
doi:10.14311/APP.2017.13.0016
Acta Polytechnica CTU Proceedings 13:16–19, 2017 © Czech Technical University in Prague, 2017

available online at http://ojs.cvut.cz/ojs/index.php/app

PARALLEL APPROACH TO SOLVE OF THE DIRECT SOLUTION
OF LARGE SPARSE SYSTEMS OF LINEAR EQUATIONS

Michal Bošanský∗, Bořek Patzák

Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29 Prague 6, Czech
Republic

∗ corresponding author: michal.bosansky@fsv.cvut.cz

Abstract. The paper deals with parallel approach for the numerical solution of large, sparse,
non-symmetric systems of linear equations, that can be part of any finite element software. In this
contribution, the differences between the sequential and parallel solution are highlighted and the
approach to efficiently interface with distributed memory version of SuperLU solver is described.

Keywords: linear equation solver, domain, parallelization, threads, distributed memory, communica-
tion.

1. Introduction
Many engineering problems lead to large-scale prob-
lems. The solution of these problems is being limited
by available resources. In many cases, the parallel and
distributed computing paradigms can be successfully
used to enable solution of large and complex problems,
which are not possible to solve on single machine with
one processing unit [1]. The traditional serial comput-
ers permit to run simulation codes only sequentially
and often have limited memory. Parallelization can
significantly reduce computational time by more effi-
cient use of modern hardware. Any parallel algorithm
is based on idea of the partitioning the work into the
set of smaller task which can be solved concurrently by
the simultaneous use of multiple computing resources.
Parallel computers can be classified, for example,

by type of memory architecture. The shared, dis-
tributed, and hybrid memory systems [2] exist. In
the shared memory system, the main memory with
a global address space is shared between all processing
units which can directly address and access the same
logical memory. The global memory significantly facil-
itates the design of parallel program, but the memory
bus performance is limiting factor for scalability with
increasing number of processing units. In distributed
memory systems, the memory is physically distributed
to individual processing units and there is no global
address space. When a processor needs to access data
on another processor, it is usually the task of the
programmer to explicitly define how and when data
is communicated. The cost of communication com-
pared to local memory access can be very high, on the
other hand, the advantage is that the overall mem-
ory is scalable with increasing number of processors.
Hybrid systems combine the features of shared and
distributed memory system, providing global, shared
memory for reasonably small number of processing
units that are combined into the distributed memory
system.

The design of parallel algorithms requires the par-
titioning of the problem into a set of tasks, that can
be processed concurrently. The partitioning of the
problem can be either fixed (static load balancing)
or can change during the solution (dynamic load bal-
ancing) [3]. The latter option is often necessary to
achieve a good load balancing of individual proces-
sors and consequently also reasonable scalability. The
scalability of computation is often regarded as one of
the most important goals of parallel computing. The
parallel algorithm is considered as scalable, when by
using increasing number of processing threads, the
execution time is monotonically decreasing, ideally in
a linear trend. However, when individual computing
threads are mutually dependent, the ideal scalability
is difficult to obtain due to the overhead of parallel
algorithm (necessary synchronization and communi-
cation between threads that is not present in serial
code) and due to the fact that some parts of the over-
all algorithm are essentially serial. In addition to the
achieved speedup, the parallel computing allows to
solve large, complex problems that do not fit into
a single, even well equipped machine.
The SuperLU library provides parallel implemen-

tation of the direct solver [4]. It provides serial, mul-
tithreaded (shared-memory), and distributed mem-
ory version. The implementation and performance of
the multithreaded version has been reported by the
authors in [5, 6]. In this papers, the focus is on dis-
tributed version of SuperLU based on message passing
interface (MPI) [7].
Numerical modeling using high performance com-

puters brings in new opportunities. Many engineering
problems lead to solution of sparse linear system of
equations. This is also the case of the Finite Element
Method (FEM) which is used here as an representative
example. In FEM the differential equations are con-
verted to the algebraic system of equations by using
variational methods with the help of decomposition of
the problem domain into sub-domains called elements

16

http://dx.doi.org/10.14311/APP.2017.13.0016
http://ojs.cvut.cz/ojs/index.php/app

vol. 13/2017 Direct Solution of Large Sparse Systems of Linear Equations

68 0 2 11
00 0 3 5
09 2 6 0
04 0 0 13
17 0 0 3

K =

K_nzval 8 6 2 11 3 5 9 2 6 4 13 7 1 3

K_colind 1 2 4 5 4 5 1 3 4 1 5 1 2 3

K_row_ptr 1 5 7 10 12

21 3 4 5

1
2
3
4
5

Figure 1. The compressed row format of matrix
schema.

and smart choice of interpolation functions. For lin-
ear elasticity problem, considered here, the resulting
algebraic equations, represent the discrete equilibrium
equations at nodes of the computational mesh

K ∗ r = f, (1)

where K is the global stiffness matrix, f is global vec-
tor of external forces, and r is vector of unknown
displacements. One of the key feature of the FEM is
that the stiffness matrix is typically positive definite,
symmetric matrix with sparse structure, which is a
consequence of using interpolation and test functions
with limited nonzero support. The efficient algorithm
for solving linear system must exploit the symmetry
and sparse structure, by saving considerable memory
and CPU resources. There exist number of different
storage schemes for sparse matrices. The most widely
used are skyline, compressed row, and compress col-
umn formats. In this contribution, the compressed
row format will be used. This choice comes from Su-
perLU library, which requires the sparse matrix in
this format on input.

