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Abstract. We critically assess the performance of several variants of dual and dual-primal domain
decomposition strategies in problems with fixed subdomain partitioning and high heterogeneity in
stiffness coefficients typically arising in topology optimization of modular structures. Our study
considers Total FETI and FETI Dual-Primal methods along with three enhancements: k-scaling, full
orthogonalization of the search directions, and considering multiple search-direction at once, which
gives us twelve variants in total. We test these variants both on academic examples and snapshots of
topology optimization iterations. Based on the results, we conclude that (i) the original methods exhibit
very slow convergence in the presence of severe heterogeneity in stiffness coefficients, which makes them
practically useless, (ii) the full orthogonalization enhancement helps only for mild heterogeneity, and
(iii) the only robust method is FETI Dual-Primal with multiple search direction and k-scaling.
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1. Introduction
Topology optimization has became an indispensable
tool in the design process, allowing for optimal distri-
bution of a material within a provided space with re-
spect to given criteria (such as minimization of compli-
ance, maximization of output response of mechanisms,
or increasing the lowest eigenfrequency) under given
constraints (typically limiting the available material
volume). In Solid Isotropic Material with Penaliza-
tion (SIMP) method [1]—one of the most common
approaches to topology optimization—the material
distribution is parameterized with a scalar relative
density field ρ(x), with 0 ≤ ρ ≤ 1, which consequently
governs the distribution of stiffness parameters in a
domain such that

E(x) = Emin + ρp(x) (E0 −Emin) , (1)

where p is a given penalization coefficient (usually
p ≥ 3), helping the optimization procedure to achieve
the desired “0-1” design without regions of intermedi-
ate densities, and E0 and Emin are stiffness tensors of
the solid material and voids, respectively. Note that
while the stiffness tensor of the bulk material is physi-
cal, void stiffness serves only numerical purposes of
avoiding an indefinite Hessian matrix. On one hand,
it should be small enough in order to model voids
properly, on the other hand too small values lead to
ill-posed state problem. The optimal design is then
usually sought-for in an iterative manner, alternately
solving the state equations with a fixed densities and
updating design density variables according to the
sensitivities computed for a current design.

Being a matured technology, topology optimization
is now widely used in industrial applications with
millions of unknowns, and first applications reaching
billions of unknowns are emerging [2]. Consequently,
such scales of optimization problems often prohibit the
use of direct solvers in favour of iterative ones, which
are further combined with parallelisation. Domain
decomposition (DD) techniques thus seem promising
candidates; however, the presence of high contrast
in coefficients due to the stiffness parameterization,
recall Eq. (1), may cause slower convergence and con-
sequently poor performance of iterative solvers based
on DD, as has been already shown in [3].

To make the task even more challenging, in this con-
tribution, we focus in particular on modular topology
optimization problems, recently introduced in [4, 5],
in which the main domain is composed of a limited
number of square modules. The multiple occurrence
of individual modules can thus be readily exploited to
accelerate calculations; on the other hand, the mod-
ularity automatically introduces fixed, regular parti-
tioning, which—as will be shown later—is detrimental
for the performance of DD-based solvers. Admittedly,
the modular grid constitutes only the coarsest par-
titioning and more refined divisions of each module
following e.g. the distribution of a material with the
module can be performed, but we did not follow this
possibility in our current study.

After recalling the fundamentals of two Finite El-
ement Tearing and Interconnecting methods in Sec-
tion 2, we review several modifications aimed at im-
proving the performance and robustness of the solu-
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tion strategy; see Section 3. Finally, in Section 4,
the performance of the original methods and their
modifications is assessed on two test sets: three aca-
demic problems from the literature and three geome-
tries arising from three distinct snapshots of modu-
lar topology optimization of the emblematic Messer-
schmitt–Bölkow–Blohm beam.

