
 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

LEARNING PREDICTORS
FROM MULTI-

DIMENSIONAL DATA
WITH TENSOR

FACTORIZATIONS

SOO MIN KWON,
ANAND D. SARWATE (FACULTY ADVISOR)

✵ ABSTRACT
Statistical machine learning algorithms often

involve learning a linear relationship between
dependent and independent variables. This
relationship is modeled as a vector of numerical
values, commonly referred to as weights or
predictors. These weights allow us to make
predictions, and the quality of these weights
influence the accuracy of our predictions. However,
when the dependent variable inherently possesses a
more complex, multidimensional structure, it
becomes increasingly difficult to model the
relationship with a vector. In this paper, we address
this issue by investigating machine learning
classification algorithms with multidimensional
(tensor) structure. By imposing tensor factorizations
on the predictors, we can better model the
relationship, as the predictors would take the form of
the data in question. We empirically show that our
approach works more efficiently than the traditional
machine learning method when the data possesses
both an exact and an approximate tensor structure.
Additionally, we show that estimating predictors
with these factorizations also allow us to solve for
fewer parameters, making computation more
feasible for multidimensional data.

1 INTRODUCTION
Machine learning classification algorithms

are widely used in many applications such as fraud
and spam detection. The objective of these algo-
rithms is to model a linear relationship between the
independent (e.g. card transactions, amount spent)
and dependent (e.g. fraud or not fraud) variables.
This relationship is generally modeled by learning a
hyperplane that best separates the two classes of
data as shown in FIGURE 1. The hyperplane is con-
structed of weights and biases, which can simply be
interpreted as the slope and intercept, respectively.
One can solve or estimate these values by learning
the parameters that most accurately describe the ob-
served data points.

In machine learning, we solve for these pa-
rameters (or predictors) through empirical risk mini-
mization (ERM). The ERM framework tries to estimate
the parameters that minimize the ``risk’’ or error of a
loss function between the true and computed pre-
dictors given data. The minimization of this loss func-
tion measures the ``closeness’’ of the predictors,
where a smaller objective function value would ac-
count for a more accurate model. There are many
different machine learning classification algorithms,
and each algorithm has a different loss function.
However, since many loss functions try to model a
linear relationship, there is an implicit need for our

FIGURE 1: Visualization of learning a line (or hyperplane in
higher dimensional space) that best separates two classes
of data. Machine learning algorithms estimate these
weights, 𝑊, and bias, 𝑏, through empirical risk minimiza-
tion.

 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

data to be vectorized. If our data samples were to be
multidimensional, vectorization would make estima-
tion of accurate predictors much more challenging.

For example, consider a different scenario in
which one would like to make movie recommenda-
tions for a user given the number of movies watched
in a certain genre. This data can easily be stored in
the form of a matrix, where the rows represent each
user, and the columns represent the movie genre.
However, what happens when a user’s movie prefer-
ences change over time? As shown in FIGURE 2, we can
capture this third variable (and many others) by mod-
elling the observations in the form of a tensor, as it
matches the structure of the data. Clearly, the struc-
ture of this tensor is significant for accurate data anal-
ysis. If the orderings of the movies watched were
swapped for two given users, incorrect recommen-
dations could be made. Vectorizing this data does
not account for these types of structures, making in-
ference much more challenging.

There are many modern applications that
involve analyzing data with intrinsically many more
dimensions, including medical imaging,[3,13] image
processing,[5,18] and seismic data analysis.[8] In most
of these settings, the objective is similar to that of the
traditional machine learning goal: to formulate a
problem of prediction to establish an association be-
tween the tensor covariates (independent variable)

and outcomes (dependent variable). However, as
previously mentioned, most machine learning
frameworks are formulated for vector spaces, mak-
ing statistical inference challenging for tensor data.
In addition, in most of these domains, the tensor
data also exhibits high dimensions. For example, in
medicine, tensor data samples may be of dimen-
sions 128 × 128 × 128 or greater. Naively turning
this array into a vector for traditional machine learn-
ing would result in solving for 128ଷ = 2,097,152 co-
efficients. In this scenario, vectorization not only de-
stroys the structure of the data, but also makes com-
putation infeasible.

