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Abstract. Laminated glass is aesthetic but also functional modern material, which has spread from
the automotive industry to the civil engineering in the form of design as well as structural elements.
Proper design of this material requires understanding not only its intact phase, but also its post-breakage
behavior. To describe crack initiation and propagation the phase field damage model seems to be
suitable tool despite the fact that this approach requires a fine mesh to sufficiently interpolate sharp
discontinuity. In this contribution we investigate possibilities of explicit phase field dynamic model with
specific use on glass plates, especially applied for dynamic impact load. The dependence of the result
on residual stiffness term is examined and incorrect crack speed is observed. Usability of phase-field
model is still uncertain.
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1. Introduction
The so called phase-field damage model firstly pre-
sented in [1] is nowadays very popular approach and
it is widely studied. The disadvantage of such a model
is the need for a fine mesh to simulate brittle failure,
but the main advantage remains the prediction of
crack initiation and branching without additional ad
hoc criteria. These phenomena are predicted within
a variational principle. Despite the fact that it was
academicly investigated in dynamic regime [2], there
is still a few articles focused on application on real
structures. This paper focuses on such an analysis by
modeling the cracking of glass under dynamic loading.

The dynamic model including impact is briefly pre-
sented in Section 2. The phase-field model formulation
follows partially from [3] and [4]. For comprehen-
sive overview see [5]. The implementation details are
summarized in Section 3 followed by FEM model de-
scription in Section 4. The first numerical results are
benchmarked in Section 5 and finally the main results
are presented in Section 6 and concluded in Section 7.

2. Phase-field model
We suppose the elastic damageable material occupying
space Ω is loaded by external traction forces t on part
Ωt and the current body deformation is described by
displacement field u(x) and damage field d(x). The
latter one represents the relative measure of damage
as a transition of the intact material d = 0 to a fully
developed crack d = 1.
For dynamical systems, the common principle of

minimum potential is replaced by Hamilton’s principle
of stationary action and fields u(t) and d(t), t ∈ 〈0, T 〉

are obtained by minimization of action

A(u, u̇, d) =
∫ T

0
L(u, u̇, d) dt, (1)

where L is so called Lagrangian which form is postu-
lated as

L(u, u̇, d) = K(u̇)−Ψe(u, d)−Ψs,l(d) + P(u), (2)

where K is kinetic energy defined as quadratic form
of displacement

K(u̇) =
∫

Ω

1
2ρu̇ · u̇ dx. (3)

This formulation assumes that kinetic energy is not
affected by damage, therefore the functional is d-
independent. The second term in equation (2) is
elastic potential. It can be additively decomposed
on part Ψ+ which is degraded by damage through
function g(d) and intact part Ψ−, i.e.

Ψe(u, d) =
∫

Ω
g(d)ψ+(u) + ψ−(u) dx, (4)

where ψ• represents elastic energy density of Ψ•. In
what follows we always assume that g(d) = (1− d)2 +
kres, where kres is small (kres << 1) auxiliary residual
relative stiffness which stabilizes the calculations. The
third part of (2) is dissipated energy Ψs,l which is
approximated by following regularization

Ψs,l = Gf

cα

∫
Ω

α(d)
l

+ l|∇d|2 dx, (5)

where Gf is the critical energy release rate and l is
length of the process zone. For brittle material, l
can be treated as numerical parameter with value as
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small as possible, but not smaller than element size.
The function α and associated coefficient cα drives
the phase-field model type. Two common options are
commonly used in literature: α = d with cα = 8/3
and α = d2 with cα = 2 however we restrict to the
first one.

Finally, the last ingredient is external work of trac-
tion forces t defined as

P(u) =
∫

Ωt

t · udx. (6)

Minimization of the action integral (1) with addi-
tional per partes integration leads to common conti-
nous governing equations for displacement field

div
(
g(d)∂ψ

+

∂u
+ ∂ψ−

∂u

)
= ρü (7)

supplemented by damage-evolution inequality

Gf

cα

(
α′(d)
l
− 2l∆d

)
= −g′(d)ψ+, ḋ > 0 (8)

Gf

cα

(
α′(d)
l
− 2l∆d

)
> −g′(d)ψ+, ḋ = 0 (9)

and approriate boundary conditions. Strong-form
equations (7)-(9) have a generally unknown solution,
therefore some numerical method must be used.