2. Dual and dual-primal domain
decomposition methods

Characteristically for domain decomposition methods,
we assume that the original domain Ω is partitioned
into Ns mutually disjoint subdomains Ωs with s =
1 . . . Ns. The solution to the system of linear equations

KΩuΩ = fΩ , (2)

which arises from e.g. numerically discretized partial
differential equations valid in Ω, is then sought for via
a series of subdomain-wise problems

Ksus = fs for s = 1 . . . Ns , (3)

with an additional constraint ensuring continuity of
the solution {us}s=1...Ns

across subdomain bound-
aries. Two major branches of domain decomposition
methods can be distinguished based on the manner
in which the aforementioned continuity is enforced:
primal decomposition methods, such as the Schur
Complement method [6], satisfy the continuity by
construction of an approximation space, while the
dual methods, e.g. Finite Element Tearing and In-
terconnecting (FETI) method [7], impose the conti-
nuity requirement as an equality constraint enforced
via Lagrange multipliers λ. The multipliers λ then
also contribute to the right-hand side of Eq. (3); see
the first row of Eq. (6). Finally, as its name sug-
gests, the Finite Element Tearing and Interconnecting
Dual-Primal (FETI-DP) method [8] combines both
approaches.

In the following two subsections, we briefly sum-
marize the essentials of both dual and dual-primal
methods.

2.1. Total-FETI
The Total FETI method (T-FETI), introduced by
Dostál and co-workers [9] and adopted here as a repre-
sentative of the dual domain decomposition methods,
is closely related to the original FETI method [7] with
the main difference being the way the Dirichlet bound-
ary conditions (BC) are imposed. In T-FETI, these
BC are handled similarly to enforcing the continu-
ity across subdomain boundaries, i.e. the constraints
posed on the domain-wise displacements us read as

Ns∑
s=1

Bsus = Bu = c (4)

where u collects the domain-wise unknowns such that

u =
[
u1T

, u2T
, . . . , uNs

T
]T

(5)

and B combines the individual Bs’s accordingly. Thus,
in contrast to the standard FETI, constraint (4) fea-
tures a right-hand side vector c that is in general
nontrivial; in addition to the zero entries pertinent to
the cross-boundary continuity, it also contains values
related to the Dirichlet BC. As a result, the number
of rigid body modes of each domain is only problem
specific (e.g. three for two-dimensional mechanics
problems) and factorization can be recycled for all
occurrences of one module irrespective of whether the
occurrence is supported or floating.

Combining Eqs. (3) and (4) leads to[
K BT

B 0

] [
u
λ

]
=

[
f
c

]
(6)

where K is a block-diagonal matrix composed of Ks

and f arises from fs assembled similarly to u in Eq. (5).
Assuming the λ is known and provided that f−BTλ

is orthogonal to the nullspace of K, u can be uniquely
determined up to rigid body modes of individual do-
mains expressed as R α, where R is a matrix containing
the nullspace vectors of each domain and α is a vec-
tor of rigid body modes coefficients. Without diving
into technical details, for which we refer an interested
reader to e.g. [10], the original formulation can be
recast into the dual form[

F GT

G 0

] [
λ
α

]
=

[
d
e

]
(7)

with

F = BK†BT , d = BK†f − c ,

G = −RTBT , e = −RTf ,

where K† denotes the Moore-Penrose pseudo-inverse of
K. Problem (7) is traditionally solved with a projected
preconditioned conjugate gradient method.

2.2. FETI-DP
In Finite Element Tearing and Interconnecting Dual-
Primal (FETI-DP) method [8], the domain-wise dis-
placement field us is decomposed into two parts:
(1.) boundary degrees of freedom us

c whose continuity
is directly enforced in the primal unknowns, and

(2.) remaining degrees of freedom us
r that contain both

internal degrees of freedom, which do not directly
communicate with other domains, and boundary
degrees of freedom whose continuity is enforced via
equality constraints, similarly to Eq. (4).

