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Abstract. Modelling of heterogeneous materials based on randomness of model input parameters
involves parameter identification which is focused on solving a stochastic inversion problem. It can be
formulated as a search for probabilistic description of model parameters providing the distribution of
the model response corresponding to the distribution of the observed data.

In this contribution, a numerical model of kinematic and isotropic hardening for viscoplastic
material is calibrated on a basis of experimental data from a cyclic loading test at a high temperature.
Five material model parameters are identified in probabilistic setting. The core of the identification
method is the Bayesian inference of uncertain statistical moments of a prescribed joint lognormal
distribution of the parameters. At first, synthetic experimental data are used to verify the identification
procedure, then the real experimental data are processed to calibrate the material model of copper
alloy.
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1. Introduction
Reliable predicting behaviour of an investigated sys-
tem in a computational way requires proper calibra-
tion of the corresponding numerical model. This con-
tribution concentrates on modelling heterogeneous
materials, where the heterogeneity is captured by
randomness of model input parameters. The spatial
variability of mechanical properties in heterogeneous
materials, e.g. elastic modulus or yield stress, affects
behaviour of the investigated structural system under
the loading. This can be demonstrated by repeat-
ing a laboratory test for an ensemble of specimens
made of the same heterogeneous material. Calibration
of a heterogeneous material model can be perceived
as identification of its parameters’ probability distri-
bution when the corresponding model response has
the distribution as much as possible similar to the
distribution of the observed data. The probabilistic
identification of random variables is called a stochastic
inversion problem.
Stochastic inversion enables to infer a probability

distribution of the unknown model parameters from
indirect experimental measurements. In order to make
the identification process successful, a proper distinc-
tion of occurring uncertainties is required. Essentially,
uncertainties can be separated into two basic groups.
The first one contains uncertainties connected to a
lack of knowledge, it is caused by e.g. measurement
errors or a small number of measurements. This un-
certainty is called epistemic and it is reducible by
any new information. On the other side, there is ir-
reducible stochasticity called aleatory uncertainty or
simply variability. It represents an inherent random-
ness which originates from modelling a data collection

e.g. from different locations or times as a random
variable [1]. An illustrative examples of uncertain-
ties related to material properties are presented in
Figure 1.
Identification procedure of heterogeneous material

properties from indirect noisy measurements having a
numerical model describing the nonlinear relationship
between the unknown inputs and observed outputs is
presented in section 2. The principle of the method is a
choice of a certain form of probability density function
(PDF) of the unknown stochastic model parameters
whose statistical moments are considered as uncertain
random variables. The probabilistic identification is
then concentrated on these so-called hyperparameters
of the parameters’ distribution which can be inferred
in the Bayesian way [2]. This approach has been
already applied on a very simple numerical example
of a cantilever in the authors’ previous work [3].

This contribution focuses on application of the iden-
tification method for a more complicated numerical
model leading to the model calibration from real ex-
perimental data. In section 3, the material model
of kinematic and isotropic hardening for viscoplastic
material together with its unknown random input pa-
rameters is briefly introduced. Section 4 deals with
verification of the proposed identification procedure
and following model calibration. The obtained results
are then summarized in Section 5.

2. Stochastic identification
method

This section recapitulates the basics of the Bayesian
inference and its extension by hierarchical modelling
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Figure 1. Uncertainties in properties of a homogeneous and heterogeneous material.

in order to enable an application of this method for
identification of aleatory uncertainty presented in the
authors’ former conference paper [3].
The principal idea of the Bayesian identification

is based on a common way of thought when the re-
sulting belief about a random event is given by a
combination of all available information [4]. This ap-
proach introduces the concept of uncertainty in our
subjective knowledge of the identified parameters. The
Bayesian inference becomes increasingly popular and
more widespread approach to parameter identification
providing an elegant solution to this inverse problem
by making it well-posed. It allows to estimate values of
input parameters together with appropriate uncertain-
ties by combining prior information and experimental
measurements. In this case, observations are assumed
to be performed for the specific yet unknown values
of input parameters and epistemic uncertainty arising
from experimental errors and lack of knowledge is
reduced with an increasing number of experimental
observations.
The Bayesian approach can be extended into mul-

