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Abstract. Tuned mass damper is a device, which can be highly useful when dealing with excessive
vibration and is widely used in many engineering fields. However, its proper design and optimization is
a complicated task. This study uses mode superposition method to speed up the evaluation of dynamic
response. The speed of response calculation allows for a quick calculation of frequency response function
and numerical optimization of tuned mass dampers. This optimization method is demonstrated on a
numerical example of a cable stayed footbridge. The example compares a simplified and widely used
design method of tuned mass damper with numerical optimization.

Keywords: Dynamic response, modal coordinates, tuned mass damper, optimization.

1. Introduction
The tuned mass damper (TMD) is a device composed
of a spring, mass and a viscous damper, which is widely
used in order to reduce mechanical vibration. However,
its high efficiency is conditioned by appropriate design.
Unfortunately, the closed form solution for its optimal
parameters has been found only for special, simplified
cases.
Numerous studies dealing with optimal design of

TMD have been published since the beginning of the
20th cetury, but most of them only consider a single
dergee of freedom (SDOF) main structure. The first
design method for stifness of TMD spring was pro-
posed by Den Hartog [1]. It comes from observation
of two invariant points on frequency response function
(FRF), which are independent of TMD damping. The
optimal damping was derived by Brock [2] for both
motion and force excitation. These settings of param-
eters are close to the optimal ones for undamped main
structure. Thanks to simple application, it is still a
recomended design method in several modern guide-
lines [3–5]. The closed form solution of optimal tuning
and damping for undamped main SDOF system was
found by O. Nishihara and T. Asami [6]. Abubakar
and Farid presented a numericaly derived formula for
design of TMD on clasically damped SDOF struc-
ture [7].

Simplification of main structure by SDOF model is
sometimes insufficient and may lead to wrong tuning
or unnecessary big mass of TMD. Especially, large
structures such as bridges or high buildings, which
may be sensitive to dynamic load, cannot be modeled
as SDOF structures. Rana and Soong showed the
importance of numerical tuning in case of multiple
degrees of freedom (MDOF) structures and shows the
example of multiple TMDs, each tuned for particular
mode [8]. Ozer and Royston extended Hartog’s idea
to MDOF systems [9], but the proposed method re-

quires inversion of the dynamic stiffness matrix and
numerical solution of system of equations, which may
be impractical.
This paper presents numerical optimization of sin-

gle and multiple TMDs, on a MDOF damped stucture.
The goal is to minimize the maximal amplitude (also
called H∞ optimization) of the structure caused by
simple harmonic load. In the case of H∞ numeri-
cal optimization, the problem is that large amount
of solutions needs to be evaluated for various TMD
parameter values and forcing frequencies. To reduce
the camputational complexity of the problem, method
proposed in [10] was applied. This method operates
with transformation to modal coordinates and allows
us to find steady-state response of structures with
TMD without solving a system of equations. This
method is also suitable for design of TMDs for existing
structures where excessive vibrations were measured
and modal characteristics are known.

2. Response calculation
The main structure is represented by classically
damped MDOF system with n degrees of freedom
and it is loaded by general dynamic load F (t). The
system is described by equation of motion

Kx+ Cẋ+Mẍ = F (t) , (1)

where K, C and M represent stiffness matrix, damp-
ing matrix, and mass matrix, respectively, F (t) is the
loading vector and x is vector of displacement. The
vectors of velocity and acceleration are represented by
symbols ẋ and ẍ.

2.1. single TMD
TMD is attached to the m-th degree of freedom. The
total system can be represented by system of n + 1
equations, but the equation which corresponds to the
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mass of TMD can be separated [9], as can be seen in
Eqs. (2) and (3).

[K +Ka]x+ [C + Ca]ẋ+Mẍ

−Ka
mxa − Ca

mẋa = F (t) , (2)

kaxa + caẋa +maẍa − [Ca
m]T ẋ− [Ka

m]Tx = 0 , (3)

where:

Ka defined by Eq. (4),
Ca defined by Eq. (5),
Ka

m m-th column of matrix Ka,
Ca

m m-th column of matrix Ca,
ka stiffness of TMD,
ca damping of TMD,
ma mass of TMD,
xa displacement of TMD,
ẋa velocity of TMD,
ẍa acceleration of TMD.