Without loss of generality, we assume that us is or-
dered such that

us =
[
us

r

us
c

]
, Ks =

[
Ks

rr Ks
rc

Ks
cr Ks

cc

]
, and fs =

[
fs
r

fs
c

]
. (8)

Furthermore, we consider a global vector uc that stores
the shared boundary degrees of freedom (DOFs) and
a Boolean matrix Bs

c such that

us
c = Bs

cuc . (9)
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The equality constraint ensuring continuity of the
remaining us

b then reads

Ns∑
s=1

Bs
rus

r = Brur = 0 , (10)

where—analogously to Eqs. (4) and (5)—ur and Br

are concatenations of us
r and Bs

r, respectively.
Expressing the equilibrium (3) and the con-

straint (10) in terms of the quantities introduced in
Eqs. (8)–(10) leads toKcc Kcr 0

Krc Krr BT
r

0 Br 0

 uc

ur

λ

 =

fc
fr
0

, (11)

with

Kcc =
Ns∑
s=1

Bs
c

TKs
ccBs

c , fc =
Ns∑
s=1

Bs
c

Tfs
c ,

Kcr = KT
rc =

[
B1

c
TK1

cr B2
c

TK2
cr . . . BNs

c
TKNs

cr

]
,

Krr =


K1

rr 0 . . . 0
0 K2

rr . . . 0
...

...
. . .

...
0 0 . . . KNs

rr

 , and fr =


f1
r

f2
r
...

fNs
r

.

Finally, due to the domain-wise nature of the second
row in Eq. (11), us

r can be computed in parallel from
the known uc and λ; hence, plugging the expression
for us

r in terms of the remaining quantities into the
first and the third rows of Eq. (11) leads to the final
dual-primal form[

Frr Frc

FT
rc −K̄cc

] [
λ
uc

]
=

[
dr

−f̄c

]
, (12)

where

Frr = BrK−1
rr BT

r , Frc = BrK−1
rr Krc ,

K̄cc = Kcc − KcrK−1
rr Krc , dr = BrK−1

rr fr ,

f̄c = fc − KcrK−1
kk fr .

Note that DOFs in uc are chosen such that there is no
need for a pseudo-inverse of Krr in contrast to T-FETI.
In FETI-DP, DOFs related to corner nodes in a regular
subdomain partitioning typically constitute uc.

Problem (12) is traditionally solved iteratively with
a preconditioned conjugate gradient method with uc

being condensed out, resulting in a problem dependent
solely on λ [8].

3. Enhancements for
heterogeneous domains

3.1. k-scaling
The merit of both formulations described above is that
they can be conveniently parallelized thanks to their
additive structure. In both, the solution is sought with

an iterative conjugate gradient method considering
only the first block of the corresponding equations (7)
and (12), while the remaining blocks are incorporated
either via projection (T-FETI) or by condensating out
the primal unknowns (FETI-DP).

Distinctively for domain decomposition methods,
the iterative procedure also benefits from a coarse
problem preconditioner F̄−1 of either F, recall Eq. (7),
or Frr, Eq. (12), constructed as a sum of local inverses

F̄−1 =
Ns∑
s=1

(
B̃s

[
0 0
0 S̃s

] (
B̃s

)T
)

(13)

where S̃s either
• represents the Schur complement Ss = Ks

bb −
Ks

biKs
ii

−1Ks
ib if the optimal Dirichlet preconditioner

is used, or
• S̃s = Kbb or S̃s = diag Kbb if a computationally

cheaper approximations of Ss is used, denoted as
a lumped or super-lumped preconditioner, respec-
tively,

where diag • extracts only the diagonal part of •. Note
that in FETI-DP the unknown index sets i and b are
subsets of r only, since the unknowns in set c are
handled directly.

In the simplest setting, one can assume B̃s =
Bs; however, B̃s can be arbitrarily scaled provided
that [11]

Ns∑
s=1

(
Bs(B̃s)T)

Bj = Bj , ∀1 ≤ j ≤ Ns . (14)

Based on a mechanical reasoning, Rixen and
Farhat [12] proposed k-scaling, which compensates
for different stiffness coefficients across subdomain
boundaries. In their approach, B̃s = WsBs with the
entries of the diagonal matrix Ws obtained as

W s
ii = Kr

ii

Ks
ii + Kr

ii

, (15)

where Ks
ii denotes the component of the stiffness ma-

trix pertinent to the ith row of Bs and, similarly, Kr
ii

is the corresponding coefficient of the stiffness matrix
of the adjacent Ωr. In the case of multi-domain con-
straints (which typically happen for corner nodes in
T-FETI), the authors of [12] advocate for the use of
pair-wise constraints despite the introduced redundan-
cies. Consequently, only the denominator in Eq. (15)
changes such that it sums the stiffness contributions
from all related domains; see [12, Eq. 68]. Also note
that Eq. (15) naturally falls back to multiplicity scal-
ing in the case of domains composed of the same
homogeneous material.

