
 The Arbutus Review – 2022 – Vol. 13, No. 1 – https://doi.org/10.18357/tar131202220753 
 

 71 

 

Assessing Mild Cognitive Impairment Using Portable 

Electroencephalography: The P300 Component 

 
Hannah H. Smith1  

 
 

hannahs396@gmail.com  

 
Abstract 

 

Increased prevalence of mild cognitive impairments (MCIs) and dementias are a growing concern 

as the population ages, which produces a need for an objective, accessible, and cost-effective tool 

to facilitate early detection and intervention. This article investigates whether a portable 

electroencephalography (EEG) system can provide an effective measure of MCI using a visual 

oddball task to target the memory and attention event-related potential (ERP) component called 

the P300. In this study, 40 participants were separated into two groups: individuals with a 

diagnosed cognitive impairment and a healthy age-matched control group. Participants completed 

two typical pen-and-paper MCI assessments to gather behavioural data, which were followed by 

a perceptual EEG oddball task to gather brain data. Results show that the MCI group demonstrated 

decreased behavioural task performance in the pen-and-paper assessments and a modulated brain 

response during the oddball task when compared to healthy controls, which the portable EEG 

system revealed to be a decreased P300 peak amplitude. These results indicate the capability of 

portable EEGs to identify biomarkers for MCI and their potential use in the diagnostic process. 

This capability could provide major benefits to patients, their families, and physicians, and would 

also assist with Alzheimer’s research. Future research could expand on these findings by applying 

a lifespan or disease-span approach to investigate P300 changes in the course of a healthy 

individual’s life compared to P300 changes in individuals with MCI over the entire course of their 

disease. This research could also cultivate a greater understanding of how MCI progresses, which 

could improve diagnostic or treatment development.   
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Introduction 
 

Mild cognitive impairment (MCI) is a growing concern in the twenty-first century since 

prevalence rates are increasing with an aging population without a concurrent increase in 

diagnostic and treatment capability (Patnode et al., 2020). MCI is included within the spectrum of 

cognitive decline and is characterized by a deterioration of cognition that does not notably impact 

an individual’s ability to perform everyday activities independently (Langa & Levine, 2014). 

Additionally, individuals with MCI have a greater risk of developing dementia (Gauthier et al., 

2006; Gillis et al., 2019; Langa & Levine, 2014; Owens et al., 2020). In this debilitating condition, 

one of six cognitive domains (learning and memory, executive function, complex attention, 

language, social cognition, and visuospatial processing) undergoes significant decline, which 

interferes with an individual’s ability to perform daily activities (Patnode et al., 2020). Dementia 

can be caused by several factors including Alzheimer’s disease (AD), vascular or traumatic brain 

injuries, and nutritional or metabolic disorders (Gale et al., 2018). Dementia most commonly 

affects the elderly and has a global prevalence of 7% in individuals over the age of 65 (Gale et al., 

2018). Current estimates of dementia in Canadians alone are at over 700,000 people, and this 

number is predicted to increase steadily due to an aging population (Chambers et al., 2016). 

Unfortunately, the prevalence of MCI rates in Canada is more challenging to establish due to issues 

with current diagnostic testing, which is variable and can produce wide-ranging results (Owens et 

al., 2020). Current global prevalence estimates of MCI are between 16.8% and 19.2% for 

individuals over the age of 65, range from 22% to 27.6% for individuals over the age of 75, and 

are between 29% and 38% for individuals over the age of 85 (Qian et al., 2020). 

With the increasing prevalence of dementia and expected increase in related diseases as the 

population ages (Correa-Jaraba et al., 2018; Patnode et al., 2020), early detection of MCI can 

significantly benefit patients, their families, and the Canadian healthcare system (Gale, 2018; 

Sabbagh et al., 2020). For example, patients can be instructed on lifestyle changes that can slow 

the progression of MCI and reduce symptoms (such as memory or attention deficits) to minimize 

the impact of the disease (Sabbagh et al., 2020). In short, early intervention can maximize 

treatment benefits and improve patient health outcomes (Sabbagh et al., 2020) by granting 

physicians and patients time to address and modify risk factors, such as improving dietary and 

exercise habits (Galvin, 2018). Additionally, early identification can allow patients and their 

families to prepare for the future, including planning for increased care needs as well as 

considering potential financial and legal situational changes (Sabbagh et al., 2020). With MCI 

contributing to between 40% to 60% of AD cases in adults over the age of 57 (Gillis et al., 2019), 

early detection is essential since advances in disease-modifying therapies may delay or halt AD 

while still in its prodromal MCI stage (Sabbagh et al., 2020). One major challenge to developing 

successful drug therapies has been the inability of researchers to accurately identify a substantial 

base of eligible patients in the early stages of AD to take part in research and clinical trials. 

Accordingly, widespread and accurate early detection of MCI could provide major benefits 

towards the research and development of successful AD therapies (Sabbagh et al., 2020). 