2.1. Plate models
The model and its properties are determined by the
choice of dissipation function α(d), degradation func-
tion g(d) and by active/passive elastic energy densities
ψ±. Four common choices for the latter one are pre-
sented in this subsection. Despite the fact that we
restrict our attention to model P-VD, others are pre-
sented. This is because we intend to investigate them
in the future research.

3D spectral decomposition It is assumed that
material behaves linearly elastically in pre-breakage
stage, therefore it can be described by two independent
Lame’s coefficients λ and ν. Since the damage variable
starts evolving, the only positive part of energy must
be degraded, therefore

ψ±(u) = 1
2λ〈±tr(ε)〉2 + µε± : ε±, (10)

where ε is conventional strain tensor defined as sym-
metric part of displacement field gradient ε = ∇su.
Positive and negative component of strain tensor fol-
lows from the principal strains εi and the dyadic
product of eigenvectors pi of ε, thus

ε± =
∑
i

±〈±εi〉pi ⊗ pi. (11)

We denote this model as 3D− SD

3D volumetric decomposition The second com-
mon choice of decomposition is volumetric-deviatoric
split, which assumes that only compression part of
volumetric strain component remains intact, thus

ψ+(u) = 1
2K〈tr(ε)〉

2 + µεD : εD (12)

ψ−(u) = 1
2K〈−tr(ε)〉2, (13)

where K stands for bulk modolus and εD is deviatoric
part of strain ε. This model is denoted as 3D−VD.

Mindlin-Reissner plate Besides full 3D model,
we investigate the spatialy reduced Mindlin-Reissner
plate model. This model assumes linearly distibuted
strain and stress field across thickness and kinematics
is driven by middle-surface longitudinal displacement
field u, out-of-plane scalar deflection w and vectorial
tensor of cross-section rotations ϕ. Based on the
linearity assumption the longitudinal strain ε and
shear strain γ can be established as

ε(xs, z) = ∇su(xs) +∇sSϕ(xs)z, (14)

γ(xs) = 1
2 (∇w(xs) + Sϕ(xs)) , (15)

where z is out-of-plane coordinate meanwhile xs =
{x, y} is in-plane coordinate system of middle-surface
Ωs. The S is auxiliary matrix

S =
[

0 1
−1 1

]
. (16)

Mindlin-Reissner plate model ignores normal stress
across thickness, therefore in each infinitesimal layer
plane-stress situation occurs. Therefore stress fields
are defined as

σ(ε) = DPS : ε, (17)
τ (γ) = 2νI : γ, (18)

where DPS is plane-stress elastic tensor defined again
through Lame’s coefficients λ and ν and I is identity
tensor. The last ingredient is thickness integration
for spatial reduction. It is impossible to perform
it in closed form therefore numerical integration is
employed and active/pasive elastic energy become

Ψ+ = 1
2

∫
Ωs

g(d)
(∑

i

∆ziεi : σ+
i + ξhγ · τ

)
dxs,

(19)

Ψ− = 1
2

∫
Ωs

∑
i

∆ziεi : σ−i + (1− ξ)hγ · τ dxs.

(20)

Summation represents dividing thickness into layers
i, each represented by in-plane stress σi and strain
εi with sub-thickness ∆zi. Parameter ξ decides what
amount of shear is degraded; ξ = 1 means shear is
fully degraded meanwhile ξ = 0 is shear damage-free
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state. Still the stress tensor σ±i must be somehow
decomposed. Based on this decomposition this model
is denoted as P− SD if spectral decomposition is used
and is denoted P−VD for volumetric-deviatoric split.
The degradation function still remains g(d) = (1 −
d)2 +kres, but we found that it is appropriate to select
different parameter kres for shear, which is denotes by
ks

res.

2.2. Discrete dynamic model
First of all we suppose that the solution is evaluated
only in discrete time instants 0 = t0 < t1 < t2 < . . . <
tN = T selected from the original time interval 〈0, T 〉.
The action integral (1) is approximated based on this
time discretization as

N−1∑
i=0

∆tiLd(ui,ui+1, di, di+1), (21)

where common notation ui = u(ti) and di = d(ti) is
used and also ∆ti = ti+1 − ti = ∆t is supposed to
be constant. Function Ld is discretized Lagrandian,
which approximate the action integral on given sub-
interval.