RELATED WORKS

Recently, work on tensor-based machine learning
approaches uses tensor factorizations to reduce the
number of coefficients to be estimated.[10,15,21] Spe-
cifically, tensor decompositions are imposed on the
coefficients as a scheme of feature selection or di-
mensionality reduction. Integrating such decompo-
sition structures solves for low rank approximations
of the true predictor, rather than the vector counter-
part. Zhou et al. proposes a tensor regression model
with additional independent variables for predicting
continuous values given fMRI data.[21] For parameter
estimation, they propose a maximum likelihood (ML)
approach using a block relaxation algorithm, which
we adopt to formulate tensor classification models.
Tan et al. proposes a logistic tensor regression
model with a κଵ norm regularization to induce spar-
sity.[15] We observe that this technique efficiently ex-
ploits structure, which motivates us to generalize and
formulate more classification problems with differ-
ent regularization (e.g. κଶ norm), and on different
datasets.

OUR CONTRIBUTION

In this paper, we investigate the performance of ma-
chine learning classifiers with a CANDECOMP/
PARAFAC (CP) decomposition structure on the coef-
ficients/predictors. We have seen in previous litera-
ture that these methods work efficiently for solving
linear regression and logistic regression coeffi-
cients.[15,21] We solve classification problems, namely
Support Vector Machines and Logistic Regression

FIGURE 2: Example of modeling observations: left – matrix,
right – tensor

 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

on both synthetic and real data. The rest of this pa-
per is organized as follows. We first discuss some
tensor algebra and notation that will be used
throughout this paper. Then, we propose the objec-
tive functions as well as a short analysis of the CP
structured machine learning problems. We motivate
and show results of our approach by fixing and solv-
ing for the true predictor. We compare the results
from the tensor structured algorithm as opposed to
the unstructured vector algorithm. Our contributions
can be summarized as follows:

 We perform experiments to show that our struc-
tured method works more efficiently than the tradi-
tional method when the true predictor exhibits both
an approximate and exact low rank structure.

 We show that our structured approach solves for
fewer coefficients more efficiently than the tradi-
tional approach with a dimensionality reduction
step (e.g. Principal Component Analysis).

 We develop algorithms to solve machine learning
problems with decomposition of 𝑛 -dimensional
tensors with an alternating minimization scheme.

2 PRELIMINARIES

 We dedicate this section to discuss some of
the concepts used throughout this paper. Due to the
theoretical nature of this work, the technical descrip-
tion may require some mathematical maturity. The
reader interested in the empirical findings can skip
to SECTION 4. For a complete introduction to tensors,
see the comprehensive survey of Kolda and Bader
and Rabanser et al.[6,14] Tensors are simply defined as
multidimensional arrays, and these two terms will be
used interchangeably. We will denote vectors with
lower case letters (𝑥), matrices with capital letters (𝑋),
and tensors as bold capital letters (𝐗).

i. Tensor Reorderings
Let 𝐗 be a third-order tensor of dimensions

𝐗 ∈ ℝଷ×ଷ×ଶ with the two frontal slices defined by
𝑋ଵ, 𝑋ଶ ∈ ℝଷ×ଷ:

VECTORIZATION

We can create a vector from any matrix or tensor by
stacking the row or column elements into a row or
column vector, respectively. For example, vectoriz-
ing the tensor 𝐗 by its columns would yield the fol-
lowing column vector:

where we stack the columns from the first frontal
slice, 𝑋ଵ and the second frontal slice, 𝑋ଶ. The dimen-
sions of the resulting vector would be 𝑥 ∈ ℝଵ଼.