 

Current Methods of Diagnoses 

 
Several contemporary methods are used to screen for MCI; however, each method uses 

different diagnostic criteria and can produce results that may vary depending on whether the test 

was administered in a specialized clinic or primary care setting (Langa & Levine, 2014). Moreover, 
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current methods used to assess and diagnose dementia are intensive and may require a time-

consuming, comprehensive workup that often includes a complete medical history, neurological 

testing for mental status, lab testing for physiologic or metabolic indicators, and a structural brain 

scan (Gale et al., 2018). Some common clinical interview tools include the Mini-Mental State 

Examination (MMSE), the Montreal Cognitive Assessment (MoCA), and the Memory Impairment 

Screen (MIS)/MIS by Telephone (MIS-T) (Owens et al., 2020). Despite this array of assessment 

tools, test performance can vary based on age, educational background, and culture, as well as 

anxiety and stress levels; hence, reliability may vary when using these methods (Gale et al., 2018; 

Galvin, 2018; Qian et al., 2020; Yokomizo et al., 2014). Additional limitations for interview-based 

assessments include the need for skilled administrators and repeated examination (Yokomizo et 

al., 2014), as well as potential inaccuracies in detecting milder cognitive impairment and changes 

in impairment in both abnormally high- and low-functioning individuals (Galvin, 2018). 

Informant-based assessments, such as the Aging and Dementia-8 Interview (AD8) and the 

Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE), can mitigate biases 

implicit within clinical interview assessments; however, these assessments depend on the 

reliability of the informer to accurately diagnose MCI (Galvin, 2018). Furthermore, issues with 

limited appointment times in primary care settings, combined with untrained technicians and 

inconsistent diagnostic screenings, can lead to missed opportunities for the early diagnosis of MCI 

(Galvin, 2018). Self-assessment tools, such as the Self-Administered Gerocognitive Examination 

(SAGE), have successfully identified early stage MCI for some individuals. Yet, self-awareness 

of cognitive decline varies between individuals, and the test is limited by its inability to detect 

symptom denial (Galvin, 2018). Due to limitations with current diagnostic protocols, an objective, 

accessible, and reliable tool is needed to help accurately and efficiently diagnose MCI in both 

primary care and ambulatory settings. Utilizing a portable electroencephalography (EEG) device 

to identify event-related potentials (ERPs) as biomarkers for MCI could offer a potential solution. 

 

What is EEG? 

  
EEG, or electroencephalography, is a device that continuously records brain activity that 

is then represented as a graph of the voltage difference between two brain regions over time 

(Olejniczak, 2006). EEG is generated via cortical pyramidal cells, which are the predominant 

neurons of the cerebral cortex (Biasiucci et al., 2019). When these postsynaptic cortical pyramidal 

cells receive excitatory or inhibitory neurotransmitters from surrounding neurons, their polarity 

changes. This change in polarity results in a dipole, which is a small separation of positive and 

negative charges. When many neurons work together in parallel to create many small dipoles, a 

local field potential is generated. This local field potential can be measured with EEG by capturing 

the summed change in the extracellular fluid charge created when many cortical pyramidal cells 

act in synchrony. EEG measurements typically show brain activity at four different bands of 

wavelengths: alpha, beta, delta, and theta, (On et al., 2013). These wavelengths are based on the 

frequency of oscillation and are determined by the firing rates of neurons: the faster the neurons 

fire, the higher the frequency rate. Thus, the increased synchrony of firing neurons results in waves 

with higher amplitudes (Musall et al., 2014). Delta waves are the slowest frequency (0.1-3 Hz) and 

occur during deep sleep whereas beta waves are high frequency (13-40 Hz) and dominate during 

wakeful states when individuals are alert and focused (On et al., 2013). All wavelengths can be 

detected at all times, but one usually dominates based on an individual’s mental state (On et al., 

2013).  
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What are ERPs? 

 
In addition to its oscillatory characteristics, EEG may be indexed through time-locked brain 

responses. An ERP, or event-related potential, is a change in voltage that reflects the brain’s 

response to an event (Coles & Rugg, 1996). ERPs can be identified by their amplitudes and 

latencies, and occur on a much smaller scale (microvolts) than EEG waveforms (tens of 

microvolts). Both EEG and ERPs are generated by summed post-synaptic potentials, which create 

electric fields through the synchronized activity of large groups of neurons. They differ in that 

EEG includes all brain activity, both related and unrelated to an event, whereas ERPs only include 

the brain’s response to specific events (Coles & Rugg, 1996). As such, ERPs can capture the 

temporal aspect of EEG by illuminating the precise time in which the brain registers or responds 

to specific stimuli. Additionally, ERPs reveal processes impacted by experimental manipulation 

and can measure covert mental processes. Since ERPs reflect brain polarity changes produced by 

influxes of excitatory and inhibitory neurotransmitters, ERPs can provide biomarkers to measure 

the impaired brain functions and processes linked to neurotransmitters. Such measurements can 

provide specific insight into diseases caused by neurotransmitter abnormalities when compared to 

other, more indirect, biomarking methods (Luck, 2014). Importantly, ERP studies using portable 

EEG could help further our understanding of the neurochemical changes associated with MCI.  

 

EEG Portability Can Improve Diagnostic Power and Effectiveness 

 
Traditionally, EEG has been confined to a lab setting due to long setup times, low 

equipment portability, and the availability of highly trained technicians to administer EEG tests 

(Gottlibe et al., 2020). However, recent advancements have created EEG systems that are cost- 

and time-effective, as well as highly mobile, accessible, and user-friendly (Gottlibe et al., 2020). 