For purpose of this article, relatively simple expres-
sion leading to central difference scheme is used, i.e.

Ld(ui,ui+1, di, di+1) = L(ui,
ui+1 − ui

∆t , di). (22)

As a result the original minimization in continuous
time domain fell apart to individual minimizations
with respect to each displacement ui and damage di,
where i = 0, . . . , N . The stationarity condition for
displacement field ui leads to discrete Euler-Lagrange
equation in form

∂Ld(ui−1,ui, di−1, di)
∂ui

+ ∂Ld(ui,ui+1, di, di+1)
∂ui

= 0,

(23)

which can be expressed implicitly in weak form

δK(δu)− δΨe(δu) + δP(δu) = 0,∀δu (24)

where

δK = 1
∆t2

∫
Ω
ρ(ui+1 − 2ui + ui−1) · δu dx,

(25)

δΨe =
∫

Ω

(
g(di)

∂ψ+(ui)
∂ui

+ ∂ψ−(ui)
∂ui

)
· δu dx,

(26)

δP =
∫

Ω
t · δui dx.

(27)

The presented weak form can be further modified
to obtained governing equations in strong form, but
we employ finite element method for solving spatial
distribution of ui which requires weak form as an
input.

The governing weak form for damage is identical
with quasi-static version. The stationary condition

δA(u, u̇, d, δd) = 0, ∀δd (28)

becomes∫
Ω

Gf

cα

(
α′(d)
l

+ l∇d∇δd
)

+ g′(d)ψ+ dx = 0, ∀δd

(29)

with damage irreversibility condition

di(x) ≤ di+1(x), ∀x, i = 0, . . . , N − 1 (30)

This approach therefore induces the following ex-
plicit non-incremental dynamic procedure: (i) solve
explicitly displacement in time ti by linear problem
(24), (ii) solve damage field di by variational ineqaulity
problem (29)+(30), (iii) increment time.

2.3. Nonlinear Hertz force
The impact of steel impactor with weight mimp is in-
cluded in the model through Hertz-law. The impactor
is characterized by scalar displacement uimp, which is
binded to plate by nonlinear contact force

F (u, uimp) = k〈uz(ximp)− uimp〉3/2, (31)

where ximp is impact position on body Ω, uz is out-of-
plane component of u = (ux, uy, uz) and k is contact
stiffness. Although the force is nonlinear the pseudo
potential of this force can be still founded. This
potential

PHertz = 2
5k〈uz(ximp)− uimp〉5/2 (32)

is added to external work (6) and it induces force (31)
applied to impact point ximp and negative force (31)
applied to impactor. Additionaly the kinetic energy
must be enhanced by

Kimp = 1
2mimpu̇impu̇imp (33)

with impactor displacement rate u̇imp. This part of
kinetic energy is again approximated by discretized
Lagrangian and discrete Euler-Lagrange equation in-
duces following additional member of weak form (26),
i.e.

δKimp = mimp
uimp,i+1 − 2uimp,i + uimp,i−1

∆t2 δuimp

(34)

3. Implementation
For solving spatial distribution of ui, the common
finite element method (FEM) is used. The displace-
ment field is approximated by nodal values ri through
selected basis functions. Since the FEM is well estab-
lished, the details of method is not presented here. To
handle simultaneously deflection of elastic body and
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y

Figure 1. Setup of investigated task.

impactor position, the all matrices and vectors are ex-
tended by one additionaly degree of freedom and final
object is marked by tilde. For example displacement
vector r̃i or mass matrix M̃ mean

r̃i = {ri, uimp}, M̃ =
[
M 0
0 mimp

]
. (35)

With this in hand, the displacement problem (24)
after FEM assemble process and localization becomes

1
∆t2 M̃(r̃i+1 − 2r̃i + r̃i−1) + K̃r̃i + F̃ (r̃i) = 0̃,

(36)

which is linear in parameter ri+1. The matrices K̃
and M̃ are stiffness and mass matrices. Presentation
of their precise form goes beyond the scope of this
paper.