MATRICIZATION

The 𝑛-mode matricization (or unfolding) of a tensor
𝐘 ∈ ℝ௔భ×௔మ×…×௔ಿ is denoted as 𝑌(௡) , where 𝑌(௡) has

the columns of the 𝑛 -mode fibers. Consider the
same tensor 𝐗 from the previous example. Then the
three 𝑛-mode matricizations are the following:

One can think of matricization as a generali-
zation of vectorization but to matrices. Since our ex-
ample 𝐗 is a third-order tensor, we have three matri-
ces from matricization, one for each mode.

ii. Vector & Matrix Products
OUTER PRODUCT

Let 𝑎 and 𝑏 be two vectors of dimensions 𝑎 ∈ ℝ௡
and 𝑏 ∈ ℝ௡,

 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

The outer product of 𝑎 and 𝑏, denoted as 𝑎 ○ 𝑏, is a
matrix of dimensions (𝑎 ○ 𝑏) ∈ ℝ௡×௡,

Note that this outer product is not only lim-
ited to vectors, and can be generalized to matrices
and tensors as well.

KRONECKER PRODUCT

Let 𝐴 and 𝐵 be two matrices of dimensions 𝐴 ∈

ℝ௠×௡ and 𝐵 ∈ ℝ௝×௞,

The Kronecker product of 𝐴 and 𝐵 , denoted as
 𝐴 ⊗ 𝐵, is a matrix of dimensions (𝐴 ⊗ 𝐵) ∈ ℝ௠௝×௡௞,

In essence, the Kronecker product is computed by
multiplying every element in the first matrix, 𝐴, by the
entire second matrix, 𝐵.

KHATRI-RAO PRODUCT

The Khatri–Rao product is the columnwise Kronecker
product. Consider two (different) matrices
𝐴 ∈ ℝ௠×௡ and 𝐵 ∈ ℝ௣×௡ . The Khatri–Rao product of
𝐴 and 𝐵, denoted as 𝐴 ⊙ 𝐵, is a matrix of dimen-
sions (𝐴 ⊙ 𝐵) ∈ ℝ௠௣×௡,

Here, we are taking the Kronecker product between
every column vector from 𝐴 and 𝐵. Note that if 𝐴 and
𝐵 itself were column vectors, i.e. 𝑛 = 1 , then the
Khatri–Rao product is equivalent to the Kronecker
product, 𝐴 ⊙ 𝐵 = 𝐴 ⊗ 𝐵.

iii. Tensor Decomposition
Tensor decompositions are generalizations

of matrix factorizations to multidimensional arrays.[20]
We introduce one tensor factorization scheme that is
important in understanding the setting of our algo-
rithm. In the matricized form, we show that this fac-
torization has useful properties to be solved with an
alternating minimization scheme.

CANDECOMP/PARAFAC (CP) DECOMPOSITION

The objective of the CP decomposition is to express
a tensor as the sum of component rank–one tensors,
i.e. vectors, as depicted in FIGURE 3. For example, con-
sider a third-order tensor 𝐗 ∈ ℝ஽భ×஽మ×஽య. We can ap-
proximate this tensor as the following

where ”○” denotes the outer product, R represents
the rank (positive integer), and 𝑎௥ ∈ ℝ஽భ , 𝑏௥ ∈ ℝ஽మ ,
and 𝑐௥ ∈ ℝ஽య for 𝑟 = 1, . . . , 𝑅 . We can formalize this
decomposition as the following optimization prob-
lem:

where 𝐗෡ would represent a low rank approximation
of 𝐗. The factor matrices or CP factors are matrices
with the rank–one tensors as entries. From the previ-
ous three-dimensional case, 𝐴 ∈ ℝ஽భ×ோ would be an
estimated CP factor with entries

FIGURE 3: Graphical representation of the CANDECOMP/
PARAFAC decomposition – low rank approximation of a
third–order tensor

 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

With these definitions and the products defined pre-
viously, we can formulate some useful properties for
the third–order case:

These relationships can easily be generalized to 𝑛-
mode tensors, but for the purposes of this paper,
𝑛 = 3 will suffice. We will show how we can use these
equations for our alternating minimization algorithm
in the following sections. There also are other useful
tensor factorizations, such as the Tucker decomposi-
tion, which is explained in detail in the survey pa-
per.[6]

iv. Machine Learning Optimization Problems
Many machine learning algorithms can be

framed as empirical risk minimization (ERM) prob-
lems. The empirical risk is defined in terms of a risk,
or loss function κ(·). For linear classifiers, the loss of
a linear predictor 𝑤 on the data sample (𝑥௜ , 𝑦௜) can
be written as κ(𝑤ୃ𝑥௜ , 𝑦௜) and the average empirical

risk as ଵ

௡
∑௜ୀଵ

௡ κ(𝑤ୃ𝑥௜ , 𝑦௜). We discuss these loss func-

tions for some common classifiers and how we can
use them to solve tensor structured ERM problems.

