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Abstract. Isogeometric analysis is a new concept of Finite element method which has been proposed
to bridge the gap between the CAD systems and the FEM solvers. In Isogeometric analysis, the
same basis functions, typically splines or NURBS, are used for geometry description as well as for
approximation of unknowns and thus the same model can be shared between CAD and IGA systems.
This results in a higher accuracy and overall efficiency of the analysis.

Many isogeometric elements have been already proposed and implemented into the existing finite
element solvers, but the automatic connection with a CAD system is usually missing. Our goal is to
develop such a connection and to provide a tool which would interactively run the analysis when the
model changes. This approach can enormously enhance the design process as it can provide the basic
knowledge about the structural behavior already in conceptual design phase.
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1. Introduction
Finite element solvers are the integral part of a nowa-
days structural design. Once the architectural model
is developed in CAD (Computer-Aided Design) sys-
tem, the structure is further analyzed in FEM (Finite
Element Method) solver. There are two independent
models (CAD model and FEM model) and thus when
one of them changes during the design process the
other has to be correspondingly (and usually manu-
ally) adjusted, leading to the higher time-consumption.
Moreover, the inaccuracies in geometry description
are usually introduced as the CAD and FEM models
use different functions for geometry representation.
The standard finite element method usually uses

polynomial basis functions, while the CAD systems
are based on splines. The use of spline functions
for geometry and unknown approximations in finite
element analysis enables to share one model between
architectural design and structural analysis. This idea
has been proposed by Huges et al. [1] and it is called
Isogeometric analysis (IGA).
Since 2005, when Isogeometric analysis has been

introduced, many researchers have been focusing on
its development and the results proved the advantages
of IGA over standard FEM in many fields. Our focus
is placed on its application for the analysis of curved
beams as the curved geometries can especially benefit
from the isogeometric approach. We use the formu-
lation of curved beam element presented by Bouclier
et al. [2] with the locking treatment based on Dis-
crete Shear Gap (DSG) method [3, 4]. The element
has been implemented into OOFEM finite element
solver [5] and our main goal is to develop a connection
between CAD system and the solver to provide a tool

encapsulating the analysis within the architectural
design environment.

2. Curved beam element
The presented two-dimensional curved beam element
is based on Timoshenko beam theory. It has three inde-
pendent unknowns, axial displacement ut, transverse
displacement un and rotation θ. A strain-displacement
matrix B defined as

ε = Br, (1)

where ε = {εm, γs, χb}T and r = {ut, un, θ}T , is de-
rived from the relations for membrane strain εm, trans-
verse shear strain γs, and bending strain χb

εm = u′t −
un
R
,

γs = ut
R

+ u′n − θ,

χb = θ′, (2)

where s ∈ 〈0, L〉 runs along the midline of a beam
and prime indicates a derivative with respect to s.
By omitting the terms which are divided by radius of
curvature R the straight beam formulation is obtained.
A material matrix D results from

N = EAεm,

Q = kGAγs,

M = EIχb, (3)

where N,Q and M are axial force, transverse shear
force and bending moment, respectively. Young’s
modulus E, shear modulus G, shear coefficient k,
area A and moment of inertia I are the material and
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cross-section characteristics. A stiffness matrix is then
calculated as

K =
∫ L

0
BT DB ds. (4)

To evaluate the stiffness matrix the Gaussian quadra-
ture involving p+ 1 Gauss points over each knotspan
is used, where p is a degree of approximation.

2.1. NURBS-based formulation
In case of IGA, the Langrange polynomial basis func-
tions used in FEM are replaced by splines. The pre-
sented element is formulated using Non-Uniform Ra-
tional B-Splines (NURBS) [6], which is the most
widespread and developed technology in CAD indus-
try.
A NURBS curve is defined by its degree, control

points with weights, and knotvector. NURBS basis
functions are generated by weighting the B-splines
functions, which are piecewise polynomial functions
and are a special subset of NURBS functions. NURBS
curve is given as the linear combination of basis func-
tions and control points coordinates. The knotvec-
tor is a set of non-decreasing parametric coordinates
(knots) which influence the mapping. The knots divide
a parametric space into knotspans (usually referred to
as “elements” in IGA) and each knotspan is influenced
only by limited number of control points. Therefore
the knotspan defines which control points affect partic-
ular part of the domain. See Figure 1 for an example
of a NURBS curve geometry.
Very important aspect of Isogeometric analysis is

a non-interpolatory nature of the basis functions, as
the NURBS do not satisfy Kronecker-delta property.
Another distinct feature of the NURBS basis functions
is the higher inter-element continuity. While only
C0 continuity is provided by traditional polynomial
functions, in case of IGA up to Cp−1 continuity can
be achieved. By repeating knots in a knotvector, the
continuity at that knot can be artificially reduced.

