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Abstract. Wang tiles proved to be a convenient tool for the design of aperiodic tilings in computer
graphics and in materials engineering. While there are several algorithms for generation of finite-sized
tilings, they exploit the specific structure of individual tile sets, which prevents their general usage.
In this contribution, we reformulate the NP-complete tiling generation problem as a binary linear
program, together with its linear and semidefinite relaxations suitable for the branch and bound method.
Finally, we assess the performance of the established formulations on generations of several aperiodic
tilings reported in the literature, and conclude that the linear relaxation is better suited for the problem.
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1. Introduction
Wang tiles, squares with colored edges, were invented
by and named in honor of Hao Wang, originally serv-
ing as a tool for studying the ∀∃∀ decidability problem
of the predicate calculus [1]. Wang showed that the
decidability problem is equivalent to the domino prob-
lem: assume a set of non-rotatable unit-sized (Wang)
tiles with edges colored according to the ∀∃∀ problem.
If it is feasible to cover the infinite plane by translating
copies of the tiles, such that all their vertices lie at the
integer lattice points of the plane and the adjoining
edges share the same color, the problem is said to be
solvable; unsolvable otherwise. For an illustration of
a sample 2× 3 Wang tiling, see Fig. 1.

In [2], Wang made a fundamental conjecture stating
that the domino problem is solvable if and only if the
tiling was periodic, i.e., if there existed a rectangular
region of the tiling with identically colored horizontal,
and vertical edges, respectively.

A year later, Kahr reduced the Turing machine halt-
ing problem [3, 4] into the origin-constrained domino
problem [5], which implies the domino problem is also
undecidable. This can be illustrated by introducing
a Turing machine for each tile set, halting only if the
domino problem is unsolvable. However, there is an
infinite number of such tile sets, making the domino
problem undecidable as well, and forbidding existence
of a general finite algorithm for the generation of
infinite tilings.

1.1. Aperiodic Tile Sets
Undecidability of the domino problem was also proved
by Wang’s student Berger, who used the principle of
expanding squares for developing the sets of 20, 426 [6]
and 104 tiles [7] that admit only aperiodic tilings of
the infinite plane, contrary to the Wang fundamental
conjecture.
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Figure 1. Periodic tiling composed of 2 Wang tiles
over 2 colors.

Aiming to simplify the Berger’s proof, smaller aperi-
odic sets of Wang tiles have been constructed. In 1966,
Läuchli sent to professor Wang an aperiodic set of
40 tiles over 16 colors, but it remained unpublished
until 1975 [8]. Meanwhile, unaware of Läuchli’s result,
Knuth simplified Berger’s set to 92 tiles over 26 col-
ors [9]; and Robinson developed sets of 104 and 52 tiles
in 1967 [10], of 56 tiles over 12 colors in 1971 [11], and
marked existence of a set of 35 tiles [11].
In 1973, Penrose developed a new approach based

on kites and darts tiling, leading to a set of 34 tiles.
Robinson, being in contact with Penrose, modified the
Penrose’s approach to reach a reduced set of 32 tiles
over 16 colors [12]. Using the same technique together
with Penrose rhombs tiling, Grünbaum obtained a set
of 24 tiles over 9 colors in 1987 [12].
Another two tile sets were discovered due to Am-

mann. In 1978, he used Ammann bars to reach 16 tiles
over 6 colors [13]. Building on the Ammann’s A2 tiling,
see, e.g., [12], Robinson obtained a set of 24 tiles over
24 colors in 1977.

Subsequent size reduction of the smallest aperi-
odic set occurred in 1996, as Kari developed a new
method based on Mealy machines multiplying Beatty
sequences, and presented a set of 14 tiles over 6 col-
ors [14]. Čulík, using the same approach, reduced the
set even further to 13 tiles over 5 colors [15].
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The search for the minimal aperiodic set is con-
cluded by Jeandel, who used a brute-force enumera-
tion approach to find aperiodic sets of 11 tiles over
4 and 5 colors; and proved both that there does not
exist an aperiodic set with 10 or fewer tiles and with
less than 4 colors [16].

In addition to the classical Wang tiles, in 2006, La-
gae introduced a subset of the Wang tiles, the corner
tiles, with the connectivity information stored in the
colored corners instead of the edges [17]. In the same
year, he constructed an aperiodic set of 44 corner tiles
over 6 colors [18]. The set was further simplified by
Nurmi to 30 corner tiles over 6 colors [19]. Note that
because the corner tiles can be straightforwardly con-
verted to the edge-based Wang tiles [17], our approach
naturally extends to the corner tiles, see Section 4 for
a specific example.