Matrices Ka and Ca contain only a single non-zero
element on the m×m position:

Ka =


0 0 · · · 0

0
. . .

...
...

... · · · ka(m×m)
...

0 · · · · · · 0

 , (4)

Ca =


0 0 · · · 0

0
. . .

...
...

... · · · ca(m×m)
...

0 · · · · · · 0

 . (5)

Assuming the loading force is harmonic with ampli-
tude Fa and circular frequency ω, we only need to find
a solution in the form of steady-state response. The
equations (2) and (3) can be transformed to modal
coordinates according to Eq. (7). Substituting xa

expressed from Eq. (3) to Eq. (2), the following result
is obtained:

[
Ω + iωC ′ − ω2I+

+ (iωca + ka)(−ω2ma)
−ω2ma + iωca + ka

ΦT
m,∗Φm,∗

]
q = ΦTFa , (6)

x = Φq , (7)

where Ω, Φ, and C ′ are spectral matrix, modal ma-
trix, and modal damping matrix, respectively. Φm,∗
denotes the m-th row of modal matrix and q is the
vector of modal coordinates. The modal matrix must
be mass orthonormal with mode shapes φ arranged
as its columns. The spectral matrix contains squares
of natural circular frequencies ωj on its diagonal. For

a classically damped structure, C ′ is also diagonal
containing members 2ξjωj where ξj is the damping
ratio of j-th natural frequency.

Eq. (6) is a system of n linear equations. Thanks to
its structure, Sherman–Morrison formula can be used
to find the inversion of the matrix on the left-hand
side. The solution of separate modal coordinate qj

with used substitutions is given by following equations:

[ ω2ma(iωca + ka)Φm,jS
T
2

(−ω2ma + iωca + ka)− ω2ma(iωca + ka)s1
+

+ φT
j

] FA

ω2
j − ω2 + 2iξjωωj

= qj , (8)

s1 =
n∑

j=1

Φ2
m,j

ω2
j − ω2 + 2iξjωωj

, (9)

ST
2 =

n∑
j=1

Φm,jφ
T
j

ω2
j − ω2 + 2iξjωωj

. (10)

As can be seen in Eq. (8-10), all mode shapes must
be known to find an exact contribution of one par-
ticular mode shape to the response. However, mode
shapes with frequencies, which are far from forcing
frequency have negligible influence on the response.
Therefore using only several selected mode shapes in
Eqs. (7-10) can lead to very precise results. The
reduction of number of mode shapes is necessary for
fast response evaluation.

2.2. multiple TMDs
In the case of multiple TMDs, the evaluation of sep-
arate modal coordinates using Eq. (8) is no longer
possible, but Sherman–Morrison formula

A−1
i+1 = [Ai + uvT ]−1 = A−1

i −
A−1

i uvTA−1
i

1 + vTA−1
i u

(11)

can be repeatedly applied to get a vector of modal
coordinates q. Each addition of TMD requires one
evaluation of Eq. (11) with substitutions given by
Eqs. (12- 14).

A0 = Ω + iωC ′ − ω2I , (12)

u = (iωca + ka)(−ω2ma)
−ω2ma + iωca + ka

ΦT
m,∗ . (13)

vT = Φm,∗ (14)

For j TMDs, the vector of modal coordinates is

q = A−1
j ΦTFa . (15)

This method may be inappropriate for large number
of TMDs because of its high numerical complexity
caused by multiplication of full matrices. However,
its usage still avoids the solution of the system of
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equations. In section 4.5, this method is successfully
used for the evaluation of structural response with
three TMDs.
As can be seen in Eqs. (11-14), the system recep-

tance matrix A−1
j is found without necessity of matrix

inversion. The only matrix which must be inverted
is A0, but it is a simple procedure, because A0 is a
diagonal matrix. The receptance matrix can be used
for fast evaluation of response to various load vectors.