2.2. Locking treatment
Shear locking is a well-known problem of standard
Timoshenko beam elements and this phenomena per-
sists also in isogeometric formulation. This prob-
lem occurs because the displacements and rotation
are treated independently and approximated by the
functions of the same order. From Eq. 2 for shear
and bending strains it can be seen that formula for
bending strain results in lower order term than for-
mula for shear strain, but actually this should be
vice-versa. Also the field inconsistency within the
term for shear strain causes that zero shear strain
cannot be satisfied along entire patch when the same
order interpolation of unknowns is used. Several lock-
ing removal techniques have been proposed to unlock
isogeometric beam element including reduced inte-
gration, B̄-method, DSG method, see [2, 3] for the
references. In this study, the DSG-based formulation

is used. While this method can increase computational
cost (as well as B̄-method), it has a big advantage
over reduced integration: for the reduced integration
the recovered strains can be evaluated only at Gauss
points, DSG method enables to evaluate them along
the entire patch.
Discrete shear gap method has been originally de-

veloped for the standard finite elements [3] but Echter
and Bischoff [4] have extended its use also for isoge-
ometric analysis. The approach can be divided into
several steps yielding the modified B matrix. The idea
is not to satisfy the equation

γs = ut
R

+ u′n − θ (5)

pointwise, but in integral sense. The shear contri-
bution uγhi

n (called “shear gaps”) to the deflection is
obtained by integration of Eq. 5 as

uγ
hi

n =
∫ si

0
γhs ds =

∫ si

0

ut
R

+ u′n − θ ds = BDSGr, (6)

at collocation points si calculated as Greville abscissa
of the control points [6]. Modified transverse displace-
ments are interpolated using NURBS basis functions
Ni

uγ
modh

n =
n∑
i=1

Niũ
γhi

n . (7)

Please note, that discrete shear gaps ũγhi

n are non-
interpolatory in isogeometric analysis. To expressed
the discrete shear gaps by values at the control points
the transformation matrix A is derived{

uγ
h

n

}
= A

{
ũγ

h

n

}
, Aij = Nj(si), (8)

where
{
uγ

h

n

}
are interpolatory values of shear gaps

at control points and Nj(si) is the jth-basis function
evaluated at ith-collocation point. The modified shear
strain is then given as

γmod
h

s =
n∑
i=1

N ′i ũ
γhi

n . (9)

Combining Eqs. 6-9 results in the modified strain-
displacement matrix B

B = N ′A−1BDSG, (10)

which is used to evaluate stiffness matrix K (Eq. 4).

3. Interactive design tool
Thanks to the isogeometric formulation, the presented
element can be easily connected to CAD system.
The possibility of seamless connection between CAD
and FEA is the major benefit of IGA. This goal can be
achieved even without use of isogeometric approach
(see e.g. [7]), nevertheless the costly transformations
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Figure 1. Description of NURBS geometry.

between CAD and FEM are necessary in such a work-
flow. Firstly, the geometrical model is completed
by analysis data, such as loads, boundary conditions
and material characteristics, then the model is trans-
formed into suitable computational model and the
analysis mesh is generated, and finally the analysis
is performed in FEM solver. To visualize the results
within the CAD system the model has to be trans-
formed back to the original model. With the use of
Isogeometric analysis, once the model is completed
with analysis data, the analysis can be performed di-
rectly [8] and no transformation is needed for both
the analysis and the visualization.
For our purposes, the use of CAD system

Rhinoceros (Rhino) [9] has been chosen. The ge-
ometry representation of Rhino is based on NURBS,
moreover Rhino enables plug-in development and use
of built-in tool Grasshopper [10]. Grasshopper is a vi-
sual programming interface within Rhino which can
directly access NURBS geometry. In addition, vi-
sual programming is intelligible even to a user with
no programming background, so the user can define
additional analysis data at this level.
The workflow of the tool is illustrated in Figure 2.

Firstly, the NURBS geometry specified by a user
in Rhino is passed to the Grasshopper, where the
model is completed with boundary conditions and
material and crosssection characteristics. Currently,
these data are provided in the text format similar to
one used in OOFEM, but in the next phase of the
development, the special plug-ins can be developed.
Once all the analysis data are collected, the python
script within Grasshopper together with other avail-
able Grasshopper tools directly passes these data to
OOFEM and run the analysis. When the analysis
is finished, the output file is uploaded back to the
Grasshoper, where the visualization of the results is
carried out. Schematic illustration of Grasshopper
environment with results visualized in Rhino can be
seen in Figure 3.
Very important feature of the developed tool is,

that the Grasshopper (and in turn also OOFEM) re-
computes the results immediately when something
changes. No matter whether the user adjusts the
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Figure 2. Interactive design tool.

geometry or changes the boundary conditions, the
results are interactively updated. This provides the
immediate knowledge about behaviour of the designed
structure and eases the process of finding optimal de-
sign. In the future work the designer will receive
graphical indication of sections where load-bearing
capacity or stability limits are achieved. Such an ap-
proach would allow to establish viable conceptual
design from both architectural and structural point
of view without the necessity of understanding details
of structure behaviour.

4. Conclusions
The formulation of the curved beam element with
locking treatment has been presented and the element
has been implemented into OOFEM finite element
code. Thanks to the isogeometric formulation, the
automatic connection of CAD system and the analysis
has been provided or modified. The developed tool
enables to display the results in Rhino immediately
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Figure 3. Schematic illustration of Grasshopper environment with results visualized in Rhino. The example
corresponds to a cantilever circular arc beam (black) subjected to horizontal and vertical load at its tip. The deformed
geometry is in red and the bending moment is in blue.

after the geometry and analysis data are provided.
This gives the user instant knowledge about behaviour
of the designed structure and enables to see differences
of alternative designs.
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