These systems are useful for conducting ERP research, and their portability has increased the 

potential to apply ERP methods to new settings (Krigolson et al., 2017; 2021). These devices have 

also demonstrated success in clinical contexts and, so far, have provided practitioners with quick, 

non-invasive techniques with which to assess the brain changes associated with stroke and chronic 

pain in patients with dementia (Gottlibe et al., 2020; Pu et al., 2021). This tool is especially useful 

for non-verbal populations or patients who have lost the cognitive capacity to articulate their 

experiences, as seen in patients with dementia (Pu et al., 2021). 

Using EEG to identify biomarkers for MCI/AD has several advantages over current 

methods. Cerebrospinal fluid analysis for biomarkers (such as tau, phosphorylated tau, and beta 

amyloid)2 can provide diagnostic information and useful insights on the prognosis of MCI (Vemuri 

et al., 2009); however, the technique (lumbar puncture) from which cerebrospinal fluid is obtained 

is invasive and can cause anxiety and discomfort in patients (Duits et al., 2016). Other methods, 

such as structural magnetic resonance imaging (MRI) or computer tomography (CT) scans, can 

provide accurate information about structural abnormalities indicative of MCI and can have 

predictive power for future clinical decline in individuals (Vemuri et al., 2009). Nevertheless, the 

equipment required to apply these techniques is expensive and often inaccessible to populations in 

rural areas (Burdorf, 2021). In contrast, a portable EEG system is non-invasive, widely available, 

 
2 Beta amyloid is a peptide whereas tao and phosphorylated tao are proteins that show differences in both structure 

and number in individuals with MCI and AD.   
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cost-effective, and capable of revealing a direct connection between brain health, neuronal activity, 

and cognitive impairments, including MCI (Smailovic & Jelic, 2019). 

 

EEG Markers for MCI and Dementia 

 
Several neurophysiological characteristics of MCI and AD have been identified through 

the use of full EEG systems, which demonstrates the capability of EEG to diagnose and track the 

course and progression of neurodegenerative diseases. For example, resting state alpha rhythms 

exhibit changes over time in patients with MCI (Babiloni et al., 2014). Furthermore, resting state 

eyes-open and eyes-closed tasks have successfully identified individuals with MCI from healthy 

individuals (Kavcic et al., 2021). Additionally, theta/gamma and alpha3/alpha2 ratios have been 

used to distinguish individuals with MCI who will progress to AD from individuals with MCI who 

will remain stable or regain their health (Moretti et al., 2011). However, undertaking a comparison 

of the resting state values of healthy individuals versus individuals with MCI often produces 

overlapping results that do not present clinically significant differences sufficient for the diagnostic 

process (Deiber et al., 2009). As a solution, the sensitivity and utility of early stage diagnostic tests 

can be increased by looking at the functional activation of brain regions during distinct cognitive 

tasks that engage areas experiencing cognitive decline due to MCI (Deiber et al., 2009). This 

narrowing of focus is often accomplished through ERP research, since the latter employs tasks 

designed to elicit specific components associated with different brain areas and aspects of 

cognition. Using ERPs to assess for MCI can provide specific information regarding each patient’s 

disease that could, in turn, be used to help create individualized care plans. 

 

EEG and P300 for MCI 

 
ERP researchers have identified several components that show electrophysiological 

differences in individuals with MCI, of which the P300 stands apart (Gu et al., 2019). The P300 

ERP component, henceforth referred to as P3, has been associated with several neural processes, 

such as context updating, attention, and memory encoding (Donchin & Coles, 1988; Polich, 2012). 

For instance, Polich (2007) has associated the amplitude of P3 with stimulus, attention, and 

cognitive load, whereas the latency of P3 reflects stimulus evaluation and task difficulty. Another 

theory proposed by Nieuwenhuis et al. (2005) has contended that P3 is involved in decision-

making and reflects the activity of the locus coeruleus-norepinephrine system. This system has 

been implicated in reward expectancy and information processing, both of which register decline  

in individuals with dementia (Perry et al., 2017). Furthermore, Krigolson and Holroyd (2007) have 

suggested that P3 may reflect locus coeruleus activity on the posterior cortex during error-

processing tasks, specifically for stimulus-response optimization. Importantly, this versatile 

component encompasses several domains of cognition impacted by MCI, which renders P3 a 

promising candidate for comparison in this study. 

Comparing ERP components in individuals with MCI versus their healthy counterparts can 

be useful for identifying and diagnosing MCI (Gu et al., 2019; Jiang et al., 2015), tracking disease 

progression (Jiang et al., 2015), distinguishing between subtypes of MCI (Correa-Jaraba et al., 

2018; Gu et al., 2019), and predicting the potential progression of MCI to AD (Chapman et al., 

2011). In particular, the association of P3 with memory consolidation and attention (Chapman et 

al., 2011) has shown high sensitivity for detecting MCI as well as high specificity in identifying 

and distinguishing different subtypes of MCI (Correa-Jaraba et al., 2018). As previously 
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mentioned, P3 demonstrates decreased amplitude and increased latency in individuals with MCI, 

and these differences are heightened as the disease progresses (Jiang et al., 2015). Accordingly, 

tasks that elicit P3, such as this study’s visual oddball task, can be useful for MCI assessment and 

diagnosis. Previously, pupil responses to oddball tasks have been studied and associated with MCI 

(Jiménez et al., 2021). Moreover, the Fast Fourier Transform3 delta and theta wave differences 

during oddball tasks show promise for early MCI detection and the identification of MCI subtypes 

that may progress to AD (Tülay et al., 2020). Recently, oddball tasks that elicit P3 have been used 

to identify MCI associated with early stages of Parkinson’s disease (Hünerli et al., 2019). 

