-correlation coefficient for two different subset
sizes (10×10 px and 30×30 px), Shannon entropy, and
MIG. The summary of the investigated patterns and
textures is provided in Table 1.

Based on the values of normalized cross-correlation
functions presented in the form of surface plots in
Figures 3 and 4, it can be concluded that the corre-
lation function peaks can be highlighted by setting
bigger subset size since these contain more distinct
features. Especially in the case of small subset size,
10×10 px, the correlation peaks on coarse textures
could not be clearly identified. This could lead to huge
errors of DIC measurements in the case of significantly
distorted images. However, the findings cannot be gen-
eralized, since in some patterns the cross-correlation
correlation function does not exhibit any distinct peak
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(a) . fine spray pattern (b) . coarse air-brush pattern (c) . white sprayed dots

(d) . natural texture of concrete (e) . masonry wall (f) . texture of wood

Figure 2. Investigated artificial patterns (top) and natural textures (bottom).

in for small subsets, while correlation of the larger one
results in unique match and low value of mean correla-
tion coefficient (cf. Figures 3(b,f), 4(b,f), and Table 1).
Therefore, the pattern assessment based on the the
mean value of the cross-correlation function must be
carried out for any subset size independently. More-
over, a statistical information about number of peaks
in the form of a decay in the power law distribution
would provide more accurate description.

Based on observation of distribution of correlation
coefficient a power law distribution can be assumed
(Figure 5, 6). The power law function is defined by
equation yp = x−α

p , where α is the decay parameter
which provides information about the distribution of
correlation coefficient over the investigated domain.
Larger α indicates smaller amount of unwanted corre-
lation peaks which is desirable.
It is also clear that neither Shannon entropy nor

MIG are capable of providing clear indication of the
pattern quality since these two are not in agreement —
once the pattern is, relative to other ones, regarded as
superior to others based on Shannon entropy, MIG pro-
vides completely different results, see Table 1. There-
fore, new more universal criteria taking into account
size, contrast, and size-distribution of speckles should
be proposed.

5. Virtual Stretching of
Patterns and Textures

The artificial patterns and natural textures were tested
in the proof-of-concept experiments carried out virtu-
ally on a computer by prescribing a constant defor-
mation. Special attention was paid to the ability of
the pattern to provide high-accuracy measurements
at deformations reaching 5%, at which poor patterns
fail [41].
The evaluation and testing of patterns was per-

formed using own MATLAB scripts by placing virtual
extensometers at the edges of the tested samples. In
this initial study the images containing 8-bit speckle
patterns were virtually stretched up to 5% in 10 steps.
Image sequences were then evaluated in open-source
2D-DIC software package Ncorr [10] with the same
setting of parameters. Subset sizes of 10 px and 30 px
were chosen to demonstrate the correlation between
the mean correlation coefficient mentioned in the Sec-
tion 4 and measurement errors.
As the number of speckles within the patterns in-

creased, the measurement errors decreased. Moreover,
larger sized speckles provided lower error than pat-
terns with smaller speckles. Global pattern quality
parameters were discussed and Shannon entropy was
used as an example to demonstrate that the global
measures are not sufficient to assess the quality and
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(a) . fine spray pattern (b) . coarse air-brush pattern

(c) . white sprayed dots (d) . natural texture of concrete

(e) . masonry wall (f) . texture of wood

Figure 3. Correlation function values for 10×10 px subset size.
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(a) . fine spray pattern (b) . coarse air-brush pattern

(c) . white sprayed dots (d) . natural texture of concrete

(e) . masonry wall (f) . texture of wood

Figure 4. Correlation function values for 30×30 px subset size.
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γ(xij) α Ψ δf
Sample 10×10 30×30 10×10 30×30

Fine spray pattern (a) 0.152 0.054 0.847 0.959 5.524 121.182
Coarse air-brush pattern (b) 0.190 0.107 1.009 1.046 5.413 127.614

White spray dots (c) 0.089 0.138 1.148 0.997 4.972 82.198
Natural texture of concrete (d) 0.090 0.039 1.027 0.975 6.292 75.849

Masonry wall (e) 0.200 0.187 0.879 0.939 4.250 50.914
Texture of wood (f) 0.208 0.097 0.878 0.981 5.012 29.027

Table 1. Mean correlation coefficient, γ(xij), power law distribution decay parameter α, Ψ, and δf for tested
patterns / textures and different size of subsets.
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Figure 5. Distribution of correlation coefficient, fine spray pattern.
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Figure 6. Distribution of correlation coefficient, masonry wall.
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Figure 7. Displacement error for 10×10 px subset size.
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Figure 8. Displacement error for 30×30 px subset size.

properties of the patterns. This is illustrated by com-
paring errors at different stretching magnitude for
different speckle sizes (Figure 7 and 8).

6. Conclusions
Based on the research of Crammond et al. [33] and
outcomes of the presented study it can be concluded
that multi-criteria approach has to be addressed. So
far it appears that a combination of Shannon entropy
and evaluation of decay in power law distribution of
correlation coefficient values provide the most accurate
estimate of a pattern performance. Moreover, the
speckle-size histogram analysis will be carried out
in future to provide new, hopefully more reliable,
assessment criteria.
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