The assembling and localization of damage problem
(29) leads to linear form

Hdi + fd = 0, (37)

but let us remark several comments. First of all, the
discretized damage field di still undergoes irreversibil-
ity condition

di � di+1 i = 0, . . . , N − 1, (38)

where � operator stands for element-wise compari-
son. From that reason the linear problem (37) must
be solved by nonlinear solver based on variational in-
equalities to satisfy condition (38). The second remark
is about matrices K̃, H and damage-driving force fd.
These are ui resp. di nonlinearly dependent and must
be assembled in each time steps. It significantly slows
down the calculations.

4. Setup
The all simulations are performed on the same task –
unsupported square glass plate hit by steal impactor.

This setup follows from real experimental arrangement,
see [6]. The plate has dimensions 1.5 × 1.5 m and
thickness 0.02 m, but only one quarter is modeled due
to symmetry, see Figure 1, where material parameters
are also presented. The contact stiffness is defined as

k = 4
3

√
R

1−ν2

E + 1−ν2
imp

Eimp

, (39)

where R = 0.05 m is impactor head radius and Eimp =
210 GPa and νimp = 0.3. Further weight of impactor
is mimp = 48.7 kg and initial velocity-free height of
impactor is 0.3 m. Finally the phase-field parameter
l is choosen as element length and Gf = (8lf2

t )/(3E),
where ft = 55 MPa is tensile strength.

5. Benchmarks
Phase-field damage model requires fine mesh with
lower-order elements rather than higher-order ele-
ments with lower resolution. It is contrary to plate
theory, where lower-order elements exhibit shear lock-
ing and must be somehow enhanced to overcome this
issue. The plate element enrichment leads to addi-
tional degrees of freedom which reduces computability
and the ability to do repeated calculations. The finer
resolution is more important in this analysis than
exact shear implementation, therefore suitability of
"classic" low-order plate elements is investigated in
this benchmark.
The first benchmark is behavior of impacted plate

in elastic regime. The task setup presented in Sec-
tion 4 is used and the response is calculated in time
interval 〈0; 0.01〉 s with time step ∆t = 4 · 10−7 s.
Resolutions of mesh 50× 50 and 100× 100 elements
are investigated with two different element typolo-
gies: triangles and squares. The reduced integration
is employed for shear terms, which enhanced rectangle
elements, but triangles still locking. The reason for
not using square elements is because they exhibits un-
desirable zero-energy modes. The results of each case
is presented in Figure 2, where evolution of impactor
acceleration is plotted. This is one of the interesting
investigated quantity, which can be experimentaly val-
idated in future research. Also the different behavior
of two cases stands out more than in impactor dis-
placement function. It is evident from Figure 2 that
behavior is slighly different for triangles in case of
mesh 50× 50, but both line are comparably the same
for case 100× 100 and shear locking does not cause
significant deviation. This statement holds for given
time resolution and fraction h/L of course. Never-
theless this setup follows from real experiment and
we assume that results are adequate. The deflections
behaves similarly and do not suffer for larger deviation
for mesh 100× 100.

However, the usage of triangle elements exhibit par-
asitic behavior in the damaged state as is presented
in second benchmark. The task is the same as in
previous benchmark, but initial crack is incorporated
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Figure 2. Evolution of impactor acceleration for triangles (solid) or squares (dashed) mesh plotted for resolution
50× 50 (red) and 100× 100 (blue).
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Figure 3. Deflection distribution on line {(x, y)|y =
0.75}.

on plate in this case. The initial crack is implemented
through Dirichlet boundary condition d = 0.99 on the
line {(x, y)|ζ > |x−L1/4|}, where ζ parameter is cho-
sen such that the damage d = 0.99 is enforced at least
over whole width of one element. The simplified but
still sufficient analysis is performed in this benchmark
using so called hybrid approach [7] for phase-field.
Furthermore, the damage d and updated matrix K̃
from (36) is calculated in each third step to speed up
analysis. This approach allows some minor wave prop-
agation through crack, but wave dispersion through
crack is still significant. The result also depends on
the parameter ξ from (19)-(20). First of all, let us
investigate case ξ = 0, therefore shear is not degraded.
The results are plotted by solid lines in Figure 3, where
plate deflection along line {(x,y)|y=0.75} is plotted in
time instant t = 0.003 s. The square-topology mesh

M1 M2 M3
Figure 4. Three investigated meshes.

behaves reasonable, but triangle-topology mesh does
not stop the wave on crack interface. It is caused
probably due to element locking. On the other hand,
triangles with ξ = 1 behaves almost like squares with
ξ = 0 as a result of shear degradation by damage. It
significantly reduces the shear locking artifacts. Based
on these conclusions, the triangle-based mesh with
shear reduced by degradation function is used in the
next section.