1.2. Selected Applications
Due to the ability of some tile sets to generate ape-
riodic patterns, Wang tiles received a broad interest
among disciplines. Also, their original significance for
automated theorem proving [2] was supplemented by
proofs in cellular automata theory [20].

In 2003, Cohen et al. introduced Wang tiles to the
computer graphics community [21]. Since then, Wang
tiles have been successfully used, e.g., for efficient
synthesis of stochastic textures or for generation of
Poisson disk distributions.
Molecular realization of Wang tiles is due to Win-

free, who introduced a self-assembly of biological
nanostructures into aperiodic crystals [22].
Novák was probably the first one who used Wang

tiles in materials engineering for efficient compres-
sion of microstructures [23]; Doškář for their re-
construction [24]. Doškář further generated large
stochastic samples of the Alporas® foam and its finite-
element representations in [25]. In [26], Tyburec used
Wang tiles to describe modular assembly of struc-
tures, whereas both the topology and arrangement of
modules were subjects of optimization.

1.3. Tiling Generation Algorithms
Existing tiling generation algorithms are designed
specifically to the tile sets they handle. In com-
puter graphics, for example, it is essential to gen-
erate visually appealing patterns quickly, which is
best achieved with stochastic tile sets. Tiling a finite
area has then a O(n) complexity, adopting, e.g., the
stochastic tiling [21], or the hash-based direct stochas-
tic tiling [27] algorithms. The latter algorithm allows
straightforward definition of boundary conditions.
In the case of mathematical logic, it is crucial to

prove that an investigated tile set can tile the whole
infinite plane, and does so only aperiodically. As the
problem is undecidable, no general algorithm exists,
and thus all the algorithms need to exploit the spe-
cific structure of each individual (family of) tile sets.
Although the algorithms are fast, they remain tile

set dependent. All tilings of finite-sized areas are re-
stricted to be subsets of the infinite plane, which is
not required in the finite domain, and it is almost
impossible to introduce boundary conditions. On top
of that, there provably exist aperiodic tile sets that
admit only non-recursive tiling [28, 29], forbidding
design of any problem-specific algorithm to tile the
infinite plane.
To the authors’ knowledge, the only method that

has been used for tiling of finite-sized areas by arbi-
trary tile sets is the backtracking algorithm, see [30].
Although the algorithm is general, it is generally inef-
ficient, as it commonly creates impossible assemblies
too early. Moreover, distant boundary conditions
make the problem more difficult to solve.

1.4. Contributions
This paper aims to overcome the shortcomings of
the methods outlined in the previous section, and
to develop an approach that handles tiling of finite-
sized areas using arbitrary tile sets, together with
a straightforward approach to define edge- or tile-
based boundary conditions.

Our exposition is structured as follows. In Section 2,
we develop a binary linear programming representa-
tion of the tiling generation problem. The formulation
is relaxed, and its linear and semidefinite approxima-
tions are presented. In order to show generality of the
formulations, we introduce their extensions to solve
the tile-packing problem, to prove that a tile set can
not tile the plane, and to prove that a tile set admits
periodic tiling. The relaxations are finally employed
in a branch and bound method in Section 3 and their
performance is assessed in Section 4.

2. Optimization Problem
Formulation

2.1. Valid Tiling
Consider a finite rectangular area A of the size nt,h×
nt,w, with nt,h and nt,w denoting its height and width,
respectively. Placing Wang tiles (of a unit size) from
the tile set T , such that their vertices lie at the integer
lattice points of A, we obtain a tiling with nt,h rows
and nt,w columns of tiles.
Each tile k ∈ {1, .. , nt} from the tile set T , with

nt denoting the number of tiles, is described by the
4-tuple (nk, wk, sk, ek), assigning color codes C to the
north, west, south, and east edge of the tile, respec-
tively.

In any valid tiling, for any two adjacent tiles k and
`, with the tile ` being placed in the east of k, it holds
that

ek = w`. (1)
Similarly, for any two vertically adjacent tiles k and
m, with the tile m being placed in the south of k, it
stands that

sk = nm. (2)
Both the cases are illustrated in Fig. 2.
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Figure 2. Horizontal, and vertical connectivity
among tiles k-`, and k-m, respectively.