SUPPORT VECTOR MACHINES

Consider a dataset with 𝑛 samples, i.e. {(𝑥௜ , 𝑦௜)}௜ୀଵ
௡ ,

where 𝑦௜ ∈ {−1,1}. Support Vector Machine (SVM) or
maximum margin linear classifier is a binary classifier
that finds a hyperplane to best separate the data,
while making minimal margin violations.[4] SVM uses
a loss function called the hinge loss function, defined
by

where 𝑤 is the coefficients of the separating hyper-
plane. With a penalty (or regularizer), we can mathe-
matically formulate SVM as the following ERM prob-
lem:

The regularization term, λ, is used to penal-
ize the features, and hence weights, that do not nec-
essarily contribute to the prediction outcome. Here,
we are considering the κଶ penalty, but there are
other regularizers such as the κଵ penalty. We use
these regularization terms in our loss function to es-
timate a more accurate model.

LOGISTIC REGRESSION

Similarly, consider a dataset with 𝑛 samples, i.e.
{(𝑥௜ , 𝑦௜)}௜ୀଵ

௡ , where 𝑦௜ ∈ {−1,1}. The objective of Lo-
gistic Regression (LOGIT) is the same as SVM, with a
different loss function called the logistic loss function,
defined by

The logistic loss function takes the form of

the sigmoid function. With a regularization term, we
can define Logistic Regression as the following ERM
problem:

We only introduce the objective function of

these two classifiers, as we will construct the CP
structured algorithm with these functions in the fol-
lowing section. Note that we do not include the bias
term in our hyperplane equation, as it can be mod-
eled in 𝑤ୃ as a column vector.

3 PROBLEM FORMULATION
In this section, we propose our tensor-based

classifiers in the form of an ERM framework. In gen-
eral, we structure our linear predictors (𝑤ୃ) to admit
a CP decomposition, in which we can reconstruct to
make classifications. We also discuss the metrics that
we will be investigating to evaluate the performance
of our models.

 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

i. CANDECOMP/PARAFAC Structured Classifiers
SUPPORT VECTOR MACHINES

Consider a dataset {(𝐗𝒊, 𝑦௜)}௜ୀଵ
௡ , where 𝐗𝒊 ∈

ℝ஽భ×…×஽ಿ denotes a tensor data sample with 𝑦௜ ∈

{−1,1} . By imposing the constraints from (1) onto
the predictors of (3), we can formulate the following
optimization problem:

The traditional ERM problem for SVM in (3)

solves for one vector predictor of dimensions
𝑤 ∈ ℝ஽భ×…×஽ಿ . The problem in (5) , which we call
“CP-SVM”, solves for 𝑁 matrix-valued predictors of
dimensions 𝑊𝒊 ∈ ℝ஽೔×ோ , for 𝑖 = 1, . . . , 𝑁 . As a con-
crete example, let each tensor sample be dimen-
sions 𝐗𝒊 ∈ ℝହ×ହ×ହ and 𝑅 = 3 . The traditional prob-
lem would solve for 5 × 5 × 5 = 125 coefficients,
whereas the structured problem would solve for
3 × (5 × 3) = 45 coefficients. As the dimensions in-
crease, the structured problem substantially reduces
the number of parameters/coefficients to be esti-
mated.

LOGISTIC REGRESSION

Similarly, consider a dataset {(𝐗𝒊, 𝑦௜)}௜ୀଵ
௡ , where

𝐗𝒊 ∈ ℝ஽భ×…×஽ಿ denotes a tensor data sample with
𝑦௜ ∈ {−1,1} . By imposing the constraints from (1)
onto the predictors of (4), we can solve the following
ERM problem:

This new framework, which we call “CP-
LOGIT”, solves for fewer parameters, similar to CP-
SVM.