However, these changes associated with MCI have only been revealed using full EEG systems and 

have yet to be observed with portable EEG systems. Since portable EEG systems are better suited 

for the widespread clinical assessment of MCI, it is important to demonstrate that portable EEG 

systems can accurately detect the ERP changes associated with MCI previously identified by their 

full-system counterparts. 

 

Statement of Purpose 

 
To facilitate the early detection and diagnosis of MCI, a widely available, objective, and 

easy-to-use diagnostic tool is needed for clinical and non-clinical settings. Advances in EEG 

technology potentiate the creation of an accessible, cost-effective, and portable EEG tool capable 

of screening for early stage MCI in both primary and outpatient settings. The current study aims 

to discern if a portable EEG system can be used as an effective measure for MCI, specifically 

through using a visual oddball task to target memory and attention components, such as P3. We 

predict that individuals with MCI will demonstrate both decreased task performance and ERP 

changes in components associated with the oddball task when compared to healthy, age-matched 

individuals. Furthermore, we predict a correlation between individual behavioural assessment 

scores and P3 peak amplitudes. In other words, we anticipate that, as behavioral scores increase, 

P3 amplitudes will also increase. 

 

Methodology 

Participants 

 
This study took place at the University of Victoria, British Columbia. Participants were 

assigned to one of two distinct groups: individuals with a clinically diagnosed cognitive 

impairment referred to this study by the Royal Jubilee Hospital in Victoria (MCI group: n = 20, 6 

females, 14 males, M age = 76.0 ± 7.8), and apparently healthy age- and sex-matched individuals 

gathered from Victoria and the Greater Vancouver Island region (Control group n = 20, 8 females, 

12 males, M age = 71.3 ± 3.9). The recruitment of the MCI group was accomplished either through 

the Permission to Contact (PTC) program at the Royal Jubilee Hospital Specialist Memory Clinic 

or through direct-contact patient referrals from clinical research assistants, research nurses, general 

practitioners, and specialist physicians. MCI group participant identification was accomplished 

through approved Island Health Standard Operating Procedures (SOP) via the PTC program, or 

through the Specialist Memory Clinic after a confirmed MCI or early stage dementia diagnosis. 

Control group participants were recruited through word-of-mouth promotions, media streams, and 

 
3 A Fast Fourier Transform, or FFT, can be applied to raw EEG data to convert time domains to frequency domains 

to reveal their sinusoidal waveforms.   
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local newspapers. Participants did not disclose any known psychiatric, drug, or addiction disorders; 

nor did participants disclose any cognitive disorders in addition to the disorder under study. 

Moreover, all participants had functional or corrected-to-functional vision. Participants provided 

informed consent and were compensated $10.00 CAD for parking upon completion of each 

session. Ethical standards outlined in the revised Declaration of Helsinki (1964) were followed, 

and ethics for this study were approved by the Human Research Ethics Board at the University of 

Victoria (HREB: H19-02910). 

 

Apparatus and Procedure 
 

Informed consent, including a briefing on all aspects of this study, was provided to all 

subjects prior to participation. Trained researchers then provided an outline of the project to the 

control and MCI groups, which was followed by a set of surveys and assessments that included 

questions on demographics (i.e., age, sex, handedness, etc.), medical history, current medications, 

and a confirmation of diagnosis. 

 

Surveys and Assessments 
 

To aid in participant screening and assessment, the Montreal Cognitive Assessment 

(MoCA v. 8.2; 8.3) was administered to both control and MCI groups (Nasreddine et al., 2005). 

Research by Costa et al. (2014) has indicated that the MoCA can sensitively assess cognitive 

capacity in individuals with mild dementia as well as MCI. As described by Costa et al. (2014), 

individuals who score lower than 14/30 may not have the capacity to provide informed consent 

and may struggle to complete assigned study tasks. For this reason, the present study set a 

minimum MoCA criterion score of 14 for participation, and all individuals who scored below 14 

were informed of their ineligibility to continue their participation in this study (n = 0, MoCA score 

MCI M = 23.0 [21.4, 24.5], MoCA score control M = 26.9 [25.8, 28.0]). After administering the 

MoCA to ensure eligibility to provide informed consent, participants completed two short-form 

questionnaires. In cases in which a participant was accompanied by a study partner (i.e., a spouse, 

friend, family member, or caretaker), the Functional Activity Questionnaire (FAQ) was completed 

by the study partner (Pfeffer et al., 1982). If the participant arrived alone, or their study partner 

was unavailable during the session, researchers asked for permission to contact a spouse or family 

member to administer the FAQ by phone. If neither the in-person nor remote administration of the 

FAQ to a study partner were viable options, then participants were asked to complete the survey 

themselves. Next, participants completed the Geriatric Depression Scale short form (GDS-15) to 

provide insights concerning participant mood, affect, and outlook (Sheik & Yesavage, 1986). 