2.2. Binary Linear Programming
Formulation

Let x ∈ {0, 1}nt,h·nt,w·nt denote a binary vector de-
scribing the placement of individual tiles within A.
The vector consists of all the xi,j,k variables, where
i ∈ {1, .. , nt,h} and j ∈ {1, .. , nt,w} are the row and
column iterators, respectively. Let us also define

xi,j,k =
{

0 if the tile k is not at (i, j),
1 if the tile k is at (i, j). (3)

Because each position is occupied by a single tile,
we have ∑

k∈T

xi,j,k = 1, ∀i ∈ H,∀j ∈ W. (4)

The compatibility constraint (1) can be written in
terms of x after realizing that the number of tiles at
(i, j) that have east edge colored by c ∈ C has to be
equal to the number of tiles at (i, j + 1) with west
edge colored also by c. Consequently, we have∑

k∈T

xi,j,k[ek = c]−
∑
k∈T

xi,j+1,k[wk = c] = 0. (5)

As the sums in Eq. (5) are either equal to 0 or 1,
resulting from Eq. (4), only two options are possible:
If the edge is colored by c, the relation simplifies to

1− 1 = 0, (6)

otherwise, it equals to

0− 0 = 0, (7)

showing that (5) remains valid in both cases.
After applying the same approach to Eq. (2) and

writing constraints through the entire area A, we
obtain the following binary linear program:

min
x

0 (8a)

s.t.
∑
k∈T

xi,j,k[ek = c]−
∑
k∈T

xi,j+1,k[wk = c] = 0,

∀c ∈ C,∀i ∈ H,∀j ∈ W \ {nt,w},
(8b)

∑
k∈T

xi,j,k[sk = c]−
∑
k∈T

xi+1,j,k[nk = c] = 0,

∀c ∈ C,∀j ∈ W,∀i ∈ H \ {nt,h},
(8c)

∑
k∈T

xi,j,k = 1, ∀i ∈ H,∀j ∈ W, (8d)

xi,j,k ∈ {0, 1}, ∀i ∈ H,∀j ∈ W,∀k ∈ T . (8e)

Despite the program (8) being formulated straight-
forwardly, it is hard to solve in this original form
due to the (non-convex) integrality constraint (8e).
Note that the problem is NP-complete because of its
combinatorial nature [31].

2.3. Linear Programming Relaxation
In order to make the problem (8) easier to solve, let
us relax the integrality constraint (8e) into a linear
form

0 ≤ xi,j,k ≤ 1, ∀i ∈ H,∀j ∈ W,∀k ∈ T . (9)

Clearly, Eq. (9) allows for all configurations of (8e),
but additionally also intermediate non-binary values.
In addition, because the constraints in (8) are linear,
the resulting approximation is convex and reads as

min
x

0 (10a)

s.t.
∑
k∈T

xi,j,k[ek = c]−
∑
k∈T

xi,j+1,k[wk = c] = 0,

∀c ∈ C,∀i ∈ H,∀j ∈ W \ {nt,w},
(10b)

∑
k∈T

xi,j,k[sk = c]−
∑
k∈T

xi+1,j,k[nk = c] = 0,

∀c ∈ C,∀j ∈ W,∀i ∈ H \ {nt,h},
(10c)

∑
k∈T

xi,j,k = 1, ∀i ∈ H,∀j ∈ W, (10d)

0 ≤ xi,j,k ≤ 1, ∀i ∈ H,∀j ∈ W,∀k ∈ T . (10e)

2.4. Semidefinite Programming
Relaxation

The integrality constraint (8e) can be rewritten using
the non-convex quadratic constraint

x2
i,j,k − xi,j,k = 0, ∀i ∈ H,∀j ∈ W,∀k ∈ T , (11)

which is satisfied only if xi,j,k = {0, 1}, being thus
equivalent to (8e). This quadratic form does not
simplify the solution, because the problem is still
NP-complete, but we will use it for the derivation of
a semidefinite programming relaxation.