In practice, we solve for the weights using
numerical optimization methods such as gradient
descent. However, solving for the weights in this new
CP-structured paradigm is a non-trivial task. In order
to solve for the coefficients in (5) and (6), we adopt
an alternating minimization algorithm similar to the
block relaxation algorithm proposed in Zhou et al.[21]
At each iteration, we update block 𝑊𝒊, while keeping
the rest of the blocks fixed. To see this, when updat-
ing 𝑊𝒊 ∈ ℝ஽೔×ோ, we can rewrite the inner product in
(5) and (6) with the properties mentioned in (2):

This alternating minimization algorithm is summa-
rized in ALGORITHM 1, in which κ(·) represents the ERM
problem to be minimized, 𝜃 represents a collection
of all the parameters, and λ is the regularization pa-
rameter. The parameter λ was tuned by hand, but
can also be determined through cross validation.
To understand the CP structured algorithm,
consider the loss function in (5) with 𝑁 = 3 .
When updating 𝑊𝟐 , we rewrite the inner product

〈∑௥ୀଵ
ோ 𝑊ଵ

(௥)
○ 𝑊ଶ

(௥)
○ 𝑊ଷ

(௥)
, 𝐗𝒊〉 as 〈𝑊ଶ, 𝐗(ଶ)(𝑊ଷ ⊙ 𝑊ଵ)〉 .

Note that this equation follows from the property of
tensor algebra as shown in (2). We perform this al-
gorithm for all the factor matrices until the stopping
criteria is met.

 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

The alternating minimization algorithm is
useful for several reasons. First, in practice, this algo-
rithm almost always converges to at least a local min-
imum.[1,20,21] To find the best solution, the algorithm
can be ran several times with different initial factor
matrices. Second, the low rank optimization prob-
lem over the factor matrices is non-convex.[2] Thus,
this problem becomes difficult to solve using com-
mon unconstrained solvers, such as gradient de-
scent. In literature, there are two ways to handle the
non-convexity of this optimization problem. One
way is to relax the rank constraint by adding a convex
regularization term that induces low rank (e.g. trace
norm, nuclear norm).[16,19] The other solution is to
employ this alternating minimization algorithm, as
the optimization over one matrix, while holding the
others fixed is convex. We chose to explore this pro-
cedure following Zhou et al.,[21] as the algorithm is
straightforward to implement using statistical soft-
ware such as MATLAB or Python.

ii. Performance Metrics

We evaluate the performance of our models
using several measures with different sample sizes.
The following four metrics help determine the meas-
ure of “closeness” between the true and estimated
predictors.

1. The Mean Squared Error (MSE) for 𝑛 data samples
and true predictor 𝑊 is computed as

where 𝑊෡ is the estimated predictor from solving
the ERM problem.

2. The cosine distance (or similarity)[12] for true predic-
tor 𝑊 is computed as

where 𝑊෡ is the reconstructed predictor from solv-
ing the ERM problem. Mathematically, the cosine
similarity measures the cosine of the angle between
two vectors projected in a 𝑛-dimensional space. As
the angle, 𝜃 , between the two vectors becomes
smaller, the cosine similarity will approach a value
of 1. As the angles become farther apart (perpen-
dicular), the cosine similarity will approach a value
of 0.

3. The reconstruction error for true predictor 𝑊 and
estimated tensor predictor 𝑊෡ is defined as

where || · ||ி denotes the Frobenius norm, a matrix
generalization of the κଶ norm.

4. The classification accuracy for 𝑛 test samples is
simply defined as the following:

After solving for 𝑊෡ , we make predictions on test
data and compare 𝑦ො௜ to the true 𝑦௜. Before compar-
ing the labels, we use the sign function to quantize
our values to 𝑦ො௜ ∈ {−1,1}.