Finally, participants completed the Repeatable Battery for the Assessment Neuropsychological 

State (RBANS A & B)—a pen-and-paper test used to assess cognitive decline by measuring 

memory, visuospatial/constructional ability, language, and attention (Randolph et al., 2012). The 

approximate run time for this section was 60 minutes, which included breaks offered to participants 

prior to and following the administration of the RBANS to ensure participant comfort. 

 

Electroencephalography and Cognitive Tasks 
 

After a short break following completion of the RBANS, brain data was recorded using a 

portable EEG system. To begin, participants’ baseline brain measurements were recorded, first in 
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an eyes-open condition followed by an eyes-closed condition. In the eyes-open condition, 

participants were instructed to remain still and focus on any position in front of them while 

continuous EEGs were recorded for 2 minutes. Data markers were placed at the beginning and end 

of the 2-minute eyes-open recording. After 2 minutes, participants were asked to close their eyes 

and continuous EEGs were recorded for another 2 minutes to establish their eyes-closed baseline. 

Again, data markers were placed at the beginning and end of the eyes-closed recording. After 

obtaining baseline measurements, EEGs were recorded while participants completed an ordered 

series of perceptual tasks: (1) a Go-No-Go response task, (2) a n-Back memory task, (3) an oddball 

response task, and (4) a reward processing task. The present study reports exclusively on the 

oddball response task. The approximate run time for the completion of all EEG tasks in this session 

was 60 minutes. 

 

The Oddball Task 
 

Basic onscreen instructions were provided to participants prior to the oddball task. Next, 

participants were instructed to respond to infrequent stimuli presented intermittently amid more 

frequent stimuli. In this study, green circles (40 mm in diameter; green: 117/251/67; #75fb4c) 

served as the infrequent stimuli to which participants were instructed to respond by tapping their 

screen. Blue circles (40 mm in diameter; blue: 0/0/244; #0000f4) served as the frequent stimuli to 

which participants were told not to respond. All circles were presented for 1000 ms in the centre 

of the screen. If participants failed to respond to the presentation of an infrequent (green) stimulus 

within 1000 ms, the trial would automatically end. Each block of time consisting of 30 trials began 

with the appearance of a 10 mm fixation cross “+” (yellow: 254/254/84; #fefe54) in the centre of 

the screen for 400 ms with a 200 ms jitter, which caused the duration of the fixation cross to vary 

by +/- 200 ms and was included to ensure that participants could not unconsciously predict the 

timing of the fixation cross and to remove the possibility of unwanted or unintentional background 

cognitive processing. The fixation cross was also used as an interstimulus interval to reduce testing 

times (see Figure 1), as opposed to using a blank screen between trials. Finally, a black background 

(black: 0/0/0/; #000000) was featured throughout the 

task. 

Participants completed six blocks of the 

oddball task, of which each contained 30 trials. For 

each trial, there was a 70% probability of a frequent 

(blue) stimulus being presented, and a 30% 

probability of an infrequent (green) stimulus being 

presented (70.14% frequent; 29.86% infrequent); 

however, participants were not aware of these stimuli 

probabilities. The order of stimulus presentation was 

random; however, presentation software assured that 

no more than two infrequent (green) stimuli would 

appear in a row to ensure the green circle would 

always be perceived as the infrequent stimulus. 

Participants were told the number of missed 

responses from the current block upon completion of  

that block. 

 

Figure 1: Depiction of the Oddball Task 

  

 

Note. Image shows all stimuli within the 

oddball task including the fixation cross, 

frequent (blue) stimuli, and infrequent 

(green) stimuli. 
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Electroencephalography and Data Acquisition 

 
Prior to donning the portable EEG system, participants were asked to wipe their skin at the 

electrode sites with a 70% isopropyl swab to remove makeup and reduce natural skin oils to 

improve the signal quality. Participants were then equipped with a Cognionics Developer Kit 

(CGX) portable EEG system capable of sampling at a 500 Hz rate to record EEG data. A standard 

10-10 EEG layout was applied (Seeck et al., 2017), which designated the placement of 3M Red 

Dot Electrodes in the following locations: Fp1, Fp2, TP9, TP10, FPz, and AFz. During the 

recording process, FPz served as the ground electrode and AFz served as the reference electrode. 

EEG data collected from the CGX were sent via Bluetooth to proprietary iOS software, which also 

displayed the tasks and experimental stimuli (recording device: iPad Pro, 11-inch 2nd Gen). A 

known Bluetooth lag and jitter (Krigolson et al., 2017) was used during data collection in lieu of 

temporally synchronizing experimental stimuli and event markers, as is typically done in ERP 

studies (Luck, 2014). Due to the wireless design of the Bluetooth, there was a small (~50 ms) lag 

once the signal was sent from the black box to the iPad for recording. This delay caused some 

minor variability, or jitter, in the initial timing of the CGX’s signal lock, which was accounted for 

in this study’s data analysis. EEG-Bluetooth jitter was solely influenced by the initial locking of 

the CGX’s signal to the custom software since, once locked, the signal stayed connected and, thus, 

did not vary over time. Throughout the recording, when any task-relevant information was drawn 

(such as the presentation of a stimulus or the start/end of blocks), EEG data were “marked” for 

subsequent analysis at those specific times. Furthermore, the signals, which differed between 

participants but not between trials, and a visual inspection of the variance per second on the raw 

EEG data (or unprocessed stream of data coming from each channel) were used to assess signal 

quality. 