6. Results
The calculations are time-consuming and therefore
only preliminary results of model P-VD are presented
in this contribution. The model is still under inves-
tigation and there are still many unresolved issues.
The same setup, defined in Section 4, is used, i.e. the
steel impactor hit the thin glass plate. Three different
meshes M1, M2 and M3 are tested to detect possible
mesh-dependency, see Figure 4.

The model with fully degraded kinematic variables,
i.e. ξ = 1.0, kres = ks

res = 0.0, does not behave cor-
rectly. The impactor hit the plate causing damage lo-
calization under impactor. The plate has zero stiffness
and impactor flies through fully damaged elements
and no longer influences the rest of plate. As a result,
the cracks are not evolving further. This behavior is
illustrated in Figure 5 by solid line, where again the
distribution of plate deflection along {(x, y)|y = 0.75}
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Figure 5. Deflection distribution on line {(x, y)|y =
0.75}.

(a) (b)

(c) (d)

Figure 6. Damage distribution on meshes M1 (a,
c) and M2 (b, d) for resolution 50 × 50 (a, b) and
100× 100 (c, d). The blue represents intact material
whereas red represents d close to 1.

and in time t = 1.4 ms is plotted. The example is eval-
uated on mesh M3. The sort of way-out can be shear
coupling in damage state, i.e. kres = 0.0, ks

res 6= 0. It
prevents large slope of deflection curve, see dashed line
in Figure 5, where ks

res = 0.05. The observed behavior
is more pleasant and it leads to crack evolving as pre-
sented below. Moreover the crack is not thickening
after additional load. In contrast with that, the case
kres 6= 0 causes thickening.

Mesh dependency The meshes M1, M2 and M3
in two resolutions 50× 50 and 100× 100 was used to
investigate mesh dependency. The setup is again the
same with constant time step ∆t = 2 ·10−7 s and final
time instant tN = 0.01 s. The results of damage fields
are plotted in Figure 6, where (a) is mesh M1 50× 50,
(b) is mesh M2 50× 50, (c) is mesh M1 100× 100 and
finally (d) is mesh M2 100× 100 all evaluated in end
time. The mesh M3 behaves similarly as M1 and is
not presented here.

There is evident that crack topologies are different
on coarse mesh, however this discrepancy is removed

Figure 7. Visualisation of plate deflection.

after refinement. The slight mesh dependency can still
remain in phase-field models for unstable solutions,
but it still remains more or less objective approach in
contrast with other techniques.

Time refinement The damage solution (d) in Fig-
ure 6 and its visualisation of deflection in Figure 7
is therefore appropriate and objective without any
further improvement during time refinement as seen
in the graph 8. The red and blue line are almost iden-
tical. An interesting parasitic behavior appears when
the residual stiffness is prescribed also to the bending
members (kres = 0.01), see black line in graph 8. The
residual term causes unwanted harmonic oscillations
between impactor and plate.
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Figure 8. Evolution of impactor acceleration for two
different time steps (red and blue) and for case kres 6= 0
(black) with detail below.

Crack speed The main drawback of presented ap-
proach is its inability to correctly predict crack ve-
locity. It is evident from near-the-failure evolution of
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t = 0.00492 s t = 0.00522 s

0.5135 m 0.7210 m

Figure 9. Crack development in two different time
instants for mesh M1 100× 100.

crack in Figure 9. The crack length increment divided
by time increment gives us the numerically predicted
crack speed vPF = 692 m/s. However the crack speed
of glass is about vreal ≈ 1500 m/s [[8]], which is still
twice as much.

7. Conclusion
The explicit variationally consistent dynamic phase-
field damage model was presented in this contribu-
tion with additional implementation details and pre-
liminary results. The plate model with volumetric-
deviatoric decomposition was successfully imple-
mented, but it still exhibits some issues – especially
wrong crack velocity and no crack branching. This
two facts may be related, because crack branching is
caused by large crack velocity. It is under further in-
vestigation as well as implementation of other models
(particularly P-SD).
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