3.2. Full orthogonalization
For practical applications, F-orthogonalization of the
current (projected) preconditioned search direction
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w, which appears in the classical Preconditioned Con-
jugate Gradient method used to solve problems (7)
or (12), with respect to the search directions w from
the previous iterations is often recommended, e.g. [11].
Consequently, this modification necessitates storing
the previous directions and their F-norms. However,
the faster convergence caused by this modification
usually compensate for both the increased memory
requirements and the orthogonalization-related calcu-
lations.

3.3. Rank-Revealing Simultaneous FETI
Finally, the last enhancement investigated in this work,
is the simultaneous variant of both T-FETI and FETI-
DP [11]. This modification was particularly developed
to handle heterogeneous problems by exploiting the
additive structure of the local preconditioners. In-
stead of considering only one preconditioned search
direction w in each iteration, it defines an individual
search direction for each subdomain. Note that the
original search direction can be restored with w = W 1,
where 1 =

[
1, 1, . . . 1

]T ∈ RNs and W collecting these
individual directions as its columns.

As a result, each iteration i requires solving a sys-
tem of Ns × Ns equations related to minimization
and conjugation steps; however, the matrix ∆i as
defined in Algorithm 1 may be ill-conditioned, e.g.
due to a linear dependence of the search directions,
and its pseudo-inverse might need to be constructed.
Here, we employ the rank revealing Cholesky factor-
ization [13] with permutation matrix N to extract
only the linearly independent search directions, which
are subsequently F-orthonormalized; see lines 9–12
in Algorithm 1, which summarizes the strategy for
T-FETI.

With this modification, we also automatically em-
ploy the full orthogonalization described in the previ-
ous subsection; lines 18–21 in Algorithm 1. Note
that in Algorithm 1, P is the projection matrix
P = I − GT (

GGT)−1 G enforcing the increments of
λ to satisfy G λ = e.

4. Numerical tests
4.1. Academic problems
We test both approaches on two sets of illustrative ex-
amples. The first suite comprises three test problems
studied, e.g., in [11] and shown in Fig. 1. Unlike Fig. 1,
however, we keep the regular partitioning and do not
investigate the effect of irregularity and bad aspect
ratios of the decomposition. We included these prob-
lems primarily to verify our implementation against
the convergence reported in [11] and also to compare
the performance of all considered variants in these
academic problems against the problems arising in
topology optimization.

The first test is a laminated beam consisting of
nine repeating square subdomains, each composed of
seven alternating layers of stiff (blue) and compliant

Algorithm 1: Rank-Revealing Simultaneous
FETI [11]

1 r0 = PT(d− Fλ0)
2 Z0 =

[
. . . , B̃s S̃s(B̃s)Tr0, . . .

]
,∀s ∈ {1, . . . , Ns}

3 W0 = P Z0
4 λ̃0 = 0
5 i← 0
6 while

√
rT
i Zi 1 > ϵ do

7 Qi = F Wi

8 ∆i = QT
i Wi

9 Factorize N ∆i NT = L LT s.t. L =
[

L̃ 0
× 0

]
10 Wi ←Wi NT

[
L̃−T

0

]
11 Qi ← Qi NT

[
L̃−T

0

]
12 ∆i ← I
13 γi = WT

i ri

14 λ̃i+1 = λ̃i + Wi γi

15 ri+1 = ri − PT Qi γi

16 Zi+1 =
[
. . . , B̃s S̃s(B̃s)Tri+1, . . .

]
17 Wi+1 = P Zi+1
18 for 0 ≤ j ≤ i do
19 Ψj = QT

j Wi+1
20 Wi+1 ←Wi+1 −Wj Ψj

21 i← i + 1

(green) material. The second test problem is a square
grid of 3 × 3 subdomains, again, with alternating
layers. This problem features the corner cross-point
and hence different variants of enforcing the continuity
of solution is expect to deliver different performance
results. Finally, the last test problem is a 4× 4 grid
of subdomains with a stiff inclusion immersed in each
subdomain. Unlike the previous two problem, there
are no jumps in stiffness coefficients and hence the
convergence should be the fastest. All structures
were clamped on the left-hand side and subjected to
tangential and tensile normal traction on their right-
hand sides.