 

Data Processing and Analysis 

 
Data were processed offline using the Brain Vision Analyzer 2 software (Version 2.1.2, 

Brain Products, GmbH, Munich, Germany), as well as the MATLAB software with an EEGLAB 

toolbox (Delorme & Makeig, 2004) and a custom code. Continuous EEG data were not re-

referenced offline, since the two posterior electrodes (TP9 and TP10) were the focus of ERP 

analysis and were appropriately referenced to electrode AFz at the time of recording. Next, a dual-

pass Butterworth filter (passband 0.1 to 30 Hz), which is a filter that is applied twice to flatten the 

EEG signal, was applied to the continuous EEG data to remove signals unassociated with brain 

activity. The aforementioned filter was then followed by a 60 Hz notch filter to remove the ambient 

signal associated with outlet voltages. No lateralized effects (hemispheric-specific responses) were 

present upon preliminary data analysis, which meant that both the left and right sides of the brain 

were producing similar responses. To improve the signal-to-noise ratio of ERP measures (Oken & 

Chiappa, 1986), pooled frontal (Fp1 and Fp2) and posterior (TP9 and TP10) virtual electrodes 

were created by averaging across each pair of frontal and posterior electrodes. Accordingly, ERP 

analysis evaluated only the new average posterior virtual electrode instead of each individual 

electrode, which provided cleaner data due to the lack of hemispheric-specific responses 

(Krigolson et al., 2017); however, both the averaged frontal and posterior electrodes were 

examined during EEG analysis using a Fast Fourier transform (FFT) to assess EEG frequencies. 
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ERP Analysis  

 
To evaluate ERPs, epochs (or segments of data) surrounding frequent and infrequent 

stimuli were generated from the filtered continuous EEG data, which started 200 ms prior to 

stimulus onset and extended to 800 ms post-stimulus onset. An absolute difference of 100 uV was 

used as the criterion measure in an artifact rejection algorithm, and segments with differences 

greater than 100 uV were discarded (on average: 24.80% [19.97%, 29.63%]). The artifact rejection 

algorithm was an algorithm employed to remove any areas of unusable data due to participant 

movement, blinking, etc. The remaining segments in both conditions (frequent, infrequent) were 

averaged for each participant, then the average frequent ERP waveform was subtracted from the 

average infrequent ERP waveform to generate a difference wave. The averages of all conditional 

(frequent, infrequent) and difference waveforms were produced for each participant to generate a 

grand average ERP. Next, P3  peak amplitudes were found for each participant by determining the 

voltage of the local maximal amplitude within a +25/-25 ms window surrounding the grand 

average component peaks. To simplify, 50 ms windows at the typical locations of ERP components 

were inspected on the grand average waveform to look for component peaks, and the highest part, 

or local maximal amplitude, of the P3 component was noted. Due to the small number of electrodes 

used, and the placement of reference electrodes relative to active channels in many portable EEG 

tools, the ERPs generated via these systems presented as inverted or upside down (Krigolson et 

al., 2017). That is to say, P3 is typically a positive-going component, which means that the 

component peaks upwards towards a positive voltage; however, in using this method, the peak 

deflected negatively in the opposite direction, as is typical, and presented as inverted. To clarify 

the correlations between peak values and behavioural scores, and to facilitate a clearer 

understanding of the data drawn, ERP data were multiplied by -1 to show positive P3 waveforms 

and peak values. In conducting these analyses, clean and easy to interpret data was produced that 

can be utilized in later statistical comparisons. 

 

Statistical Analysis  

 
Behavioural and brain data were compared in two ways: (1) inferential statistics were 

conducted using independent sample t-tests (alpha value = 0.05); (2) correlational statistics were 

conducted using Pearson’s r correlation equations. Initially, t-tests were run to compare the MCI 

and control groups’ behavioural task scores. Total RBANS and MoCA scores were compared 

between groups, along with selected subcategory scores within the RBANS and MoCA tests to 

assess aspects of cognition associated with P3. These subcategories consisted of the RBANS 

attention, immediate memory, and delayed memory subcategories, as well as the Memory Index 

Score (MIS) subcategory from the MoCA. T-tests were also used to compare performance on the 

oddball task by identifying the number of correct responses, false positives, premature responses, 

and missed infrequent responses. Additionally, t-tests were used to compare the peak values of the 

P3 component during the oddball task for the MCI and control groups. Following t-tests, Pearson’s 

r correlations were run to analyze the relationship between peak values and behavioural scores for 

both groups. Peak values were then compared to the total RBANS, MoCA, and individual 

subcategory scores listed above. Finally, mean values and 95% confidence intervals were included 

with all of the descriptive statistics, and statistical analyses were carried out using Microsoft Excel.  
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Results 