tilevel setting which allows to take into account also
aleatory uncertainties [5, 6]. While in the classical
formulation the model parameters have unknown de-
terministic values, hierarchical modelling enables to
consider the model parameters x as stochastic vari-
ables described by some statistical model with uncer-
tain moments. Specifically, the extension is done by
introducing new random variables, known as hyper-
parameters θ defining the probabilistic specification
of the model parameters x [2]. The parameters’ prior
is then conditional on the hyperparameters θ with
their own prior distribution called hyperprior p(θ),
the joint prior distribution of the parameters and
hyperparameters has a form

p(x,θ) = p(x|θ)p(θ) (1)

and according to Bayes’ rule the corresponding joint
posterior distribution up to a normalisation constant
is

p(x,θ|z) ∝ p(z|x,θ)p(x|θ)p(θ). (2)

More specifically, now we have n observations zi,
each of them is realized for n combinations of input
values xi drawn from unknown distribution. Each of
these combinations is defined by its prior distribution
f(xi|θ) and according to assumption of observation
exchangeability [7] the joint prior distribution is given
as

p(x1, . . . ,xn,θ) =
(

n∏
i=1

f(xi|θ)
)
p(θ) (3)

and the posterior p(x1, . . . ,xn,θ|z1, . . . ,zn) as

p(x,θ|z) ∝

(
n∏
i=1

f(zi|xi)
)(

n∏
i=1

f(xi|θ)
)
p(θ). (4)

Our knowledge about the hyperparameters grows by
updating based on every new measurement while struc-
ture of the model parameters’ prior distribution re-
mains unchanged.

3. Numerical model
The identification method is applied to calibration of
a numerical model of kinematic and isotropic harden-
ing for copper alloy defined by constitutive equations
in Figure 2.
The available experimental data are depicted in

Figure 3 and correspond to 16 repetitions of a strain-
controlled cyclic loading test at a high temperature.
The material data are represented in relative units:
stresses are given as ratios of rref and strains as ratios
of εref . These reference values are constant through-
out this document, so all presented figures are con-
sistent. The experimental errors in each measured
point of discretized stress-strain curves are assumed
as i.i.d. Gaussian random variables with zero mean
values and identic standard deviations. At higher tem-
peratures, the cyclic material behaviour is dominated
by the kinematic hardening mechanism and the stress
saturation is already reached after a few cycles [8].
The copper alloy does not exhibit a distinct yield limit
and its kinematic hardening behaviour is non-linear.

The model parameters to be identified are summa-
rized in Table 1. Operating with the hardening moduli
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Figure 2. Constitutive equations of the viscoplastic model with non-linear isotropic and kinematic hardening.

Figure 3. Experimental data: stress-strain curves.

Q and C, given in equations in Figure 2, is replaced
by operating with the saturation values R∞ = Q/β
and X∞ = C/γ. The unknown model parameters are
assumed as lognormally distributed random variables.

Parameter Name
σy [MPa] Yield stress
V∞ [MPa] Kinematic hardening saturation
γ [-] Kinematic dynamic recovery constant
R∞ [MPa] Isotropic hardening saturation
β [-] Isotropic dynamic recovery constant

Table 1. Model parameters to be identified.

The corresponding mean values and standard devi-
ations are the hyperparameters with uninformative
uniform hyperprior.
The information is combined according to Bayes’

rule into joint posterior distribution of 90 random vari-
ables, specifically, 80 parameters (5 model parameters
corresponding to each of 16 measurements) and 10
hyperparameters (2 statistical moments of every single
parameter’s marginal PDF). The Bayesian inference
is realized by the Markov chain Monte Carlo (MCMC)
method providing posterior samples [9, 10]. The com-
putational effort is reduced by substituting the full
numerical model by its polynomial chaos-based ap-
proximation, specifically by the Hermite polynomials
of standard normal random variables [11, 12]. The
polynomial coefficients are computed with a help of
regression method [13] based on Latin Hypercube
sampling [14] from prior parameter distribution.