Let us now substitute the binary variables x ∈ {0, 1}
with y ∈ {−1, 1}, which requires

x = 1
2(y + 1). (12)

Inserting this into Eq. (3) yields

yi,j,k =
{
−1 if the tile k is not at (i, j),
1 if the tile k is at (i, j). (13)

Consequently, we can write a non-convex quadrati-
cally-constrained optimization program in terms of y
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min
y

0 (14a)

s.t.
∑
k∈T

(yi,j,k + 1)[ek = c]

−
∑
k∈T

(yi,j+1,k + 1)[wk = c] = 0,

∀c ∈ C,∀i ∈ H,∀j ∈ W \ {nt,w},

(14b)

∑
k∈T

(yi,j,k + 1)[sk = c]

−
∑
k∈T

(yi+1,j,k + 1)[nk = c] = 0,

∀c ∈ C,∀j ∈ W,∀i ∈ H \ {nt,h},

(14c)

∑
k∈T

yi,j,k = 2− nt, ∀i ∈ H,∀j ∈ W, (14d)

y2
i,j,k = 1, ∀i ∈ H,∀j ∈ W,∀k ∈ T . (14e)

Let us further introduce a symmetric matrix Y ∈
Snt,y·nt,x·nt defined as

Y = yyT. (15)

The definition directly implies that any solution to the
quadratically-constrained optimization problem (14)
renders the matrix Y positive semidefinite, in our
notation Y � 0, and the rank of the matrix Y equal
to 1. Moreover, the definition of y constrains all
the elements in the main diagonal of Y equal to 1.
Consequently, another equivalent formulation to the
problem (8) reads as

min
y,Y

0 (16a)

s.t.
∑
k∈T

(yi,j,k + 1)[ek = c]

−
∑
k∈T

(yi,j+1,k + 1)[wk = c] = 0,

∀c ∈ C,∀i ∈ H,∀j ∈ W \ {nt,w},

(16b)

∑
k∈T

(yi,j,k + 1)[sk = c]

−
∑
k∈T

(yi+1,j,k + 1)[nk = c] = 0,

∀c ∈ C,∀j ∈ W,∀i ∈ H \ {nt,h},

(16c)

∑
k∈T

yi,j,k = 2− nt, ∀i ∈ H,∀j ∈ W, (16d)

diag(Y) = 1, (16e)
Y− yyT = 0. (16f)

The only non-convex constraint (16f) can be relaxed,
see, e.g., [32], into a convex form

Y− yyT � 0, (17)

and based on the Schur complement lemma equiva-
lently rewritten to (

1 yT

y Y

)
� 0. (18)

Finally, the semidefinite programming relaxation of
the binary linear program (8) reads as

min
y,Y

0 (19a)

s.t.
∑
k∈T

(yi,j,k + 1)[ek = c]

−
∑
k∈T

(yi,j+1,k + 1)[wk = c] = 0,

∀c ∈ C,∀i ∈ H,∀j ∈ W \ {nt,w},

(19b)

∑
k∈T

(yi,j,k + 1)[sk = c]

−
∑
k∈T

(yi+1,j,k + 1)[nk = c] = 0,

∀c ∈ C,∀j ∈ W,∀i ∈ H \ {nt,h},

(19c)

∑
k∈T

yi,j,k = 2− nt, ∀i ∈ H,∀j ∈ W, (19d)

diag(Y) = 1, (19e)(
1 yT

y Y

)
� 0, (19f)

− 1 ≤ y ≤ 1. (19g)

2.5. Extensions
Introduced formulations can include additional re-
quirements for generated tilings. We list some of
them below, but only in terms of x, as substitution
of Eq. (12) into developed equations is obvious.

2.5.1. Tile-Based Boundary Conditions
There are four types of tile-based boundary conditions.
First, we can enforce placement of the tile k ∈ T at
position (i, j):

xi,j,k = 1, i ∈ H, j ∈ W, k ∈ T . (20)

Conversely, avoiding the tile k at (i, j) requires

xi,j,k = 0, i ∈ H, j ∈ W, k ∈ T . (21)

The requirement that the same tile is placed at both
(i, j) and (p, q) can be written as

xi,j,k − xp,q,k = 0, {i, p} ∈ H, {j, q} ∈ W,∀k ∈ T .
(22)

Enforcing different tiles at (i, j) and (p, q) requires

xi,j,k+xp,q,k ≤ 1, {i, p} ∈ H, {j, q} ∈ W,∀k ∈ T .
(23)

2.5.2. Edge-Based Boundary Conditions
Starting from Eq. (5), we can also easily formulate
edge-based boundary conditions. To constrain the
north edge at (i, j) to the color c ∈ C, we write∑

k∈T

xi,j,k[nk = c] = 1, i ∈ H, j ∈ W, c ∈ C. (24)