3. Simplified TMD design
Well known simplified design of TMD for minimiza-
tion of maximal amplitude, first introduced in [1, 2] by
Hartog and Brock, is used in this study as reference
method and is compared to numerical optimization of
TMDs. This method was chosen for its easy applica-
tion and the fact it is widely used and recommended.
Using following notation:

Meff effective mass of the main struc-
ture,

Ωj n-th natural frequency of the
main structure,

ωa =
√
ka/ma natural frequency of TMD,

µ = ma/Meff mass ratio,
β = ωa/Ωj frequency ratio,
ξa = ca/ca,cr damping ratio of TMD,
ca,cr = 2

√
kama critical damping of TMD.

the optimal values of parameters β and ξa for force
excitation are

βopt = 1
1 + µ

, (16)

ξa,opt =

√
3µ

8(1 + µ) . (17)

This method was firstly proposed for SDOF main
structure, but it can be used for design of TMD which
is supposed to reduce vibration of j-th mode shape.
The effective mass of the main structure Meff can be
found according to the following equation:

Meff = 1
Φ2

m,j

= φ′Tj Mφ′j , (18)

where φ′j denotes the j-th mode shape normalized with
respect to the m-th ordinate where TMD is attached
hence the m-th ordinate is equal to one.

4. Numerical example
This chapter analysis a cable stayed footbridge. The
structure is suspected of being sensitive to dynamic
pedestrian load. A Numerical model of the struc-
ture was created in MATLAB. Design of TMDs was
performed both using simplified method indicated in
section 3 and numerical optimization.

mode frequency [Hz] damping ratio [-]
1 0.733 0.0190
2 0.923 0.0148
3 1.300 0.0106
4 1.595 0.0087
5 1.818 0.0078
6 1.924 0.0075
7 2.002 0.0071
8 2.218 0.0063

Table 1. Natural frequencies and damping ratios.

4.1. Model of the structure
The structure is 243 m long, symmetric, cable-
stayed bridge with prestressed concrete bridge deck.
A scheme of the structure and numbering of important
nodes can be seen in Figure 1. Two-dimensional finite
element (FEM) model was created in order to exam-
ine vertical vibrations. The model contains nodes
which define geometry of the structure and also uses
nodes added by FEM mesh. The final model contains
810 degrees of freedom.

Eight lowest natural frequencies, mode shapes and
associated damping ratios were measured on the real
structure. Only vertical bending mode shapes are
taken into account in this paper. The numerical model
was identified to be in accordance with measurement.
Natural frequencies and damping ratios are summa-
rized in Table 1.

4.2. load
As can be seen in Table 1, several frequencies are close
to 2 Hz, which is typical frequency of human walk
and thus resonance effect may occure. According to
guidebook [5], a stationary load model which repre-
sents a group of 8-15 walkers can be used to evaluate
the response and to decide whether the vibration is
excessive. The group of walkers is simplified to one
harmonic force in resonance with mode, which has the
frequency closest to 2 Hz. The force should be applied
to the most adverse position, which may be under-
stood as a place with the highest vertical ordinate of
the forced mode shape.
In the case given, it was decided to find maximal

displacement over the bridge span for three positions,
which corresponds to the maximal ordinate of mode
shapes. They are node 19 for the 5th mode shape,
node 5 for the 6th, and node 27 for the 7th one. The
results can be seen in Figure 1. The highest peak in
range between 1.5-2.5 Hz is caused by force situated
in node 5 in resonance with 6th natural frequency.
Therefore the harmonic force with amplitude fv is
placed in node 5.

fv = kv × 180 = 3× 180 = 540 N . (19)
However, the amplitude fv is important only for

taking the absolute value of the response, but it has
no impact on the design of TMD.

102



vol. 26/2020 Example of an Article with a Long Title

Figure 1. Static scheme of the bridge.

Figure 2. FRFs of force in nodes 5,19, and 27.

Figure 3. Mode shape No. 5.

Figure 4. Mode shape No. 6.

Figure 5. Mode shape No. 7.

Node 5 is appropriate place for simple harmonic
load, because mode shapes 5,6 and 8 also have high
ordinate in this node, therefore multiple modes are
forced. For simplified TMD design from section 3,
the load does not play a role, but it is important for
numerical optimization and calculation of FRF.