4. Model calibration
In order to verify the identification method at first,
a synthetic experimental data set of 16 model sim-
ulations, see Figure 4, is employed. Figure 5 shows
histograms corresponding to the simulations’ inputs
generated from the prescribed lognormal distribution

Figure 4. Comparison of synthetic observations
(black) with model responses (red) corresponding to
the identified parameters’ distribution in a form of
mean value ± standard deviation.
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Figure 5. Verification: Histograms of synthetic experimental inputs and identified parameters’ PDF corresponding
to hyperparameters’ means accompanied by bounds corresponding to 90 % of hyperparameters’ values.

Figure 6. Validation: Identified parameters’ marginal PDF corresponding to hyperparameters’ means accompanied
by bounds corresponding to 90 % of hyperparameters’ values.

in a comparison with the identified parameter dis-
tributions estimated from MCMC posterior samples.
The solid lines correspond to parameters’ marginal
PDFs with identified mean values of hyperparameters
representing the aleatory uncertainties in the parame-
ters’ values while the dashed lines form an envelope
of parameters’ PDFs corresponding to 90 % of hyper-
parameters’ values representing the epistemic uncer-
tainties. As expected due to experimental setting, the
cyclic material behaviour is dominated by the kine-
matic hardening mechanism at a high temperature, so
while the isotropic hardening parameter β is not iden-
tified properly, the kinematic hardening parameter γ
is inferred very precisely and epistemic uncertainties
connected to its PDF are reduced significantly.
The identified parameters’ PDF corresponding to

hyperparameters’ mean values is used to quantify
aleatory uncertainty in the model response, which
is presented in Figure 4. Estimation of the aleatory
uncertainty in the model response has a good match
with the synthetic experimental data. From this point
of view, the results of the proposed identification
procedure are satisfactory.
Since the proposed method of model calibration

passed the verification process successfully, the model
calibration based on the real experimental data follows.
The results of model calibration are presented in the
same manner as the verification results. The Figure 6
shows the identified most likely marginal parameters’
PDFs with depicted epistemic uncertainties. Now, it is
not possible to compare the results on a level of model
parameters’ values, but the epistemic uncertainties
are reduced the most in the case of the parameter γ
again due to the experimental setup. The aleatory
uncertainty caused by heterogeneous character of the
modelled material is sufficiently captured, see Figure 7

presenting comparison of experimental data and model
responses corresponding to the identified parameters’
PDF.

Figure 7. Comparison of experimental observations
(black) with model responses (red) corresponding to
the identified parameters’ distribution in a form of
mean value ± standard deviation.

5. Conclusions
The multilevel setting of the Bayesian inference pro-
vides an elegant solution for stochastic inversion prob-
lems. This efficient tool enables to separate epistemic
uncertainties and inherent variability, which is fun-
damental for successful parameter identification of
heterogeneous material model from indirect noisy mea-
surements. The major disadvantage of this method is
the requirement of assuming some specific type of pa-
rameters’ PDF which affects the result essentially and
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it can be problematic for example in the case of phe-
nomenological parameters. The formulated posterior
probability distribution can be gained in a form of in-
dependent samples by the Markov chain Monte Carlo
method, however the computational demands increase
significantly with a number of measurements, so this
approach is suitable especially for small experimental
data sets.
In this contribution, the material model of kine-

matic and isotropic hardening for copper alloy is suc-
cessfully calibrated on a basis of the experimental
data set of 16 repetitions of a strain-controlled cyclic
loading test at a high temperature. At first, identifi-
cation of aleatory as well as epistemic uncertainties
with a help of the Bayesian inference is presented for
the case of synthetically generated experimental data.
After the successful verification of the identification
procedure, the real experimental data are processed in
the same way to calibrate the numerical model. Due
to the experimental setup, when kinematic hardening
of the material plays the main role, the parameters
of kinematic hardening are identified more precisely
than the parameters of isotropic hardening. In order
to identify all the parameters more accurately, some
more data from another type of experiment have to
be available to obtain the necessary additional infor-
mation.
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