 
An examination of behavioural data confirmed that the MCI group scored significantly 

lower than the control group on all pen-and-paper behavioural MCI assessments. Independent t-

tests revealed significantly lower total RBANS scores [t(38) = 17.05, p < .001, Cohen’s D = 1.26] 

and lower total MoCA scores [t(38) = 3.95, p < .001, Cohen’s D = 1.39] in the MCI group. Further 

analysis comparing the subcategories related to attention and memory indicated that the MCI group 

scored significantly lower than the control group in all comparisons made—namely, RBANS 

attention [t(38) = 15.95, p < .001, Cohen’s D = 1.19], RBANS immediate memory [t(38) = 17.15, 

p < .01, Cohen’s D = 0.98], RBANS delayed memory [t(38) = 20.40, p < .001, Cohen’s D = 1.13], 

and the MoCA Memory Index Score (MIS) [t(38) = 5.00, p < .001, Cohen’s D = 1.70]. 

Inspection of oddball behavioural data demonstrated that the control and MCI groups 

performed similarly on most measures with the exception of missed infrequent responses. More 

specifically, the paired t-tests revealed no significant differences in correct responses, false 

positives, or premature responses (p > .05). While both groups scored well on missed infrequent 

responses, with averages of less than one, the MCI group performed with decreased accuracy [t(38) 

= 0.40, p < .05, Cohen’s D = -0.71] when compared to the control group (see Table 1 for all t-test 

data). Furthermore, an analysis of EEG data revealed a decreased P3 response in the MCI group 

during the oddball task when compared to the healthy control group. Specifically, when peak 

values of the P3 ERP component were compared (see Figure 2), the MCI group showed 

significantly reduced peak amplitudes [t(38) = 1.70, p < .05, Cohen’s D = 0.66] of P3 during the 

oddball task, which meant that these participants had a smaller or less synchronized brain response 

that was reflected in a smaller change in voltage.  

 

Figure 2:  

Comparison of Difference Waves and Peak P3 Amplitude for Control and MCI Groups 

 
Note. Left graph illustrates the P3 difference wave (Frequent–Infrequent) for the control and MCI groups. 

Right graph visualizes the peak amplitude of the P3 ERP component for the control and MCI groups; error 

bars represent a 95% confidence interval.*p < .05. 
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Table 1: Comparison of Control and MCI Behavioural and Brain Responses Using Paired t-Tests 

  Control MCI   

  M SD 95% CI M SD 95% CI P 

Age 71.3 3.9 1.8 76.0 7.8 3.7 .0311* 

Peak Value 5.5 2.9 1.4 3.8 2.2 1.0 .0438* 

RBANS 99.9 13.0 6.1 82.9 14.1 6.6 .0003*** 

MoCA 26.9 2.3 1.1 23.0 3.3 1.5 .0001*** 

RBANS Attn 108.6 14.8 6.9 92.6 11.9 5.6 .0006*** 

RBANS IM 101.5 13.9 6.5 84.4 20.5 9.6 .0036** 

RBANS DM 96.3 14.5 6.8 75.9 20.9 9.8 .0009*** 

MoCA MIS 12.9 2.8 1.3 7.9 3.1 1.4 .0000*** 

Oddball CR 53.3 3.3 1.4 53.1 3.0 1.3 .8423 

Oddball FA 0.4 0.6 0.3 0.8 1.1 0.5 .2094 

Oddball PR 0.4 0.7 0.3 0.6 0.9 0.4 .2246 

Oddball MI  0.2 0.4 0.2 0.6 0.7 0.3 .0303* 
Note. RBANS = Repeatable Battery for the Assessment of Neuropsychological State; MoCA = Montreal 

Cognitive Assessment; Attn = attention subcategory; IM = immediate memory subcategory; DM = delayed 

memory subcategory; MIS = Memory Index Score; CR = correct response; FA = false positive; PR = 

premature response; MI = missed infrequent response. *p < .05, **p < .01, ***p < .001 

 

Correlational statistics comparing peak values with pen-and-paper behavioural scores 

revealed mixed results. Specifically, stronger correlations between peak values and behavioural 

scores were seen in the control group for all conditions besides immediate memory, which 

indicated a stronger correlation in the MCI group. These findings are summarized in Table 2, 

which presents all Pearson’s r comparisons made in this study and their coefficients. The strongest 

correlations for the control group were between peak values and delayed memory subcategory 

scores as well as between peak values and total MoCA scores, both of which showed moderately 

strong relationships with the r values of -0.62 and -0.50, respectively. To have a strong correlation 

with a high coefficient meant that, as one measure increases (i.e., peak value), the other measure 

either increases or decreases concurrently (i.e., delayed memory or MoCA scores). In contrast, 

these trends disappeared completely in the MCI group, in which peak values and delayed memory 

subcategory scores demonstrated no correlation (r = -0.01), and peak values and total MoCA scores 

showed a weak correlation (r = 0.12). The strongest correlation in the MCI group was between 

peak values and immediate memory subcategory scores, with a weak relationship (r = -0.30). This 

weak relationship meant that, as peak values increased for MCI participants, there was no strong 

concurrent increase or decrease in immediate memory scores. 