4.3. objective function

An objective function must be defined for the opti-
mization of TMD. In this paper, it was decided to use
H∞ optimization - maximal value of displacement am-
plitude along the bridge deck between 1.7 and 2.2 Hz,
where the load causes highest response. That means
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maximal values of vector of displacement x create
FRF, which creates a continuous FRF with discon-
tinuous derivative. Highest peak of FRF is then the
value of the objective function which is minimized.
The step of forcing frequency for evaluating the FRF
was set to 0.001 Hz to catch the sharp peaks but with
respect to the speed of calculation.
The transformation to modal coordinates allows

us to use reduced number of mode shapes to speed
up the evaluation of response. Observation of FRF
showed that using more than first 12 mode shapes
and natural frequencies does not affect the values of
peak response in chosen frequency range. Therefore
it was decided to use only first 12 mode shapes. The
reduction of number of mode shapes reduced the size
of the problem dramatically (from 810 equations to
12 equations) without noticeable decrease of accuracy.

4.4. single TMD
4.4.1. simplified design
The simplified design method presented in section 3
was performed in order to reduce vibration of the
sixth mode shape, because the pacing force causes
the highest peak on FRF in resonance with the sixth
natural frequency, as can be seen in Figure 2.

TMD with one vertical degree of freedom and mass
ma = 600 kg is attached to node 5, and its parameters
were designed according to section 3, which resulted
into values ka = 86300 Nm−1, and ca = 772 Nsm −1.
The mass of 600 kg is approximately only 0.15 % of
the total mass of the structure, but it can reduce the
vibration significantly.

4.4.2. numerical optimization
To optimize TMD numerically, function fmincon im-
plemented in MATLAB was used. The function uses
interior-point algorithm and is designed to solve con-
strained multivariable optimization problems. The
only implemented constraints were ka > 0 and ca > 0.
The function was used to find optimal values of ka

and ca which minimize the objective function. Gener-
ally, in the case of single TMD, the objective function
can have at most one local minimum for each natural
frequency. In our case, the function has only one local
minimum for the sixth frequency, because the peak of
FRF reaches the highest level in resonance with the
sixth natural frequency.

The initial values of ka and ca define the local min-
imum to which interior-point algorithm converges,
therefore it is advantageous to begin with TMD tuned
close to the natural frequency which response is mini-
mized. For parameters of TMD, which are "far from
optimal", a gradient of objective function may be very
low, therefore convergence problems may occur, or it
can take a large number of iterations to find the local
minimum. Parameters designed according to section
3 are quality starting point for quick convergence.

The parameters, which optimize the objective func-
tion ka = 84100 Nm−1 and ca = 1259 Nsm −1 were

mode
shape node ka

[Nm−1]
ca

[Nsm−1]
ma

[kg]
5 19 26000 98 200
6 5 29100 150 200
7 27 31500 129 200

Table 2. TMDs designed to reduce vibration of the
5th, 6th, and 7th mode shape.

found numerically. Corresponding FRFs for both
methods of design can be seen in Figure 6.

4.5. Multiple TMDs
As we can see in Figure 2, there are three dominant
natural frequencies between range 1.7-2.2 Hz. There-
fore three TMDs are designed in this section to show
that a higher number of TMDs can reduce the ob-
jective function more effectively than one. It was
decided to keep the sum of TMDs mass constantly
at 600 kg. The constant sum of weight allows for
a relevant comparison of one and multiple TMDs.

4.5.1. simplified design
In order to reduce FRF, three tuned mass dampers
were designed according to section 3 to reduce vibra-
tion in resonance with the 5th, 6th, and 7th natural
frequencies. All of them were positioned to the node
where the highest ordinate of damped mode is located.
Their properties are summarized in Tab. 2. The mass
was equally distributed among TMDs because its op-
timal distribution remains unknown.

4.5.2. Numerical optimization
The numerical optimization was performed with two
basic settings. The first one uses position of TMDs
used by previous section (nodes 19, 5, and 27) and
was expected to provide the best results. The second
one places all TMDs in node 5. This calculation was
proceeded in order to show that dividing the mass
among more TMDs can perform better than one TMD,
if more than one mode participate on the response.
Theoretically, one TMD is only a subset of multiple
TMDs with the same sum of mass. Therefore, dividing
the mass provided additional room for a performance
improvement.
The objective function was minimized finding ca,i,

ka,i, and ma,i for i =1. . . 3. The following constraints
were implemented:

• ca,i ≥ 0,
• ka,i ≥ 0,
• ma,i ≥ 0,
•

∑3
i=1 ma,i = 600 kg.