The two solution strategies (T-FETI vs. FETI-DP)
in combination with the scaling options (stiffness vs.
multiplicity) and the option for full orthogonalization
or simultaneous search directions yield 12 variants in
total. Figure 2 plots the history of the residual error
defined as

εr =
√

rT
i zi , (16)

where the ri and zi are the projected residual and its
preconditioned counterpart from Algorithm 1, respec-
tively.

In accordance with expectations, the third prob-
lem with stiff square inclusions was indeed the easiest
to solve and the performance of all variants did not
vary significantly except for the most advanced si-
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(a)

(b) (c)

Figure 1. Three academic problems taken from [11]:
a) the laminated beam, b) the 3 × 3 grid of periodic,
layered subdomains, and, c) the 4×4 grid of peridodic
subdomains with immersed stiff square inclusion.

multaneous variants of both T-FETI and FETI-DP
which converged in fewer than half of the iterations
needed by the other variants. On the other hand,
once the heterogeneity in stiffness coefficients reached
subdomain boundaries (the first and the second test
problems), the performance of the unmodified vari-
ants deteriorated rapidly. However, the importance of
k-scaling (solid lines) in contrast to the simple multi-
plicity scaling (dotted lines) arises only in the second
example due to the presence of the cross-points; in
the third problem for instance, the k-scaling falls back
to multiplicity scaling as mentioned in Section 3.1.

4.2. Topology optimization problems
The second test suite comprises several snapshots from
the modular topology optimization [4] of a beam fixed
at both bottom corners and loaded by a unit force
acting at the midspan of the top edge; see Fig. 3. The
beam is composed of 96 square modules of 16 types
(depicted with distinct colours in Fig. 3). The modu-
lar composition was directly reflected in the beam’s
partitioning into 96 subdomains. Each subdomain
was discretized with 30 × 30 bilinear quadrilateral
finite elements, which resulted in 184,512 DOFs in
total and over 10,000 DOFs in the interface problem
of both T-FETI and FETI-DP.

In particular, we tested the described solution strate-
gies on the 4th, 8th, and 30th iteration snapshots of
the topology optimization. Distribution of the base
material, parameterized by the relative density ρ (re-
call Eq. (1)), in these snapshots is shown in Fig. 4.
As the topology optimization progresses, the initially
uniform density gradually concentrates to the most ef-
ficient locations, which leads to a highly heterogeneous
problem with significant jumps in stiffness coefficients
along subdomain boundaries, making the problem
difficult to solve with iterative methods.

Similarly to Section 4.1, Figure 5 summarizes the
convergence history of all 12 variants for the three
topology optimization snapshots from Fig. 4. The
later stages of the topology optimization in particular

(a)

(b)

(c)

Figure 2. Convergence history of 12 variants of the
solution strategies for the three academic problems
shown in Fig. 1: a) a laminated beam, b) a 3 × 3 grid
of laminated subdomains, and, c) a 4 × 4 grid of sub-
domains with stiff square inclusions. FO denotes full
orthogonalization enhancement, RRS stands for the
simultaneous variant with rank-revealing decomposi-
tion. In all graphs, results with the k-scaling enhance-
ment are plotted in solid lines while the dotted lines
represent the multiplicity scaling. The dash-dotted
line mark the desired residual threshold ϵ from Algo-
rithm 1.

render challenging problems for T-FETI and FETI-DP
solvers; while in the first snapshot, all methods except
for T-FETI with full orthogonalization successfully
converged, in the last snapshot, only the simultaneous
FETI-DP with rank-revealing factorization succeeded.