4 EXPERIMENTS
We used two types of data for our experi-

ments: synthetic data and the Modified National In-
stitute of Standards and Technology (MNIST) data-
base.[9] The MNIST database is a benchmark dataset
used widely in machine learning that consists of
60,000 samples of handwritten digits from 0 to 9.
The objective of both experiments is to compare the
performance between the CP-structured algorithms
and the traditional algorithms, which were imple-
mented using software packages TensorLy[7] and
SciPy.[17] For all experiments, we use a Python envi-
ronment on a Macbook Pro with 2.2 GHz Intel Core
i7 and 16 GB RAM.

i. Synthetic Data
For synthetic data, we generated univariate

𝑦௜ responses with different sample sizes according to
the following model:

where 𝑋௜ is drawn independently and identically dis-
tributed (iid) from 𝒩(0,1), 𝜖 is a noise term drawn iid
from 𝒩(0,1), and 𝑊 is the fixed predictor as shown
in FIGURE 4. The objective was to observe if our models
defined in (5) and (6) can identify the true signal 𝑊
given (𝑋௜ , 𝑦௜).

 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

PERFORMANCE COMPARISON
To measure the “closeness” and classification acc-
uracy between the true model and the predicted
model, we use performance metrics defined in (7),
(8) , (9) , and (10) , we compute these metrics at
different sample sizes and show that as the number
of samples increases, the performance of the tra-
ditional vector approach converges to the perfor-
mance of the CP structured model. These results are
displayed in FIGURES 5 and 6. In FIGURE 5, we can visually
see that the predictors from our method solves for
the true predictors more accurately. For example, in
the case of 𝑛 = 500 from ROW 1, the “cross” figure is
more accurately portrayed using the CP method
(RIGHT) than the traditional method (MIDDLE). This would
allow us to make more accurate predictions, as the
estimated weights more closely follow the true wei-
ghts. In FIGURE 6, we can see that the MSE for both
algorithms is relatively the same throughout all sam-
ple sizes. For the cosine distance, we can see that the
CP structured algorithm approaches a value of 1 very
quickly, which indicates that there is a strong simil-
arity between the estimated and the true coefficients.
The reconstruction error and classification accuracy
both generally have gaps in the figures, but lessen
as the sample sizes increase. We can conclude that
these results depend on the sample size, as more
samples can decrease the number of hyperplanes
that separates the data, predicting coefficients clo-
ser to the true model. Based on the trends of the
graphs in FIGURE 6, we also hypothesize that if the
variance of the noise (𝜖) distribution was higher, the
CP structured algorithms would also perform better
than the traditional method.

RESULTS WITH PCA
The CP structured algorithm significantly reduces
the number of predictors to be estimated. To solve
for less coefficients using the traditional method, we
can perform Principal Component Analysis (PCA) on
the dataset before using the algorithm. We use PCA
on 𝑋 with an energy capture of 95%, which reduces
the number of coefficients from 225 to 189. However,
even with this minimal reduction, we can see in FIGURE

6 that there is a notable decrease in performance
throughout most metrics. The MSE seems unaff-
ected, but the other three metrics start to see a gap

between the traditional method with no PCA and the
CP structured algorithm. A possible explanation for
this phenomenon is that PCA does not capture
tensor data efficiently in lower dimensional space. If
we were to decrease the energy capture, the gap in
performance would grow larger even for a bigger
sample size. We predict that as the dimensions of the
data increases, PCA would not be an efficient feature
learning method for parameter reduction, favoring
the CP structured methods.

FIGURE 4: Two 15 × 15 images used as true predictors 𝑊 to
generate synthetic data

FIGURE 5: Reconstructed predictors from both algorithms:
LEFT – true predictor,
MIDDLE – reconstructed predictor from traditional method
with increasing sample sizes (𝑛 = 500,1000,1500),
RIGHT – reconstructed predictor from CP-structured
Logistic Regression with increasing sample sizes
 (𝑛 = 500,1000,1500)

 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

ii. MNIST Data
The objective of the MNIST dataset experi-

ment was to observe which algorithm would be
more efficient to use when the true predictor exhib-
ited an “approximate” low rank structure. In the pre-
vious experiment, the two images used as the true
predictor had an exact low rank structure, as it could
easily be computed through an outer product of two
matrices. Similar to the synthetic data setup, we gen-
erated univariate 𝑦௜ responses with sample size
𝑛 = 750 with the model defined in (11). However,
for the true predictor, 𝑊, we chose a “1” from the
MNIST dataset, as it exhibits “approximate” low rank

structure. We compared the CP-structued algo-
rithms to the traditional algorithms using different
rank values. These results are shown in TABLE 1.