 

Table 2: Pearson’s Correlations Comparing P3 Peak Values to Behavioural Scores 

 Pearson’s coefficient, r  
 Control MCI 

Peak vs RBANS  -0.30 -0.02 

Peak vs MoCA -0.50 0.12 

Peak vs Attention -0.04 -0.09 

Peak vs IM -0.18 -0.30 

Peak vs DM -0.62 -0.01 

Peak vs MIS -0.32 -0.06 
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Note. Peak = P3 peak value; RBANS = Repeatable Battery for the Assessment of Neuropsychological State; 

MoCA = Montreal Cognitive Assessment; Attention = RBANS attention subcategory; IM = RBANS 

immediate memory subcategory; DM = RBANS delayed memory subcategory; MIS = MoCA Memory 

Index Score. 

 

Discussion 

 
This study confirms that MCI patients demonstrate modulated behavioural and brain 

responses compared to healthy, age-matched controls. Furthermore, this study affirms that these 

brain changes can be measured via a portable EEG system. As expected, the MCI group scored 

significantly lower on the traditional pen-and-paper MCI assessments used to measure behaviour 

in this study (the RBANS and MoCA). In addition to scoring lower overall on assessed tasks, the 

MCI group also scored lower in all of the subcategories that pertained to attention and memory 

within the MoCA and RBANS tests. In contrast, few differences were seen between groups when 

measuring oddball task performance; however, an analysis of brain data revealed that the MCI 

group exhibited a reduced P3 response during the visual oddball task. Additionally, it was noted 

during the oddball task that the control group exhibited moderately strong relationships between 

peak P3 values and pen-and-paper behavioural scores, whereas the MCI group had weak to non-

existent relationships within these same categories.  

As such, the pen-and-paper behavioural results of this study support the first hypothesis 

that the MCI group would demonstrate decreased task performance compared to the control group. 

This study found that the control group outperformed the MCI group on all pen-and-paper 

measures. This finding aligns with previous MCI and dementia literature (see Nasreddine et al., 

2005; Randolph et al., 2010) that found the MoCA and RBANS assessments designed to aid in 

MCI diagnostic processes distinguished individuals with MCI from those without. The present 

study chose to compare cognitive processes associated with the P3 component (attention and 

memory) with subcategories that assessed only those processes. Previously, MCI had been shown 

to affect attention and memory (Klekociuk & Summers, 2014; Saunders & Summers, 2011), and 

the present study arrived at similar findings since the MCI group scored lower than the control 

group on each of the attention and memory subcategory assessments.  

Conversely, the results from the oddball task revealed little difference in behavioural task 

performance between groups, while simultaneously illustrating brain differences in their P3 

responses. Our ERP results support this study’s second hypothesis since the MCI group displayed 

a reduced peak amplitude for the P3 ERP component during the oddball task. Previous studies 

have arrived at similar findings, in which patients with MCI or AD demonstrate reduced P3 

amplitudes across varying experimental tasks and conditions (see Cecchi et al., 2015; Jiang et al., 

2015; Parra et al., 2012); however, few extant studies have demonstrated this finding using a 

portable EEG system. The reduced peak amplitude of P3 in the MCI group suggests alternative 

brain activations, which could indicate the development of MCI. Accordingly, a reduced P3 

amplitude may serve as a biomarker for MCI, and the fact that this difference can be detected using 

a portable EEG tool enhances its potential for widespread use. 

As previously stated, P3 is correlated with attention and memory, both of which are 

implicated in MCI (Klekociuk & Summers, 2014; Saunders & Summers, 2011). With this 

connection in mind, we had expected to discern a relationship between the peak values of the P3 

component and behavioural scores assessing attention and memory cognitive processes; however, 

this hypothesis was only partially supported. The total RBANS and MoCA scores, along with 

several subcategory scores, demonstrated weak-to-moderate correlations with peak values in the 
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control group; however, in the MCI group, these relationships were not present. Moreover, the 

relationships between behavioural scores and peak values for both control and MCI groups were 

negative, which meant that as peak value amplitudes increased behavioural scores decreased. One 

possible explanation for this finding could be that, as brain health declines (due to natural aging 

processes or pathologically via MCI), tasks that require attention and memory become harder to 

complete. This added challenge could increase the workload for areas of the brain associated with 

attention and memory, which may prompt these systems to work harder to achieve the same (or 

worse) scores for tasks when compared to healthy counterparts. This increased workload could be 

reflected in the larger P3 amplitude and lower task scores seen in the present study. Additionally, 

the negative relationship between P3 amplitudes and task scores was seen in both groups, which 

meant that cognitive decline, due to natural aging processes or MCI, resulted in similar 

neurological outcomes and behavioural responses. 

 

Conclusions 

 

This study demonstrated that a portable EEG system could serve as a viable tool for MCI 

diagnosis and assessment. Specifically, the reduced amplitude of the P3 component exhibited in 

MCI patients could serve as a biomarker for MCI. Future research could expand this study to 

include a lifespan scope that tracks changes in P3 amplitudes as healthy populations age naturally, 

or by applying a disease-span approach that tracks P3 amplitude changes as MCI populations 

experience disease progression. 
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