5. Discussion
The numerical tests clearly demonstrate that the lin-
ear systems of equations arising in modular topol-
ogy optimization are indeed challenging for domain-
decomposition based iterative methods. The main
culprit is the potentially unfavorable partitioning into
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Figure 3. An illustration of the beam problem aris-
ing in modular topology optimization. The distinct
colours represent 16 different types of 96 modules,
which constitute the beam’s subdomains Ωs.

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e 
de

ns
ity

 

(b)

(c)

Figure 4. Three snapshots of modular topology op-
timization constituting the second suite of test prob-
lems: a) 4th iteration, b) 8th iteration, and c) 30th

iteration.

subdomains, which leads to coefficients jumps across
subdomain boundaries, and most importantly the
high contrast in stiffness coefficients. These effects are
partly present in the academic test problems, however,
they are significantly more pronounced in the topology
optimization problems up to the point at which most
of the considered solution variants break or do not
converge in a reasonable time.

The only variant successful in all tests was the si-
multaneous FETI-DP with rank-revealing Cholesky
decomposition. With incorporated k-scaling, this vari-
ant was also the fastest to converge, even though the
convergence rate of T-FETI with rank-revealing was
usually comparable when it converged.

On the other side of the convergence spectrum were
the original variants of T-FETI and FETI-DP. How-
ever, while featuring the slowest convergence, those
methods proved to be relatively robust, unlike the
modifications with full orthogonalization, which re-
duced the needed iterations only for mildly heteroge-
neous problems and broke completely for the final test
problem. We conjecture that the rapid increase in the

(a)

(b)

(c)

Figure 5. Convergence history of 12 variants of the
solution strategies for the three snapshots of modu-
lar topology optimization from Fig. 4: a) 4th, b) 8th,
and c) 30th iteration of the topology optimization.
Similarly to Fig. 2, FO denotes full orthogonalization
enhancement, RRS stands for the simultaneous vari-
ant with rank-revealing decomposition. In all graphs,
results with the k-scaling enhancement are plotted in
solid lines while the dotted lines represent the multi-
plicity scaling. The dash-dotted line mark the desired
residual threshold ϵ from Algorithm 1.

monitored residual in Fig. 5c is caused by the loss of
numerical accuracy due to round-off errors during the
orthonormalization.

6. Summary
In this work, we investigated twelve variants of dual
and dual-primal domain decomposition methods with
particular emphasis on applications to highly hetero-
geneous problems with predefined partitioning which
arise in modular topology optimization problems [4, 5].
We considered Total-FETI [9] and FETI-DP [8] as
the base methods, for which we tested two scaling
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approaches (k-scaling and multiplicity scaling), full
orthogonalization, and simultaneous search directions
with rank-revealing decomposition. We tested the
variants on two suites of two-dimensional elasticity
problems: first one composed of three academic prob-
lems, the second suite comprising snapshots of modu-
lar topology optimization. All variants were compared
in terms of the number of iterations needed to reach a
desired residual ϵ. We are aware that such a compari-
son does not paint the whole picture and comparing
the total wall-clock time would be optimal; however,
such a comparison would be heavily biased by the
implementation and available hardware.

Based on our results, we conclude that the k-scaling
should be a default setting when dealing with non-
homogeneous problems thanks to its significant impact
on the convergence rate and negligible computational
overhead. Our results also show that the original
formulations of both T-FETI and FETI-DP exhibit
very slow convergence in the presence of severe hetero-
geneity in stiffness coefficients and hence performance
enhancements are needed. The simultaneous search
directions with the rank-revealing Cholesky decom-
position reduced the number of needed iterations the
most and should be therefore preferred to full orthog-
onalization alone. Finally, FETI-DP proved to be
more robust than T-FETI as it was the only method
capable of reaching the desired residual in all test
problems.

Following these conclusions, our current research
interest lies in (i) an adaptive choice of the nodes
whose compatibility should be enforced directly in
primal variables (i.e., not necessarily choosing only
the corner nodes for the primal part of FETI-DP) and
(ii) identification of boundary modes responsible for
the bad convergence and eliminating from the iterative
process in the spirit of [14].
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