In the compressed row format, only nonzero entries
of the sparse matrix are stored in one dimensional ar-
ray. Additional integer array is needed to store column
indices of the stored values. In practical implemen-
tation, the one dimensional arrays storing nonzero
values are merged together into a single array contain-
ing all nonzero entries, row by row. The same applies
for arrays of column indices. An additional array with
size equal to number of rows is needed to point to the
beginning of each row record, see Fig. 1.

2. Implementation SuperLU
Interface

As noted already in the previous section, the dis-
tributed memory programming model does not pro-
vide global address space and global memory acces-
sible by all processing nodes, but the memory is dis-
tributed among the processing units. For large prob-
lems, it is therefore essential to establish a distributed
representation of the sparse matrix. This feature is
also supported by SuperLU library, allowing the user

to split the global sparse matrix stored in comprow
format into blocks, representing compressed row stor-
age for consequent, non-overlapping groups of rows,
which are distributed across computing nodes.

We assume, that the decomposition of the dis-
cretized problem domain has been established and
individual, non-overlapping sub domains (partitions)
are assigned to and stored locally on individual com-
puting nodes. The so called node-cut strategy is
assumed, where the cut dividing the problem domain
runs through the nodes. Nodes on mutual partition
boundaries are called shared nodes, the nodes inside
individual partitions are so-called local nodes. Each
processing node is responsible for assembling its contri-
bution to the global system matrix by summing up the
contributions from individual elements. To minimize
the communication, it is natural that each processing
node will assemble and maintain in its local memory
the block of global stiffness matrix rows corresponding
to unknowns on its partition. This is uniquely defined
for local nodes, which are exclusively shared by local
elements on individual partitions. For shared nodes,
which are shared by elements from multiple partitions,
the ownership has to be defined. In this work, the
partition with lowest rank sharing the shared node
is the owner of shared node and thus responsible of
maintaining the corresponding row entry of the global
stiffness matrix. It is clear that for shared nodes, the
contributions to the corresponding row have to be
received from partitions sharing particular node. The
assembly process requires to establish global, unique
numbering of equations across computing nodes in ad-
dition to the local numbering on individual partitions.

The assembly process of the global, distributed sys-
tem matrix requires basically two steps: set up of data
structures required to store the block of compressed
row records on individual partitions and the assembly
process itself based on localization of individual ele-
ment contributions into global equilibrium equations
according to their connectivity.

2.1. Initialization of data structures
for distributed matrix

This phase should determine the required size of ar-
rays used to store all nonzero entries of the global
matrix. The nonzero contributions of each element
can be identified from element code numbers. The
code numbers represent simultaneously the numbering
of equilibrium equations and numbering of correspond-
ing unknowns. The individual values in the stiffness
matrix represent nodal forces caused by correspond-
ing unit displacement. The entry in element stiffness
matrix representing the nodal force contributing to
k-th equilibrium equation and being multiplied by
displacement located in global displacement vector at
l-th position, should be added to position (k,l) in the
global matrix. By assuming that element contribu-
tions are full matrices, one can initialize the nonzero
structure of the global stiffness matrix using element

17

Michal Bošanský, Bořek Patzák Acta Polytechnica CTU Proceedings

1

(0
,1

)

1

2

(2
,3

)

5

(8
,9

)

3

(4
,5

)

4

(6
,7

)

6

(1
0,

11

)

7

(1
2,

13

)

8

(1
4,

15

)

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
0

2
3

4
5

6
7

8
9

10
11

12
13

14
15

G

#
1

#2

G
G

#
3

2
5

3
4

6

7
8

#
1

#
2 #
3

4

6
42

#
2

6
K#

1
K#

2
K#

3

-n
od

e
-s

ha
re

d
no

de
#
3

#
3

#
3

#
2

#
2

4

1

F1

F2

10 2 3 4 5 6 7

1
0

2
3

4
5

6
7

32 8 9 6 7 10 11

3
2

8
9

6
7

10
11

76 10 11 12 13 14 15

7
6

10
11

12
13

14
15

{ {

P1 P2 P3

Figure 2. Example of simple problem consisting of three elements distributed into different computing nodes,
illustrating the global sparse matrix structure and its distribution.