If the north edge at (i, j) has to differ from c, it holds
that∑

k∈T

xi,j,k[nk = c] = 0, i ∈ H, j ∈ W, c ∈ C. (25)
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Equal color c of two edges, e.g., of the north edge at
(i, j) and of the west edge at (p, q), is provided by∑

k∈T

xi,j,k[nk = c]−
∑
k∈T

xp,q,k[wk = c] = 0,

{i, p} ∈ H, {j, q} ∈ W,∀c ∈ C.
(26)

Finally, different coloring of the north edge at (i, j)
and the west edge at (p, q) is guaranteed through∑

k∈T

xi,j,k[nk = c] +
∑
k∈T

xp,q,k[wk = c] ≤ 1,

{i, p} ∈ H, {j, q} ∈ W,∀c ∈ C.
(27)

2.5.3. Periodic Tiling
Periodic tiling is a tiling with equally colored both
horizontal and also both vertical edges. Thus, periodic
tiling secures tilability of the infinite plane. Building
on the edge-based boundary conditions, a periodic
tiling can be enforced by∑

k∈T

x1,j,k[nk = c]−
∑
k∈T

xnt,h,j,k[sk = c] = 0,

∀j ∈ W,∀c ∈ C,
(28a)

∑
k∈T

xi,1,k[wk = c]−
∑
k∈T

xi,nt,w,k[ek = c] = 0,

∀i ∈ H,∀c ∈ C.
(28b)

2.5.4. Tile Packing Problem
The tile packing problem, see, e.g., [30], consists in
generation of a tiling with periodic boundary condi-
tions, and each tile has to be placed exactly once.

In order to describe the problem in our framework,
we just need to use Eq. (28) together with∑

i∈H

∑
j∈W

xi,j,k = 1, ∀k ∈ T . (29)

2.5.5. Objective Function
Obviously, the developed formulations can contain
arbitrary convex objective function. For instance,
we can minimize the maximum occurrences of tiles,
compose the tiling such that it fits some pattern, etc.

3. The Branch and Bound Method
The whole integer design space, i.e., {0, 1} for the lin-
ear (10) and {−1, 1} for the semidefinite (19) approx-
imation, can be described using a tree data structure,
with each node corresponding to variables x, or y.
However, as there is exactly one tile per position, it is
advantageous to use the nt-ary tree representation in-
stead of the binary one, so that the nodes correspond
to the positions and branch into nt children, avoiding
solution to infeasible programs placing multiple tiles
at the same position.
Solution to the developed approximations, (10)

or (19), corresponds to exploring the root node of
the tree. Unfortunately, because the approximations

widen the feasible design space, their solution does
not assure to solve the original problem (8) due to
the design variables being allowed to take non-integer
values. In order to overcome that, we branch some
nodes of the tree, i.e., gradually fix all variables that
correspond to the specific tile position to all possible
combinations of integer values, nt in our case.

The relaxation is solved in each node, bounding the
problem1, hence the name of the method branch and
bound [33]. The branching and bounding continues
until the optimal (feasible) solution to (8) is found.
If no such solution exists, the solution space is proven
to be empty and the tiling generation problem infeasi-
ble. Without boundary conditions, infeasibility proves
the tile set does not tile infinite plane.

3.1. Branching Rule
In our implementation, we firstly branch the most
promising nodes, in which the integer infeasibility
of the convex relaxation is minimal. For the linear
relaxation, we have

Iinf =
∑
i∈H

∑
j∈W

∑
k∈T

(xi,j,k − x2
i,j,k), (30)

or
Iinf = nt,hnt,wnt −

∑
i∈H

∑
j∈W

∑
k∈T

y2
i,j,k (31)

for the semidefinite relaxation. If Iinf = 0, a feasible
solution to the original problem was found.

3.2. Variables Ordering
In each node to be branched, we have to define vari-
ables that will be fixed. It seems to be advantageous
to fix the variables corresponding to the most difficult
position, i.e., to the position with the highest integer
infeasibility. In the case of the linear relaxation, the
to-be-fixed position (i, j) requires

max
∀i∈H,∀j∈W

∑
k∈T

(xi,j,k − x2
i,j,k). (32)

Similarly, for the semidefinite relaxation we write

max
∀i∈H,∀j∈W

(nt −
∑
k∈T

y2
i,j,k). (33)