PERFORMANCE COMPARISON
We use the same performance metrics defined for
the previous experiment and display the results in
TABLE 1. From this table, we can conclude that both CP
structured algorithms gave favorable results when
the CP rank was 2. This shows that we can
approximate a ”1” from the MNIST dataset with
matrices of rank 2. However in all cases from rank 1

FIGURE 6: Variation of performance (y-axis) with different sample sizes (x-axis) for SVM and LOGIT.
COLUMNS 1-4 represent plots for the MSE, Cosine Distance, Reconstruction Error, and Classification Accuracy, respectively.
ROW 1, 2: Performance metrics for LOGIT with predictors as cross and square, respectively.
ROW 3, 4: Performance metrics for SVM with predictors as cross and square, respectively. Predictors of cross and square is as
shown in FIGURE 4

 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

to 3, the structured algorithms gave more favorable
results. This proves to show that if the true predictor
exhibits an approximate low rank structure, it may be
beneficial to use the structured algorithms for
classification.

5 CONCLUSION
In this paper, we explored tensor-based

classification models using a tensor decomposition.
We proposed two algorithms that imposed a CAN-
DECOMP/PARAFAC factorization structure on the
predictors of traditional classification algorithms:
Support Vector Machines and Logistic Regression.
Imposing these techniques on traditional algorithms
allowed us to exploit the structure of the data, ena-
bling efficient learning with fewer parameters. We
showed with different performance metrics that our
proposed method increased accuracy and overall
solved a more accurate estimation of the weights.
The experiments showed that the CP algorithm per-
formed best when the true predictor had either an
approximate or exact low rank structure. We also

showed that solving for fewer parameters using PCA
compromised the performance of the traditional
method. We predict that PCA would not generalize
well to data with multidimensional structure, favor-
ing the CP structured algorithms. However, we be-
lieve that it would be interesting if one could show
when PCA could be better than using CP structure.
This could possibly be a case when the data in ques-
tion is known to be linear, as PCA is a linear feature
learning method. One potential example is using
structured data for prediction when it is known a pri-
ori that the features have a linear relationship. How-
ever, due to time constraints, we were not able to ex-
plore this possibility in detail. We also think it would
be interesting to test these algorithms on more da-
tasets. In addition, we believe an exciting direction
for future research is to exploit tensor decomposi-
tions in other learning problems such as deep learn-
ing. However, it is not clear how one would approach
this problem, as deep learning algorithms have non-
convex loss functions. We leave this up to the audi-
ence to investigate for future exploration.∎

METHOD MSE COS DISTANCE RECONSTRUCTION ERROR

SVM 0.00128 0.51832 0.00053

CP-SVM (R=1) 0.00088 0.66727 0.00044

CP-SVM (R=2) 0.00026 0.90259 0.00024

CP-SVM (R=3) 0.00039 0.85099 0.00029

LOGIT 0.00120 0.54759 0.00051

CP-LOGIT (R=1) 0.00089 0.66483 0.00044

CP-LOGIT (R=2) 0.00028 0.89590 0.00024

CP-LOGIT (R=3) 0.00033 0.87807 0.00026

TABLE 1: Performance metrics between the traditional and structured algorithms for the MNIST dataset experiment. The bolded
values represent the “best” performance through- out each method, where 𝑅 represents the rank of the CP structured algo-
rithm for each experiment.

 ARESTY RUTGERS UNDERGRADUATE RESEARCH JOURNAL, VOLUME I, ISSUE III

6 REFERENCES
[1] Bezdek, J. & Hathaway, R. (2003). Convergence of alternat-

ing optimization. Neural, Parallel & Scientific Computations.
11. 351-368.

[2] Candès, E. J., & Recht, B. (2009). Exact matrix completion via
convex optimization. Foundations of Computational Mathe-
matics, 9(6), 717–772.

[3] de Luis-García, R., Westin, C.-F., & Alberola-López, C. (2010).
Gaussian mixtures on tensor fields for segmentation: Appli-
cations to medical imaging. Computerized Medical Imaging
and Graphics, 35(1), 16–30.