18

vol. 13/2017 Direct Solution of Large Sparse Systems of Linear Equations

code numbers. In distributed case, each partition is
responsible for initializing and prealocating its block
structure of compressed rows records. In case of the
compressed row storage, the number of nonzero entries
in each row has to be determined together with corre-
sponding nonzero column positions of the individual
entries.
Each processing node is responsible for initializa-

tion and assembly of the assigned block of rows. This
block is composed from local contributions, as well
as from shared node contributions from neighboring
partitions. Therefore, the overall initialization can
be divided into (i) local stage, where the local contri-
butions to nonzero pattern are identified (from the
partition elements), and (ii) communication stage,
where contributions from neighboring partitions are
received for locally maintained rows, corresponding
to equilibrium equations for shared nodes.

Any partition has to therefore keep its locally main-
tained block of compressed rows and also block com-
pressed rows corresponding to shared nodes not being
locally maintained. These two blocks can be stored
separately. In the initial stage, the block structure
is initialized on every partition using only the contri-
butions from local elements. The row entries, that
correspond to the shared nodes which are not lo-
cally maintained are then communicated (send) to
the corresponding partition maintaining correspond-
ing row. After the sending the data, the contributions
from neighboring partitions are received containing
the contributions to the locally maintained shared
equations. Non-blocking communication [8] is used
to send/receive the contributions. Non-blocking com-
munication allows to utilize the potential overlap of
communication and computation, which is utilized in
the actual implementation. After finishing the com-
munication stage, each partition has fully initialized
data structure for locally maintained block of rows.

2.2. Assembly of the global distributed
matrix

After finishing the initialization step, in which mem-
ory has been allocated for every non zero entry of the
global distributed stiffness matrix, one can proceed
with the actual assembly of the matrix from the ele-
ment contributions. This is done in a similar fashion
to the previous step. On each partition the contribu-
tions from local elements are assembled. Then, the
rows corresponding to shared nodes not being locally
maintained have to be sent to the partition maintain-
ing corresponding row. Finally, each partition has to
receive remote contribution to the locally maintained
rows of shared nodes. This process is illustrated on
Fig. 2. In this example, the problem is composed
of three elements (corresponding to sub domains as
well) and eight nodes, from which five are local on
individual partitions and three nodes are shared.

2.3. Assembly of the global right hand
side

The process of assembling the global right hand side
vector is very similar to the process of assembling the
stiffness matrix, but in many aspects is simpler, do
to the assembly of local vector contributions. The
global vector is again distributed among partitions,
the distribution corresponds to the distribution of
matrix rows. The contributions from local elements
are assembled first, then those corresponding to rows
maintained on remote partitions are communicated
and contributions from neighbors are received and
entries updated.
By finishing the steps described above, the dis-

tributed sparse matrix, represented by locally main-
tained blocks of row entries on individual partitions,
can be directly passed into SuperLU routines.

3. Conclusions
In this work the algorithm of assembling the dis-
tributed sparse matrix in row-column format is de-
scribed, in order to develop the interface to the dis-
tributed SuperLU solver. The evaluation of the perfor-
mance and scalability is the subject of ongoing work.
The authors also aim to compare the efficiency of
the distributed solver to the efficiency of the multi-
threaded SuperLU version.

Acknowledgements
This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS16/038/OHK1/1T/11 – Advanced algorithms for nu-
merical modeling in mechanics of structures and materials.

References
[1] B. Patzak. Parallel computations in structural

mechanics. České vysoké učení technické v Praze, 2010.
[2] C. Hufhes, T. Hughes. Parallel and Distributed

programming Using C++. Pearson Education, 2003.
[3] B. Patzak, D. Rypl. Parallel adaptive finite element
computations with dynamic load balancing. Proceedings
of the First International Conference on Parallel,
Distributed and Grid Computing for Engineering 2009.

[4] X. S. Li, J. W. Demmel, J. R. Gilbert, et al. Superlu
users‘ guide program interface. http://crd.lbl.gov/
xiaoye/SuperLU/, September 1999.

[5] M. Bosansky, B. Patzak. Evaluation of different
approaches to solution of the direct solution of large,
sparse systems of linear equations. Advanced Materials
Research 1144(1144):97–101, 2016.

[6] M. Bosansky, B. Patzak. On parallelization of linear
system equation solver in finite element software.
Engineering Mechanics 2017 1(1):206–209, 2017.

[7] P. S. Pacheco. A User‘s Guide to MPI. Univ. of San
Francisco, 1997.

[8] T. Saif, M. Parashar. Unferstanding the Behavior and
Performance of Non-blocking Communications in MPI.
Department of Electrical and Computer Engineering,
Rutgers University, 2002.

19

	Acta Polytechnica CTU Proceedings 13:16–19, 2017
	1 Introduction
	2 Implementation SuperLU Interface
	2.1 Initialization of data structures for distributed matrix
	2.2 Assembly of the global distributed matrix
	2.3 Assembly of the global right hand side

	3 Conclusions
	Acknowledgements
	References