4. Examples
Building upon the previous sections, we implemented
a custom branch and bound algorithm in C++.
The linear relaxations are solved using Gurobi [34], the
semidefinite programming relaxations are optimized
by Mosek [35]. As Gurobi contains a build-in state-of-
the-art branch and cut algorithm, usable only for the
linear relaxations, we also measured its performance.
Five tile sets were tested altogether: Jeandel’s

11 tiles over 4 colors [16], Čulík’s 13 tiles [15], Am-
mann’s 16 tiles [12], Lauchli’s 40 tiles [12], and Nurmi’s

1Bounding occurs only if an objective fuction is employed.
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11(4) [16] 13(5) [15] 16(6) [12] 40(16) [8] 30(6) [19]

Tile set

Tiling sample

LP 5× 5 0.13 s/12 rel. 0.10 s/14 rel. 0.10 s/17 rel. 0.01 s/1 rel. 0.01 s/1 rel.
SDP 5× 5 12.65 s/78 rel. 11.07 s/27 rel. 21.66 s/33 rel. 360.40 s/121 rel. 126.17 s/31 rel.
LP 6× 6 0.10 s/12 rel. 0.12 s/14 rel. 0.13 s/17 rel. 0.02 s/1 rel. 0.03 s/1 rel.
SDP 6× 6 69.60 s/34 rel. 227.24 s/79 rel. 184.23 s/33 rel. 1517.59 s/121 rel. 1522.72 s/91 rel.
LP 15× 15 151.82 s/2190 rel. over 6000 s 2.15 s/17 rel. 8.52 s/41 rel. 0.13 s/1 rel.
LPG 15× 15 0.06 s/0 rel. 0.09 s/0 rel. 0.39 s/0 rel. 0.79 s/0 rel. 1.49 s/0 rel.
LP 20× 20 1545.94 s/26137 rel. over 6000 s 8.52 s/17 rel. 32.09 s/41 rel. 4.23 s/31 rel.
LPG 20× 20 0.08 s/0 rel. 0.12 s/0 rel. 0.79 s/0 rel. 1.57 s/0 rel. 8.01 s/0 rel.
LPG 25× 25 396.5 s/7368 rel. 0.12 s/0 rel. 1.34 s/0 rel. 2.96 s/0 rel. 23.95 s/0 rel.
LPG 30× 30 390.18 s/3821 rel. 1361.51 s/5950 rel. 2.31 s/0 rel. 5.23 s/0 rel. 48.97 s/0 rel.

Table 1. Time demands and solved relaxations count in generation of aperiodic tilings. LP and SDP denote custom
developed branch and bound method supplied with the linear and semidefinite relaxation, respectively; LPG stands
for Gurobi cut-and-branch method and the linear relaxation.

set of 30 corner tiles [19]. The tile sets were selected
to sample different construction methods, tile set sizes,
and numbers of colors used.

Results of the benchmarks, ran on the Intel® Core™

i5-4210H processor, are summarized in Table 1. They
indicate that the linear relaxation surpassed the
semidefinite one in terms of speed and in the number
of explored nodes. The latter results from the property
of the simplex algorithm, used for the solution of lin-
ear relaxations, to terminate in vertices of the feasible
space polytope. These are more likely integer-feasible
than an interior point found by the interior-point algo-
rithm, used for the solution of semidefinite programs.
Comparison of our branch and bound algorithm

and Gurobi’s build-in branch and cut, both using the
linear relaxation, is even clearer. Our implementation
lacks heuristics, parallelism, and generation of cuts,
consequently being inefficient for tile sets with large
number of degrees of freedom, such as the Čulík one.

5. Conclusions
In this contribution, we demonstrated that the tiling
generation problem of finite-sized areas can be for-
mulated as an integer optimization problem; and we
also introduced its linear and semidefinite program-
ming relaxations. Both the relaxations were employed
in the branch and bound method and benchmarked

on five tile sets. The results indicate that the linear
relaxation is more suitable for practical applications.

6. Nomenclature
List of symbols
A Rectangular area
C Color set
H Set of rows
T Tile set
W Set of columns
c Color iterator
ek East edge color of the tile k

i Row iterator
j Column iterator
k, `, m Tile iterators
nc Number of colors in C
nk North edge color of the tile k

sk South edge color of the tile k

nt,h Number of rows in H
nt,w Number of columns in W
xi,j,k Design variable, xi,j,k ∈ {0, 1}
yi,j,k Design variable, yi,j,k ∈ {−1, 1}
wk West edge color of the tile k

Iinf Integer infeasibility
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