[4] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An
Introduction to Statistical Learning with Applications in R (1st
ed. 2013.). Springer New York.

[5] Jia, C., Kong, Y., Ding, Z., & Fu, Y. (2014). Latent Tensor
Transfer Learning for RGB-D Action Recognition. Proceed-
ings of the 22nd ACM International Conference on Multime-
dia, 87–96.

[6] Kolda, T. G., & Bader, B. W. (2009). Tensor Decompositions
and Applications. SIAM Review, 51(3), 455–500.

[7] Kossaifi, J., Panagakis, Y., Anandkumar, A., & Pantic, M.
(2019). TensorLy: Tensor learning in python. Journal of Ma-
chine Learning Research, 20.

[8] Kreimer, N., Stanton, A., & Sacchi, M. D. (2013). Tensor com-
pletion based on nuclear norm minimization for 5D seismic
data reconstruction. Geophysics, 78(6), V273–V284.

[9] Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradi-
ent-based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11), 2278–2324.

[10] Li, X., Xu, D., Zhou, H., & Li, L. (2018). Tucker Tensor Regres-
sion and Neuroimaging Analysis. Statistics in Biosciences,
10(3), 520–545.

[11] Li, Y., Zhu, H., Shen, D., Lin, W., Gilmore, J. H., & Ibrahim, J.
G. (2011). Multiscale adaptive regression models for neu-
roimaging data: Multiscale Adaptive Regression Models.
Journal of the Royal Statistical Society. Series B, Statistical
Methodology, 73(4), 559–578.

[12] Nguyen, H. V., & Bai, L. (2011). Cosine Similarity Metric

Learning for Face Verification. In Computer Vision – ACCV
2010 (Vol. 6493, Issue 2, pp. 709–720). Springer Berlin Hei-
delberg.

[13] O’Donnell, L. J., & Westin, C.-F. (2011). An Introduction to
Diffusion Tensor Image Analysis. Neurosurgery Clinics of
North America, 22(2), 185–196.

[14] Rabanser, S., Shchur, O., & Günnemann, S. (2017). Introduc-
tion to Tensor Decompositions and their Applications in Ma-
chine Learning.

[15] Tan, X., Zhang, Y., Tang, S., Shao, J., Wu, F., & Zhuang, Y.
(2013). Logistic Tensor Regression for Classification. In Intel-
ligent Science and Intelligent Data Engineering (Vol. 7751,
pp. 573–581). Springer Berlin Heidelberg.

[16] Tomioka, R., & Suzuki, T. (2013). Convex Tensor Decomposi-
tion via Structured Schatten Norm Regularization.

[17] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weck-
esser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J.,
Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern,
R., Larson, E., … Moore, E. W. (2020). SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nature Meth-
ods, 17(3), 261–272.

[18] Weiwei Guo, Kotsia, I., & Patras, I. (2012). Tensor Learning for
Regression. IEEE Transactions on Image Processing, 21(2),
816–827.

[19] Wimalawarne, K., Tomioka, R., & Sugiyama, M. (2016). Theo-
retical and experimental analyses of tensor-based regression
and classification. Neural Computation, 28(4), 686–715.

[20] Wright, S. J. (2015). Coordinate descent algorithms. Mathe-
matical Programming, 151(1), 3–34.

[21] Zhou, H., Li, L., & Zhu, H. (2013). Tensor Regression with Ap-
plications in Neuroimaging Data Analysis. Journal of the
American Statistical Association, 108(502), 540–552.

Soo Min Kwon is currently pursuing a M.S. degree in the Department of Electrical and Computer Engineering
at Rutgers, The State University of New Jersey. His research interests broadly lie in optimization, multidimen-
sional (tensor) data analysis, differential privacy, and distributed learning. He earned his B.S. degree in Electrical
and Computing Engineering from Rutgers University in 2020. He completed his undergraduate thesis under
supervision of Prof. Anand D. Sarwate on tensor-based machine learning algorithms. Soo Min hopes to pursue
a PhD degree upon completion of his M.S. degree.