From the numerical point of view, the problem is
much more complicated than the one with single TMD
because 9 variables were optimized. Moreover, the
function contains multiple local minima. Therefore,
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settings No. design method node ka

[Nm−1]
ca

[Nsm−1]
ma

[kg]
maximal displacement

[mm]
- no TMD - - - - 3.447
1 simplified 5 86300 772 600 1.349
2 numerical optimization 5 84100 1259 600 1.103

3 simplified
19 26000 98 200

1.5435 29100 150 200
27 31500 129 200

4 numerical optimization
19 26800 213 208

1.1005 24500 198 157
27 33500 312 236

5 numerical optimization
5 29800 191 189

0.9205 21600 147 176
5 34000 391 235

Table 3. Comparison of design methods and peak response between 1.7-2.2 Hz.

it was decided to run the optimization multiple times
from one hundred randomly generated initial points,
which fulfilled the constraints. This procedure allowed
us to find good results, but it is not possible to say
that the global minimum was found.

4.6. results
The results are summarized in Table 3. A total of 5
different TMD settings were found using simplified
method and numerical optimization. As expected,
TMDs designed using Den Hartog’s criteria were able
to reduce the vibration though they were originally
proposed for structure with one degree of freedom. It
also can be noticed in Figure 6 that single TMD can
positively affect vibration of adjacent mode shapes if
their frequencies are close enough, and if the adjacent
mode shapes have sufficiently high ordinate in the
position of TMD.

Figure 6. FRF - settings No. 1-2.

As is shown in Figures 6 and 7, the numerical op-
timization was able to improve the performance of
both single and multiple TMDs. In the case when
starting parameters of TMDs were randomly chosen,
we expected that each tuned mass damper would con-
verge to a point where it is able to damp one of the

Figure 7. FRF - settings No. 3-5.

dominant frequencies. This assumption was confirmed
and can be seen in Figure 8, which shows the FRFs
of tuned mass dampers.

Figure 8. displacement of TMDs - settings No. 5.

Unexpectedly, the best results were provided by
settings where all three TMDs were placed in node
5, despite the fact that this is not the place where
the highest ordinates of some mode shapes are lo-
cated. This phenomenon can be explained by closer
observation of mode shapes in Figures 3, 4, and 5.
The force is placed in node 5, therefore all the active
mode shapes oscillate with the same phase in this
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node. However, in nodes 19 and 27, the sixth mode
shape oscillates in opposite phase than mode shapes
5 and 7. Therefore neither node 19 nor node 27 are
the best place for TMD. However, this situation is
closely connected to the fact that the optimization
was performed to reduce vibration caused by only one
specific force. For design of this footbridge, symmetric
placement of smaller TMDs to both sides of the bridge
would solve the problem.

5. conclusions
Modified mode superposition method was used to eval-
uate response of structure with tuned mass dampers
to speed up the response calculation. Utilization of
this method provided a powerful tool for numerical
optimization, which requires numerous evaluations
of steady state response. This response evaluation
method provides several important advantages in com-
parison to standard response calculation:

• Reduction of numerical complexity without notice-
able error thanks to reduced number of mode shapes
used.

• Allows for a fast evaluation of various load vectors,
because the system receptance matrix is known.

• Provides possibility to use experimentally measured
mode shapes and natural frequencies for more pre-
cise response estimate.

• Can be used for both single and multiple TMDs.

Simplified TMD design method proposed by Den
Hartog was compared to numerical optimization. The
results demonstrate that numerical design is more
appropriate for MDOF structures and can improve
the overall performance of TMDs. In all cases of com-
parison, the analysis showed that optimal damping is
higher than the one designed by simplified criterion.
Further it was shown that multiple TMDs with the
same sum of mass as a single TMD can provide better
results.
The best settings of TMDs was able to reduce the

peak response between 1.7-2.2 Hz by 73 %, with TMDs
total mass of only 0.15 % of the structural mass. This
result shows that the common recommendations for
TMDs to have 1-3 % of mass of the structure may
lead to uneconomical design.
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